

Turbulence in mobile-bed streams

Subhasish Dey¹, Ratul Das¹, Roberto Gaudio² and Sujit K. Bose³

¹Department of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal, India; e-mail: sdey@iitkgp.ac.in (corresponding author); ratuliitkgp@gmail.com

²Dipartimento di Difesa del Suolo “V. Marone”, Università della Calabria, 87036 Rende (CS), Italy; e-mail: gaudio@unical.it

³Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, West Bengal, India; e-mail: sujitbose@yahoo.com

Abstract

This experimental study is devoted to quantify the near-bed turbulence parameters in mobile-bed flows with noncohesive bed-load sediment transport and to compare them with those in clear-water flows. A reduction in magnitude of near-bed turbulence level due to the decrease of flow velocity relative to particle velocity transporting particles results in an excessive near-bed damping in Reynolds shear stress (RSS) distributions. The bed particles are associated with the momentum provided from the flow to maintain their motion overcoming the bed resistance. It leads to a reduction in RSS distributions over the entire flow depth. In the logarithmic law, the von Kármán coefficient decreases, and the virtual bed and the zero-velocity levels move up in presence of bed-load transport. The friction factor decreases with bed-load transport substantiating the concept of reduction of flow resistance. The traversing length of an eddy decreases and its size increases in mobile-bed flows, as compared to those in clear-water flows. The third-order correlations suggest that during the bed-load transport, a streamwise acceleration inclining downward is prevalent. It is associated with a streamwise diffusion of vertical Reynolds normal stress (RNS) and a downward diffusion of streamwise RNS. The streamwise and the downward vertical fluxes of turbulent kinetic energy (TKE) increase in presence of bed-load transport. The TKE-budget reveals that for the bed-load transport the pressure energy diffusion rate near the bed changes sharply to a negative magnitude, implying a gain in turbulence production. According to the quadrant analysis, sweep events in mobile-bed flows are the principal mechanism of bed-load transport. Using a Gram-Charlier series expansion based on the exponential distribution, the universal probability density functions (PDFs) for turbulence parameters given by Bose and Dey (2010) have been successfully applied in mobile-bed flows.

32

33 **Key words:** flow characteristics, hydraulics, open-channel flow, sediment transport, stream beds,
34 turbulent flow.

35

36 **1. INTRODUCTION**

37 From the perspective of geophysical hydrodynamics, events of sediment transport by the
38 turbulent flows are of significant importance, since they govern the morphodynamical changes by
39 entraining and depositing the sediments. Sediment transport, in fact, modifies the turbulent flow
40 characteristics, as compared to those over an immobile-bed. The underlying mechanisms of flows
41 over an immobile-bed and a mobile-bed are quite different in terms of the interactions of
42 transported particles with the fluid and those with the bed. The flow acts to accelerate the
43 particles, while the bed offers resistance to decelerate them. In this way, a considerable fraction
44 of the momentum of the particles goes into the bed and only a part of the momentum can be
45 recovered by the flow. The fluid energy thus transferred to the particles in motion is essentially
46 dissipated. Over and above, the whole process in turbulent flows is highly stochastic in nature.
47 This phenomenon gives rise to investigate the energy and momentum exchanges which are due to
48 the sediment transport, in terms of turbulent kinetic energy (TKE) and shear stress: especially the
49 influence of the transported particles on the TKE-budget and Reynolds shear stress (RSS)
50 production. In this context, an attempt is made to interpret the flow measurements by making use
51 of the concept of turbulent structures. Therefore, an investigation of this category essentially
52 involves two modes of sediment transport. In the first mode, the bed was immobile with no
53 sediment transport, called *clear-water flow*; and in the second, a continuous weak sediment
54 transport (as bed-load) was established by the flow in the form of a thin layer disallowing any
55 bed-forms development, called *mobile-bed flow*. Therefore, in both the modes, the sediment beds
56 should remain flat and hydraulically rough with the sediment particles devoid from any bed-
57 forms, as the presence of bed-forms could add further intricacy towards the bed-roughness and
58 the flow characteristics as well.

59 The contrasting bed conditions are the cause of the different characteristics of mobile-bed flows
60 with respect to clear-water flows. In general, the flow resistance is found to increase in mobile-
61 bed flows and also in the presence of sediment feeding transported as bed-load over rough

immobile-beds as compared to that in clear-water flows (Gust and Southard 1983, Wang and Larsen 1994, Best *et al.* 1997, Song *et al.* 1998, Calomino *et al.* 2004, Gaudio *et al.* 2011). Transport of coarse sand studied by Wang and Larsen (1994) and that of glass globules (diameter = 0.22 mm) studied by Best *et al.* (1997) showed that the bed-particle transport results in a reduction of the time-averaged streamwise velocity and an enhancement of the velocity gradient and turbulence intensities in the near-bed flow zone. These results are in conformity with the view that the collisions of bed-particles receive the kinetic energy from the time-averaged flow resulting in a near-bed momentum deficit; as a consequence, a reduction of the streamwise velocity is prevalent (Owen 1964, Smith and McLean 1977). Importantly, the particles during bed-load transport interact with the flow and the bed as well. The flow accelerates the particles, while the bed roughness retardates them until they come to a rest (Gyr and Schmid 1997). Bergeron and Carbonneau (1999) explained that the increase in flow resistance depends on the enhancement of the apparent roughness due to the withdrawal of momentum from the flow in presence of bed-load transport resulting in a reduction of time-averaged velocity. To be more explicit, sediment particles are accelerated by the flow, forming wakes and resulting in an enhancement of roughness, called *apparent roughness*. On the other hand, some studies suggested that the bed-load transport is instead to decrease the flow resistance, resulting in an increase of streamwise velocity. For instance, Nikora and Goring (2000) reported that the weak gravel transport as a bed-load in a field canal is the cause to increase the streamwise velocity. Carbonneau and Bergeron (2000) reported that the bed-load transport causes an increase in velocity, demonstrating that the effect of sediment transport on mean flow characteristics is rather complex. Campbell *et al.* (2005), who used the double-averaging method (DAM) (Nikora *et al.* 2001), observed a decrease in streamwise velocity in mobile-bed flows for larger particles, as compared to that in clear-water flows, but their observation for smaller particle size was quite opposite. In an attempt with the DAM by Radice and Ballio (2008), it was shown that considering the intermittency of the sediment transport process, it could be possible to interpret the double-averaged particle velocity being directly proportional to the shear velocity. There are also some studies suggesting a little influence of the sediment mobility on the flow resistance. Pitlick (1992) observed that the developing bed-forms induce an increased flow resistance, but the weak bed-load transport over a flat gravel-bed affects little. Yang and Hirano (1995) found that the flow resistance is not influenced by the bed-load transport. Regarding the universality of the *von*

93 *Kármán coefficient κ* , Gust and Southard (1983) and Bennett *et al.* (1998) for smooth and
94 transitional regimes and Bennett and Bridge (1995), Nikora and Goring (1999), Gallagher *et al.*
95 (1999) and Dey and Raikar (2007) for full-rough regime reported a decrease in κ from its
96 universal value due to the bed mobility; whereas Gyr and Schmid (1997) for smooth regime and
97 Song *et al.* (1994) for fully-rough regime did not confirm this aspect. Gaudio *et al.* (2010)
98 presented a review on the non-universality of κ in fluvial streams. Regardless of whether the bed-
99 load transport acts to increase or decrease or has a negligible effect on flow resistance, it is
100 confirmed that the mean flow and turbulence parameters of a mobile-bed flow differ significantly
101 from those of a clear-water flow. However, the up-to-date knowledge on the potential differences
102 is still limited and relates to rather narrow ranges of controlling parameters and experimental
103 situations. There are also some issues related to the turbulent flow structures and events, which
104 require adequate clarifications and are discussed as follows:

105 Researches on the turbulent wall-layers corroborate that the near-wall flow is characterized by a
106 sequence of turbulent bursting events (Kline *et al.* 1967, Robinson 1991). It represents the
107 governing mechanism of TKE-production near the wall (Nezu and Nakagawa 1993). Turbulent
108 bursting cycle comprises of a sequence of quasi-cyclic process of low speed fluid parcel ejected
109 (called *ejection events*) from the near-wall zone and subsequent high speed fluid parcel sweeping
110 (called *sweep events*) as an inrush of the slowly moving fluid left from the preceding ejection
111 events. Bursting events therefore play an important role in transporting sediments. Thus, the
112 breakthrough of the bursting phenomenon in turbulent wall-layers has created an enthusiasm in
113 further studying the structure of near-wall flows for an advanced knowledge to explore the
114 problem of sediment transport. The role of the coherent turbulent structures on the bed-load
115 transport was investigated by Heathershaw and Thorne (1985) in tidal channels. They pointed out
116 that the bed-load transport is not correlated with the instantaneous RSS, but it can be correlated
117 with the near-wall instantaneous streamwise velocity. Field observations on transport of gravels
118 by Drake *et al.* (1988) revealed that the gravel transport is associated with sweep events. These
119 events occur for a short fraction of time at any particular location of the bed, making the transport
120 process rather episodic, with short periods of high transport rate intermingled with long periods of
121 relatively negligible transport rate. In an effort to correlate the turbulence characteristics with the
122 sediment mobility, some researchers proposed the RSS components being not the most relevant
123 parameter defining the sediment transport (Clifford *et al.* 1991, Nelson *et al.* 1995). Best (1992)

124 attempted to correlate the sweeps with the sediment transport and bed defect (bed perturbation)
125 by using the hydrogen bubble visualization. Field investigations by Nikora and Goring (2000)
126 suggested that the characteristics of turbulence in flows over weakly mobile-beds could be
127 different from those over immobile-beds and beds with intense bed-load transport. The studies by
128 Krogstad *et al.* (1992) and Papanicolaou *et al.* (2001) further evidenced that the bed packing
129 conditions in gravel bed streams affect the turbulence characteristics of the flow, and as a result,
130 the sediment movement. In this context, it is pertinent to point out that the analysis of bursting
131 events by Papanicolaou *et al.* (2001) showed that the ratio of the RSS to the streamwise
132 turbulence intensity is smaller in the low-densely packed beds than in the densely packed beds.
133 Hence, sediment transport criterion based on the time-averaged bed shear stress may under-
134 predict, especially for the low-densely packed beds. Sumer *et al.* (2003) studied the role of
135 externally induced turbulence fields on the bed-load transport and argued that the sediment
136 transport rate increases considerably with an increase in turbulence level. Recently, Dey *et al.*
137 (2011) studied the influence of turbulent events on the initiation of sediment motion. They
138 observed that the sweep events are the key mechanism of initiation of sediment motion.

139 Despite number of serious efforts, the relative role of the mean flow and turbulence
140 characteristics on the sediment dynamics has yet to be ascertained. This study therefore addresses
141 how the turbulence characteristics in flows respond to bed-load transport of noncohesive
142 sediments. It provides important results pertaining to the turbulence characteristics, such as RSS,
143 time-averaged velocity, mixing-length and Taylor microscale, third-order correlations, TKE-flux,
144 TKE-budget, bursting events and probability density functions (PDFs) of turbulence parameters.
145 Experiments were conducted in absence of bed-forms. Analysis of experimental data, measured
146 by an acoustic Doppler velocimeter (*Vectrino* probe) with sampling frequency of 100 Hz, in
147 clear-water and mobile-bed flows, allows understanding the modifications in the mean flow and
148 turbulence parameters due to difference in bed conditions. Here, the experimental data for clear-
149 water flows are used as a reference. This study is in fact the extension of the study done by Dey *et*
150 *al.* (2011) on threshold-bed flows to fully mobile-bed flows.

151

152 **2. EXPERIMENTAL ARRANGEMENTS AND PROCEDURE**

153 The study was conducted in the Hydraulic and Water Resources Engineering Laboratory at the
154 Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India. A rectangular
155 open-channel flume with glass-walls was used for the experiments [Fig. 1(a)]. It was 0.91 m
156 wide, 0.71 m deep and 12 m long. A sediment feeder operated by an electro-mechanical device
157 was installed at the inlet of the flume to feed sediments into the flow. It had a hopper and a
158 conveyer belt, as main components. A speed-regulator for the rollers that drove the conveyer belt
159 carrying sediments regulated the sediment feeding at a uniform rate. Fig. 1(b) shows the
160 photograph of the sediment feeder apparatus. The inflow rate was controlled by a valve and
161 measured by a calibrated V-notch weir. The flow depth was controlled by an adjustable tailgate at
162 the flume outlet and measured by the point gauges. Three uniformly graded sediments were used
163 for the experiments, with median diameters $d_{50} = 0.95, 2.6$ and 4.1 mm, respectively. The
164 geometric standard deviations of the particle size distributions $\sigma_g = (d_{84}/d_{16})^{0.5}$ were always less
165 than 1.3, where d_{16} and d_{84} are the particle sizes finer than 16 and 84% by weight, respectively.
166 The characteristics of the sediment samples used for the experiments are shown in Table 1.

167 For each sediment sample, an experimental set comprised of two different runs for clear-water
168 and mobile-bed flow conditions. Utmost care was taken to ensure that the immobile-bed
169 roughness became unchanged throughout the experiments for a sediment sample. To prepare an
170 immobile-bed, synthetic glue was sprayed on the surface of the flume bottom and then the
171 sediments were spread uniformly by means of a sieve to create a rough-bed. Care was taken not
172 to flood the surface by the glue. After completely drying, the bed surface was brushed before
173 commencing an experiment. In each experimental set, the clear-water flow structure over the
174 immobile-bed with no sediment transport was first measured. Then, the mobile-bed flow structure
175 was measured during the bed-load transport of sediments at a certain rate corresponding to the
176 same flow condition as that of the clear-water flow. The sediment was fed into the flow at a
177 uniform rate through a hopper and a conveyer belt attached to a gearing system, as shown in Fig.
178 1(b). The sediment transport capacity of the flows always equaled or exceeded the bed-load
179 feeding rates. Thus, the bed-load transport rate was approximately balanced by the feeding rate,
180 leading to a dynamic equilibrium. The feeding sediments were transported, forming a thin layer
181 as a pure bed-load with particles rolling rather than saltating, as visually observed. Occasionally,
182 for sediment feeding with size 4.1 mm, particles had a tendency to become temporarily lodged on
183 the localized zone of the bed, but they traveled after a short while. In this way, sediments were

184 transported right towards the flume outlet without developing bed-forms or deposition. The
185 sediments transported by the flows were collected in a downstream box, called sediment
186 collector.

187 Three different streamwise bed-slopes $S = 0.13, 0.30$ and 0.38% were used for $d_{50} = 0.95, 2.6$
188 and 4.1 mm, respectively. The experiments were conducted under a uniform flow. It was ensured
189 by measuring the flow depths within the reach from 6 to 9 m (from the flume inlet), within which
190 the flow measurement was done. The ranges of relative submergence $S_h (= d_{50}/h)$, where h is the
191 flow depth), flow Reynolds number $R (= 4hU/\nu)$, where U is the depth-averaged velocity and ν is
192 the kinematic viscosity of fluid considered as 10^{-6} m²/s) and flow Froude number $F [= U/(gh)^{0.5}$,
193 where g is the gravitational acceleration] were studied as $6.33 \times 10^{-3} \leq S_h \leq 3.42 \times 10^{-2}$, $2.38 \times 10^{-5} \leq$
194 $R \leq 5.51 \times 10^5$ and $0.55 \leq F \leq 0.77$, respectively. The experimental conditions were independent of
195 S_h , as the values of S_h were far below 0.1. The shear-particle Reynolds numbers $R_* (= d_{50}u_*/\nu)$,
196 where u_* is the shear velocity) were in general close to or greater than 70. Thus, the flow
197 conditions were rough-turbulent.

198 A four-receiver acoustic Doppler velocimeter probe, named *Vectrino* (manufactured by Nortek),
199 working with an acoustic frequency of 10 MHz was used to measure the instantaneous velocity
200 components. A sampling rate of 100 Hz was used for the data acquisition. The sampling volume
201 was cylindrical, having 6 mm diameter and an adjustable height varying from 1 to 4 mm. Within
202 the wall-shear layer of flow (within 20% of flow depth), the sampling height was set as 1 mm. On
203 the other hand, above the wall-shear layer of flow (above 20% of flow depth), the sampling
204 height was used as 4 mm. The closest measuring location to the bed was always 2 mm from the
205 bed surface. Duration of sampling 300 s was found to be adequate to achieve the statistically
206 time-independent averaged velocity and turbulence quantities (including third-order correlations
207 and TKE-fluxes). The measurement within top 5 cm of the flow layer could not be performed due
208 to the limitation of the probe. The flow measurements were performed along the vertical over the
209 centerline at a distance of 7.5 m from the inlet. Such an arrangement ensured to avoid transverse
210 gradients of velocity, if there was any. Further, as far as the flow three-dimensionality is
211 concerned, owing to the fact that the aspect ratios (that is the ratio of flume width to flow depth)
212 were greater than 6, the flows in all the experiments were free from any three-dimensional effect
213 induced by the side-walls (Yang *et al.* 2004). The *Vectrino* data uncertainty, given in Table 2,
214 was determined by testing 12 samples collected at a rate of 100 Hz over a period of 300 s. These

samplings were taken at a location of 3 mm over the beds formed by the sediment sizes of $d_{50} = 0.95$ and 4.1 mm. In Table 2, u' , v' and w' are the fluctuations of instantaneous streamwise velocity u , spanwise velocity v and vertical velocity w , respectively, $(\overline{u'u'})^{0.5}$ is the root-mean-square (rms) of u' , $(\overline{v'v'})^{0.5}$ is the rms of v' , $(\overline{w'w'})^{0.5}$ is the rms of w' , and $-\overline{u'w'}$ is the RSS divided by the mass density ρ of fluid. To avoid the bias and the random errors of the experimental setup, samplings were taken at different times after resuming the experiments. The data shown in Table 2 are within $\pm 5\%$ error for the time-averaged velocities and rms quantities and within $\pm 8\%$ error for the RSS, corroborating the capability of 100 Hz frequency of measurements by *Vectrino*. Table 3 provides the important experimental parameters of different sets. In a mobile-bed flow, the shear velocities $u_{*s} [= (ghS)^{0.5}]$ determined from the bed slope were always greater than the shear velocities $u_{*\tau} [= (-\overline{u'w'})^{0.5}]_{z=0}$ obtained from the RSS measurements. The notation $u_{*\tau}$ is henceforth replaced by u_* . The reason of the discrepancy in shear velocities for clear-water and mobile-bed flows is discussed in section 3. Regarding the coordinate system, the bed surface is the reference of the z -axis ($z = 0$), being positive in the normally upward direction. The x -axis is aligned with the bed surface (along the centerline of the flume), being $x = 0$ at the measuring location and positive in the streamwise direction. The transverse axis is y , being positive in the right (right-hand rule). Therefore, the measuring location has coordinates $(0, 0, z)$.

In all experiments, the signal-to-noise ratio was maintained 15 or above. The signal correlations between transmitted and received pair of pulses were in general greater than 70%, which was the recommended cut-off value. However, on a number of occasions, the signal correlations close to the bed were dropped down by approximately 5% from its recommended cut-off value due to potentially steep velocity gradient within the sampling volume. The data measured by the *Vectrino* in the near-bed flow zone contained spikes resulting from the interference between incident and reflected pulses. So, the data were filtered by a spike removal algorithm based on the *acceleration thresholding method* (Goring and Nikora 2002). This method was capable in detecting and replacing spikes in two phases. The threshold values ($= 1 - 1.5$) for despiking were chosen (by trial and error) in such a way so that the velocity power spectra provided an acceptable fit with Kolmogorov “ $-5/3$ scaling-law” in the inertial subrange (Lacey and Roy 2008). Using the discrete fast Fourier transforms, the velocity power spectra $F_{ii}(f)$ were

245 calculated, where f is the frequency. Figs. 2(a and b) present $F_{ii}(f)$ at $z = 0.005$ m in clear-water
 246 and mobile-bed flows before and after spike removal. The power spectra of despiked signals
 247 display a satisfactory agreement with Kolmogorov “ $-5/3$ scaling-law” in the inertial subrange of
 248 frequency that occurs for frequencies $f > 1$ Hz. These features corroborate the adequacy of the
 249 *Vectrino* measurements in clear-water and mobile-bed flows. The power spectra exhibit similar
 250 relationships between the velocity components, where $F_{uu} \approx F_{vv} > F_{ww}$. It is however evident that
 251 discrete spectral peak was not observed for $f > 0.5$ Hz. It implies that the signals for $f \leq 0.5$ Hz
 252 contained large-scale motions; while those for $f > 0.5$ Hz had pure turbulence. The raw measured
 253 data were therefore decontaminated by using a high-pass filter with a cut-off frequency of 0.5 Hz,
 254 correlation threshold and spike removal algorithm. The difference in power spectra $F_{ii}(f)$ for
 255 clear-water and mobile-bed flows is not apparent. Therefore, the spectra were not contaminated
 256 by the transported sediments. In this context, it is pertinent to mention that Best *et al.* (1997)
 257 quantified a cross-talk between fluid and suspended sediment particles to yield errors of between
 258 ± 0.05 to 0.8% in time-averaged velocity and ± 0.3 to 3.3% in rms of velocity fluctuations
 259 measured by a phase Doppler anemometer. As there were no suspended sediments in the present
 260 study, the measured data were free from any cross-talk. In addition, four-receiver *Vectrino* system
 261 had a redundancy for the vertical velocity components, since w_1 and w_2 were simultaneously
 262 measured, where subscripts “1” and “2” refer to the vertical components measured by two beams.
 263 The noise estimation for a four-receiver system was performed by the method given by
 264 Blanckaert and Lemmin (2006) for the despiked data. The variance σ_z^2 of the noise is given by

$$\sigma_z^2 = \frac{\sigma_{z1}^2 + \sigma_{z2}^2}{2} \quad (1)$$

265 where $\sigma_{z1}^2 = \overline{w_1'w_1'} - \overline{w_1'w_2'}$, and $\sigma_{z2}^2 = \overline{w_2'w_2'} - \overline{w_1'w_2'}$. It was considered that data having $\sigma_z^2 <$
 266 $0.3 \overline{w_1'w_2'}$ were noise-free, as they corresponded well to the signal correlations greater than 70.
 267

268 3. RSS DISTRIBUTIONS

269 Fig. 3(a) presents the vertical distributions of nondimensional RSS $\hat{\tau}(\hat{z})$ for all the runs for
 270 clear-water and mobile-bed flows. The RSS $\tau (= -\rho \overline{u'w'})$ is scaled by the bed shear stress $\tau_0 (=$
 271 $\rho u_*^2)$ and the vertical distance z by the flow depth h . Here, $\hat{\tau}$ is τ/τ_0 and \hat{z} is z/h . In the flow-

273 layer $\hat{z} > 0.1$, the data plots for both the cases collapse on the linear law of RSS (also termed
 274 gravity line), $\hat{\tau} = 1 - \hat{z}$, for the free surface flows with a zero-pressure gradient. Near the bed,
 275 the $\hat{\tau}$ -distributions suffer from a damping that is apparent from a departing band of data plots
 276 from the linear law. The damping in τ -distributions close to the rough-bed is a common feature
 277 due to the formation of roughness sub-layer that gives rise to form induced stress (Sarkar and Dey
 278 2010). Nevertheless, an excess damping in τ -distributions for mobile-bed flows over that in clear-
 279 water flows is noticeable, which is an important aspect to be explored in the context of bed-load
 280 transport. This damping is attributed to the fact that the particles on motion result in a reduction
 281 in flow velocity relative the particle velocity to drag them. To be more explicit, initially particles
 282 are dragged by the flow from the rest and then accelerate, while the resistance at contacts of bed
 283 particles retards them. In this way, a dynamic equilibrium is established, when the particles in
 284 motion require overcoming only the frictional resistance from the bed. Thus, the resulting wakes
 285 produce a lesser turbulence level in mobile-bed flows than in clear-water flows. It is to be noted
 286 that the clear-water flows in this study were the forced ones, as the sediment particles were glued.
 287 Otherwise, they would have had motion by the same flow. In Table 3, for clear-water flows, the
 288 values of shear velocity u_{*s} obtained from the bed slopes correspond well with those of $u_{*\tau}$
 289 obtained from the τ -distributions. In contrast, for mobile-bed flows, the values of u_{*s} are
 290 consistently greater than those of $u_{*\tau}$. It implies that the mobility of sediment particles influences
 291 the τ -distributions over the entire flow depth, as $u_{*\tau} [= (-\overline{u'w'})^{0.5}]_{z=0}$, denoted by u_* is determined
 292 from the linear projection of a τ -distribution onto the bed. The decreased magnitude of u_* for
 293 mobile-bed flows is thus attributed to a portion of the RSS transmitted to the bed particles to
 294 prevail over the resistance at the contacts of the transported sediment particles. An analogous
 295 concept of Grass (1970) supports this phenomenon. The reduction in magnitude of u_* and thus in
 296 τ -distributions can also be clarified observing that the bed particles are associated with the
 297 momentum provided from the flow to maintain their motion (Yeganeh-Bakhtiary *et al.* 2000,
 298 2009). The relative difference in τ between clear-water (subscript “cw”) and mobile-bed
 299 (subscript “mb”) flows can be estimated by $\Delta\tilde{\tau} = 1 - (\tau)_{mb}/(\tau)_{cw}$. Fig. 3(b) shows the variation of
 300 $\Delta\tilde{\tau}$ with \hat{z} for all the runs. It is evident that the difference in τ in the near-bed zone becomes as
 301 high as $0.7(\tau)_{cw}$. Sumer *et al.* (2003), who studied the bed-load transport under externally induced
 302 turbulence fields, argued that the sediment transport rate increases with turbulence level. In

303 contrast, the present study puts forward an argument that the sediment transport is associated with
 304 a reduction in the turbulence level in a wall-shear flow, as compared to clear-water flows. It
 305 implies that both the arguments are true, as an increased turbulence is the cause to increase the
 306 transport rate, but the turbulence level reduces in presence of bed-load transport. In conclusions,
 307 two important issues comes out from the analysis of RSS distributions: (1) a near-bed damping in
 308 RSS distributions results from a lesser magnitude of turbulence level in mobile-bed flows being
 309 in excess of that in clear-water flows; and (2) a reduction in RSS distributions over the entire flow
 310 depth in mobile-bed flows results from the bed particles that are associated with the provided
 311 momentum from the flow to maintain their motion overcoming the bed resistance.

312

313 **4. TIME-AVERAGED VELOCITY DISTRIBUTIONS**

314 Fig. 4(a) shows the vertical distributions of nondimensional time-averaged streamwise velocity u^+
 315 for all the runs for clear-water and mobile-bed flows. In order to fit the data points in the inner-
 316 layer ($z \leq 0.2h$) to the universal logarithmic law of wall (log-law), the time-averaged streamwise
 317 velocity \bar{u} and the vertical distance z are scaled by u_* and d_{50} , such that $u^+ = \bar{u} / u_*$, and $z^+ = z / d_{50}$.
 318 As the flow regime was the rough-turbulent flow, it is customary to use d_{50} scaling z . Since the
 319 primary focus of this study is on the role of turbulence characteristics, the values of u_* ($= u_{*\tau}$) are
 320 preferred to those of u_{*s} . Moreover, the τ -distributions provide the truly available turbulent shear
 321 stress in the flowing fluid and so $u_{*\tau}$ is chosen as shear velocity. To plot the experimental data, we
 322 consider the log-law as expressed in following nondimensional form:

$$323 \quad u^+ = \frac{1}{\kappa} \ln \left(\frac{z^+ + \Delta z^+}{\zeta^+} \right) \quad (2)$$

324 where κ = von Kármán coefficient, $\Delta z^+ = \Delta z / d_{50}$, Δz = depth of the virtual bed level from the bed
 325 surface, $\zeta^+ = z_0 / d_{50}$, and z_0 = zero-velocity level. Fig. 4(a) describes the log-law showing
 326 variations of u^+ with $z^+ + \Delta z^+$ for the experimental datasets. It is clear that a prior estimation of
 327 Δz^+ was an essential prerequisite to plot the data, and subsequent determination of κ and ζ^+ was
 328 required to fit the data to the log-law given by eq. (2). The determination of these parameters was
 329 done independently, as described below:

330 Step 1: Having obtained u^* from the τ -distributions as $u^* = (-\overline{u'w'})^{0.5} \Big|_{z=0}$, prepare the data $u^+(z^+)$
 331 for the range of $z \leq 0.2h$ for the analysis.
 332 Sept 2: As an initial trial, considering $\Delta z^+ = 0$, determine κ and ζ^+ from eq. (2) by the regression
 333 analysis and evaluate the regression coefficient, RC .
 334 Sept 3: Increase Δz^+ at a regular interval by a small magnitude (say 0.001) and determine κ and ζ^+
 335 in the same way as given in step 2, and check RC for each value of Δz^+ , till RC becomes
 336 maximum. Then, the corresponding values of Δz^+ , κ and ζ^+ are the determined parameters for eq.
 337 (2).

338 The values of Δz^+ , κ and ζ^+ obtained for all the runs are furnished in Table 3. It is obvious that
 339 the values of κ for mobile-bed flows drop from its traditional universal value ($\kappa = 0.41$), while
 340 those for clear-water flows preserve the traditional constant value. It is in conformity with those
 341 obtained by previous researchers for flows with bed-load transport (Bennett and Bridge 1995,
 342 Nikora and Goring 1999, Gallagher *et al.* 1999, Dey and Raikar 2007, Gaudio *et al.* 2011). The
 343 average values of $\Delta z^+ = 0.39$, $\kappa = 0.413$ and $\zeta^+ = 0.034$ for clear-water flows are in agreement
 344 with those for the traditional log-law over rough beds. Typically, the customary values of the
 345 parameters for the rough beds are $\Delta z^+ = 0.25$, $\kappa = 0.41$ and $\zeta^+ = 0.033$ (van Rijn 1984). Thus, for
 346 clear-water flows, the data collapse well on the average log-law curve given by a solid line in Fig.
 347 4(a) and the corresponding errors shown in Fig. 4(b) are well below $\pm 10\%$. On the other hand, the
 348 average values of $\Delta z^+ = 0.21$, $\kappa = 0.37$ and $\zeta^+ = 0.04$ for mobile-bed flows suggest the modified
 349 values of the parameters for the log-law over rough mobile-beds. It is obvious that for mobile-bed
 350 flows, the data exhibit some degree of scatter about the average log-law curve [Fig. 4(a)].
 351 Nevertheless, the corresponding errors shown in Fig. 4(b) are within $\pm 10\%$. Importantly, if we
 352 use the values of the parameters from Table 3 for an individual run, then the matching between
 353 the experimental data and the log-law would be excellent. A comparison of the values of Δz^+ and
 354 ζ^+ for clear-water and mobile-bed flows reveals that the virtual bed and zero-velocity levels move
 355 up in presence of bed-load transport. Although the analysis related to the log-law was done
 356 considering the data range of $z \leq 0.2h$, Fig. 4(a) displays all the data (for $z \leq 0.2h$ and $z > 0.2h$)
 357 plots. Thus, the data plots depart in the outer-layer to some extent. However, Fig. 4(b) includes
 358 only the data for $z \leq 0.2h$ to demonstrate the errors in log-law fittings. Additionally, the estimates

359 of the friction factor λ ($= 8u_*^2/U^2$) are furnished in Table 3. Fig. 5 presents the data plots of λ
 360 versus h/ε for all the runs for clear-water and mobile-bed flows, where ε is the Nikuradse
 361 equivalent sand roughness. Both the plots for λ_s and λ_t obtained from bed slope and RSS are
 362 shown. The values of ε were determined from the relationship for zero-velocity level as $\varepsilon =$
 363 $30\zeta^+ d_{50}$. The data plots are also compared with the empirical curve given by Song *et al.* (1998)
 364 for clear-water flows. It is evident that the data points for clear-water flows lie around the
 365 empirical curve. However, the values of λ for mobile-bed flows decrease with respect to those for
 366 clear-water flows and with an increase in h/ε , as data points encircled in Fig. 5. Therefore, the
 367 reduction of resistance in presence of bed-load transport is again substantiated. Hence, the finding
 368 for mobile-bed flows by Song *et al.* (1994, 1998), who argued that the bed friction factor λ
 369 increases with bed-load transport, is in contradiction with the present results. They calculated u_*
 370 from the bed slopes. The calculation of u_* from the bed slopes is valid only for the clear-water
 371 flows and cannot truly predict u_* for mobile-beds, since the original derivation of u_* is based on
 372 the fluid force balance on a rigid wall. However, for an experiment in a narrow channel having
 373 aspect ratio $\ll 6$, as the wall induced secondary-currents form cells increasing the flow
 374 resistance, the sediment feeding to simulate bed-load transport over a rough immobile-bed could
 375 result in an increase of bed resistance to the main flow (Calomino *et al.* 2004, Gaudio *et al.*
 376 2011). Finally, it can be concluded that for mobile-bed flows, (1) von Kármán coefficient and
 377 friction factor (or frictional resistance) decrease and (2) virtual bed and zero-velocity levels move
 378 up.

379
 380 **5. PRANDTL MIXING-LENGTH AND TAYLOR MICROSCLAE DISTRIBUTIONS**
 381 According to Prandtl, the mixing-length l , which defines a distance that a fluid parcel (eddy)
 382 keeps its original characteristics before dispersing into the surrounding fluid, is given by

$$l = \frac{(-\overline{u'w'})^{0.5}}{d\bar{u}/dz} \quad (3)$$

383
 384 To calculate the mixing-length l from eq. (3), the measured velocity profiles were used to
 385 determine the velocity gradients $d\bar{u}/dz$ by smooth curve fitting to the data, and the values of
 386 $-\overline{u'w'}$ were obtained directly from the measured RSS distributions. The variations of

387 nondimensional mixing-length \hat{l} ($= l/h$) with \hat{z} for Runs 6a and 6b are shown in Fig. 6. Within
 388 the inner-layer ($z \leq 0.2h$) of wall-shear, \hat{l} varies linearly with \hat{z} and all the experimental data
 389 points for clear-water and mobile-bed flows collapse reasonably on a single band, which is in
 390 conformity with the Prandtl's hypothesis. Also, data points collapse satisfactorily on the curves
 391 obtained from the theoretical equation $\hat{l} = \kappa \hat{z} (1 - \hat{z})^{0.5}$ given by Nezu and Nakagawa (1993).
 392 The slope of the linear portion defining κ ($= \hat{l} / \hat{z} = l/z$) for mobile-bed flows is smaller than that
 393 for clear-water flow. It suggests that the traversing length of an eddy decreases with bed-load
 394 transport and increases more rapidly with z in clear-water flows. It is another confirmation
 395 towards the reduction of mobile-bed resistance to flow.

396 Studies done by Gore and Crowe (1991), Hetsroni (1993), Crowe (1993), Best *et al.* (1997)
 397 argued that in flows with transported particles, the ratio of the size of transported particles to the
 398 length scale of turbulence is involved in influencing the enhancement or attenuation of the
 399 streamwise turbulence intensity. Taylor microscale λ_T , that defines the eddy size in the inertial
 400 subrange, is the relevant length scale of turbulence, given by

$$401 \quad \lambda_T = \left(\frac{15v\sigma_u^2}{\varepsilon} \right)^{0.5} \quad (4)$$

402 where σ_u = streamwise turbulence intensity, that is $(\overline{u'u'})^{0.5}$, and ε = TKE-dissipation rate. The
 403 estimation of ε is done by using Kolmogorov's second hypothesis that predicts the following
 404 equality describing the true inertial subrange (Pope 2001):

$$405 \quad k_w^{5/3} S_{uu} = C \varepsilon^{2/3} \quad (5)$$

406 where k_w = wave number, $S_{uu}(k_w)$ = spectral density function for u' , and C = constant
 407 approximately equal to 0.5 (Monin and Yaglom 2007).

408 In Fig. 7(a), the spectra $S_{uu}(k_w)$ [$= (0.5 \bar{u} / \pi) F_{uu}(f)$] as a function of k_w [$= (2\pi/\bar{u})f$] are drawn
 409 using the despiked instantaneous velocity data. The inertial subranges in clear-water and mobile-
 410 bed flows are satisfactorily characterized by Kolmogorov “ $-5/3$ scaling-law”. It corresponds to a
 411 subrange of k_w where the average value of $k_w^{5/3} S_{uu}$ is relatively constant (that is independent of
 412 k_w), as shown in Fig. 7(b). Then, ε was estimated from eq. (5) and λ_T was from eq. (4). Fig. 8(a)
 413 shows the variations of the ratio of sediment size to Taylor microscale, that is $\hat{\lambda}_d = d_{50}/\lambda_T$, with \hat{z}

414 for Runs 6a and 6b. Near the bed ($z \leq 0.1h$), $\hat{\lambda}_d$ for mobile-bed flows is smaller than that for
 415 clear-water flows. In the outer-layer, $\hat{\lambda}_d$ for both the cases being almost same decreases away
 416 from the bed. The values of λ_T near the bed are 2 and 2.44 mm in clear-water and mobile-bed
 417 flows, respectively. Hence, the eddy size close to the bed increases in presence of bed-load
 418 transport. Previous studies on two-phase flows reported that the range of $\hat{\lambda}_d \approx 0.2$ to 1.2
 419 corresponds to the turbulence enhancement; while the range of $\hat{\lambda}_d \approx 0.2$ to 0.065 corresponds to
 420 the turbulence attenuation (Gore and Crowe 1991, Hetsroni 1993, Best *et al.* 1997). Fig. 8(b)
 421 presents the data plots of $\hat{\lambda}_d$ for mobile-bed flows as a function of relative difference of
 422 streamwise turbulence intensities $\Delta\sigma_u [= (\sigma_u)_{mb}/(\sigma_u)_{cw} - 1]$ for Runs 6a and 6b. The results are in
 423 agreement with those obtained by the previous investigators.

424

425 6. DISTRIBUTIONS OF THIRD-ORDER CORRELATIONS

426 Third-order correlations that carry stochastic information on the characteristics of u' and w' in
 427 terms of flux and diffusion of the turbulent stresses are attributed to the turbulent coherent
 428 structures, owing to the preservation of their signs. The set of third-order correlations is given by
 429 $M_{jk} = \overline{\hat{u}^j \hat{w}^k}$ for $j + k = 3$, where $\hat{u} = u' / (\overline{u' u'})^{0.5}$, and $\hat{w} = w' / (\overline{w' w'})^{0.5}$ (Raupach 1981). The
 430 skewness of u' is $M_{30} (= \overline{\hat{u}^3})$, defining the streamwise flux of the streamwise Reynolds normal
 431 stress (RNS) $\overline{u' u'}$. A similar expression can be written for $M_{03} (= \overline{\hat{w}^3})$, defining the vertical flux
 432 of vertical RNS $\overline{w' w'}$. On the other hand, the diffusion factors are $M_{21} (= \overline{\hat{u}^2 \hat{w}})$ and $M_{12} (= \overline{\hat{u} \hat{w}^2})$,
 433 characterizing the diffusions of $\overline{u' u'}$ in z -direction and $\overline{w' w'}$ in x -direction, respectively.

434 Fig. 9 presents the vertical distributions of $M_{jk}(\hat{z})$ for Runs 6a and 6b. The correlation between
 435 M_{jk} -distributions for clear-water flow is $M_{30} = -2.16M_{21} = 1.93M_{21} = -1.77M_{03}$ that corresponds
 436 closely to $M_{30} = -2.02M_{21} = 1.97M_{21} = -1.7M_{03}$ as obtained by Raupach (1981). The influence of
 437 the bed-load transport on M_{jk} -distributions is evident within the near-bed flow zone. In the clear-
 438 water flow, M_{30} and M_{12} start with small negative values near the bed and decrease (increase of
 439 negative magnitudes) with \hat{z} . On the other hand, in the mobile-bed flow, M_{30} and M_{12} start with
 440 small positive values near the bed, changing over to negative values for $\hat{z} \geq 0.06$. It suggests that

441 the bed-load transport influences M_{30} and M_{12} by changing the $\overline{u'u'}$ -flux and the $\overline{w'w'}$ -diffusion
 442 to the streamwise direction; while they (possessing feeble magnitudes) propagate against the
 443 streamwise direction in the clear-water flow. Away the bed ($\hat{z} > 0.06$), the $\overline{u'u'}$ -flux and the
 444 $\overline{w'w'}$ -diffusion occur against the streamwise direction and become pronounced with an increase
 445 in \hat{z} for both clear-water and mobile-bed flows. The trends of $M_{03}(\hat{z})$ and $M_{21}(\hat{z})$ in the clear-
 446 water flow are positive over the entire flow depth; whilst those in mobile-bed flows are negative
 447 near the bed ($\hat{z} \leq 0.06$) and positive for $\hat{z} > 0.06$. It suggests that the $\overline{w'w'}$ -flux and the $\overline{u'u'}$ -
 448 diffusion are in upward direction over the entire flow depth for the clear-water case, whereas
 449 those are in downward direction in the near-bed flow zone for the mobile-bed case. The responses
 450 of the bursting events can be reasonably obtained from the third-order correlations, although
 451 some of them remain implicit, owing to the averaging process (Nakagawa and Nezu 1977). Near
 452 the bed, the positive M_{30} and the negative M_{03} imply a strong inrush of fluid parcel in mobile-bed
 453 flow. In contrast, in the away-bed flow zone, the negative M_{30} and the positive M_{03} suggest the
 454 arrival of low-speed fluid parcel. Besides, the positive M_{12} and the negative M_{21} in near-bed flow
 455 zone imply that the bed-load transport corresponds to the $\overline{w'w'}$ -diffusion in the streamwise
 456 direction and the $\overline{u'u'}$ -diffusion in the downward direction. Therefore, the analysis of third-order
 457 correlations confirms that during the bed-load transport, a streamwise acceleration is prevalent
 458 and associated with a downward flux giving rise to sweeps.

459

460 7. TKE-FLUX COMPONENTS AND BUDGET DISTRIBUTIONS

461 The vertical distributions of nondimensional streamwise and vertical TKE-flux components F_{ku}
 462 [$= f_{ku}/u^3$; where $f_{ku} = 0.5(\overline{u'u'u'} + \overline{u'v'v'} + \overline{u'w'w'})$] and F_{kw} [$= f_{kw}/u^3$; where $f_{kw} = 0.5(\overline{u'u'w'} +$
 463 $\overline{v'v'w'} + \overline{w'w'w'})$] in Runs 6a and 6b are shown in Fig. 10. In the clear-water flow, the F_{ku} starts
 464 with a small negative value and decreases (increase of negative value) with \hat{z} . It implies that the
 465 F_{ku} transports against the streamwise direction over the entire flow depth. The inertia of flowing
 466 fluid layer induces a retarding effect being attributed to the negative value of F_{ku} . On the other
 467 hand, the positive F_{kw} over the entire flow depth suggests an upward transport of F_{kw} . Therefore,
 468 the negative F_{ku} and the positive F_{kw} compose a retardation process with the arrival of slowly
 469 moving fluid parcel. The influence of bed-load transport is prominent in the F_{ku} - and F_{kw} -

470 distributions. In the mobile-bed flow, the positive F_{ku} and the negative F_{kw} in the near-bed flow
 471 zone ($\hat{z} \leq 0.06$) imply the streamwise and downward transport of TKE-flux components,
 472 respectively. However, in the away-bed flow zone ($\hat{z} > 0.06$), the behavioral characteristics of
 473 F_{ku} and F_{kw} for mobile-bed flow are similar to those for clear-water flow. Therefore, the most
 474 significant characteristic of a mobile-bed flow lies on the near-bed flow zone, in which the
 475 positive F_{ku} and the negative F_{kw} compose an accelerating effect as an inrush of fluid parcel.

476 The TKE-budget for a uniform open-channel flow is given as follows (Nezu and Nakagawa
 477 1993):

$$478 \quad -\underbrace{\overline{u'w'} \frac{\partial \bar{u}}{\partial z}}_{t_P} = \varepsilon + \underbrace{\frac{\partial f_{kw}}{\partial z}}_{t_D} + \underbrace{\frac{1}{\rho} \cdot \frac{\partial}{\partial z} (\overline{p'w'})}_{p_D} - \underbrace{v \frac{\partial^2 k}{\partial z^2}}_{v_D} \quad (6)$$

479 where t_P = TKE-production rate, t_D = TKE-diffusion rate, p_D = pressure energy diffusion rate, v_D
 480 = viscous diffusion rate, p' = pressure fluctuations, and k = TKE, given by $0.5(\overline{u'u'} + \overline{v'v'} +$
 481 $\overline{w'w'})$. In this study, the viscous diffusion rate v_D is negligible due to large flow Reynolds
 482 numbers. The method of determination of TKE-dissipation rate ε by using eq. (5) has already
 483 been discussed in section 5. Hence, the pressure energy diffusion rate p_D can be calculated from
 484 eq. (6) as $p_D = t_P - \varepsilon - t_D$. The nondimensional parameters of TKE-budget are $T_P, E_D, T_D, P_D =$
 485 $(t_P, \varepsilon, t_D, p_D) \times (h/u^*)^3$. Nezu and Nakagawa (1993) gave formulations for the TKE-production
 486 and dissipation rates as

$$487 \quad T_P = \frac{1}{\kappa} \left(\frac{1 - \hat{z}}{\hat{z}} \right) \quad (7)$$

$$488 \quad E_D = \frac{9.8}{\hat{z}^{0.5}} \exp(-3\hat{z}) \quad (8)$$

489 Fig. 11 illustrates the TKE-budget in flows for Runs 6a and 6b. The TKE-production rate T_P
 490 corresponds to the conversion of energy from the time-averaged flow to the turbulence. It has
 491 near-bed amplification and decreases monotonically with an increase in \hat{z} becoming nearly
 492 constant (with a small magnitude) for $\hat{z} > 0.3$. The E_D also decreases with \hat{z} in the similar way
 493 as T_P varies. The distributions of E_D have a distinct lag from those of T_P . However, the curves of
 494 T_P and E_D obtained by using eqs. (7) and (8), as proposed by Nezu and Nakagawa (1993)

495 overestimate the experimental data plots of T_P and E_D to some extent. The influence of bed-load
496 transport is apparent in the near-bed distributions of T_P and E_D , where the lag is reduced
497 considerably. To be explicit, the effect of sediment motion is to reduce T_P significantly and E_D
498 weakly. The reduction of T_P in near-bed flow zone in presence of bed-load is an effect of the
499 damping in RSS distribution. Importantly, the difference of T_P and E_D at any depth \hat{z} is balanced
500 by the summation of T_D and P_D . The T_D decreases monotonically with an increase in \hat{z} within the
501 wall-shear layer and then it becomes almost invariant of \hat{z} with a small magnitude. The bed-load
502 transport influences T_D by increasing its magnitude in comparison to T_D in clear-water flows. In
503 the clear-water flow, P_D almost equals to E_D , but it decreases drastically with \hat{z} becoming almost
504 invariant (with a small magnitude) of \hat{z} for $\hat{z} > 0.06$. The most interesting feature lies on the
505 near-bed distributions of P_D in mobile-bed flow. It is evident that the bed-load transport is
506 associated with a drastic changeover of P_D to a negative value ($P_D = -12$), suggesting a gain in
507 turbulence production. It is therefore concluded that in near-bed flow zone with bed-load
508 transport, the lag between TKE-production and dissipation rates is narrowed down and the
509 pressure energy diffusion rate becomes negative. These findings are supported by Detert *et al.*
510 (2010), who also reported that the bed particle motion is likely to be associated to a low-pressure
511 flow mode.

512

513 8. CONDITIONAL RSS DISTRIBUTIONS

514 The characteristics of the bursting events are studied with the conditional statistics of u' and w' by
515 plotting them on a $u'w'$ -plane (Lu and Willmarth 1973). A *hole-size* parameter H categorizes the
516 larger contributions to the RSS production from each quadrant (Nezu and Nakagawa 1993). The
517 curves $u'(w')$ obtained from $|u'w'| = H(\overline{u'u'})^{0.5}(\overline{w'w'})^{0.5}$ define the hyperbolic hole region for a
518 given H . Thus, the strong events (outside the hole region) and the weak events (inside the hole
519 region) have a clear distinction depending on the value of H . The bursting events are
520 characterized by four quadrants Qi ($i = 1, 2, 3, 4$): (1) *outward interactions*, $Q1$ ($i = 1$; $u', w' > 0$),
521 (2) *ejections*, $Q2$ ($i = 2$; $u' < 0, w' > 0$), (3) *inward interactions*, $Q3$ ($i = 3$; $u', w' < 0$) and (4)
522 *sweeps*, $Q4$ ($i = 4$; $u' > 0, w' < 0$). The contribution from the events towards the RSS production
523 from the quadrant Qi outside the hole-size H is obtained by

524
$$\langle u'w' \rangle_{i,H} = \lim_{T \rightarrow \infty} \frac{1}{T} \int_0^T u'(t)w'(t)\lambda_{i,H}(z,t)dt \quad (9)$$

525 where T = sampling duration, t = time, and $\lambda_{i,H}(t)$ = detection function. Here, $\lambda_{i,H}(t) = 1$ if (u', w')
 526 is in quadrant Qi and if $|u'w'| \geq H(\overline{u'u'})^{0.5}(\overline{w'w'})^{0.5}$, and $\lambda_{i,H}(t) = 0$ otherwise. The quadrant
 527 analysis thus provides an estimate for the fractional contributions $S_{i,H}$ ($= \langle u'w' \rangle_{i,H} / \overline{u'w'}$) towards
 528 the RSS production from the bursting events from the quadrant i outside the hole region of size
 529 H .

530 To study the fractional contributions towards the RSS production from different bursting events,
 531 the data of $S_{i,H}(\hat{z})$ for $H = 0$ and 2 are plotted in Figs. 12(a and b) for Runs 6a and 6b. The high
 532 frequency events ($H = 0$) including small values associated with the use of all the pairs of u' and
 533 w' is important for the near-bed flow zone. In addition, the stronger events are studied by
 534 discarding the weaker ones for a hole-size $H = 2$ (Balachandra and Bhuiyan 2007), which
 535 corresponds to the events having greater magnitudes of RSS. Fig. 12(a) shows the vertical
 536 distributions of fractional contribution $S_{i,0}$ ($H = 0$) of the RSS in flows for Runs 6a and 6b. For the
 537 clear-water flow, $Q2$ and $Q4$ events at the nearest point of the bed contribute about 60 and 64% to
 538 the total RSS production. On the other hand, near the bed, $Q1$ events contribute minimally by
 539 10%; while $Q3$ events contribute weakly by 14%. It suggests that the arrival of low speed fluid
 540 parcel from the near-bed flow zone is almost revoked by that of a succession high speed fluid
 541 parcel from the upper flow region. Thus, only a slowly moving process is prevalent in the form of
 542 weak $Q2$ events. In contrast, for the mobile-bed flow, $Q4$ events are the governing mechanism for
 543 bed-load transport contributing about 70% towards the RSS production; while $Q2$ events
 544 contribute relatively less (about 60%). The characteristic of $Q4$ events to dominate momentum
 545 transfer in the near-bed flow zone is therefore strongly dependent upon the transport of bed
 546 particles. It implies that the sediment motion is governed by the arrival of high speed fluid parcel.
 547 However, the contributions from $Q1$ and $Q3$ events being rather weak are about 16 and 14%,
 548 respectively. The vertical distributions of fractional contribution $S_{i,2}$ of the RSS from more
 549 extreme events occurring for hole-size $H = 2$ are given in Fig. 12(b). The most energetic $Q2$ and
 550 $Q4$ events have distinct behaviors over the entire flow depth, since the dominance of $Q4$ events
 551 for clear-water flow and that of $Q2$ events in inner region for mobile-bed flow are obvious. The
 552 divergence between $Q2$ and $Q4$ events becomes stronger. However, there remains a consensus

553 that for both clear-water and mobile-bed flows as in Fig. 12(a), similar predominating
 554 characteristics of $Q2$ and $Q4$ events prevail, but the contributions from $Q1$ and $Q3$ events are
 555 rather trivial.

556

557 **9. PDF DISTRIBUTIONS FOR TURBULENCE PARAMETERS**

558 Flow over a rough-bed generates considerable turbulence in the near-bed flow zone. Therefore,
 559 the prevalence of bursting events in the near-bed flow zone provokes non-Gaussian PDF
 560 distributions for the turbulent quantities (Bose and Dey 2010). The instantaneous streamwise
 561 velocity u can be decomposed into a time-averaged part \bar{u} and a fluctuation u' , applying the
 562 Reynolds decomposition $u = \bar{u} + u'$. Owing to turbulence, the instantaneous vertical velocity w
 563 solely constitutes the fluctuations w' , as the time-averaged part \bar{w} remains zero, implying $w = w'$.
 564 Introducing nondimensional variables \tilde{u} ($= u'/\sigma_u$) and \tilde{w} ($= w'/\sigma_w$, where σ_w is the vertical
 565 turbulence intensity), Bose and Dey (2010) represented the PDF distributions for \tilde{u} and \tilde{w} ,
 566 denoted by $p_{\tilde{u}}(\tilde{u})$ and $p_{\tilde{w}}(\tilde{w})$, respectively, derived from a Gram-Charlier (GC) series expansion
 567 based on the exponential distribution as

$$568 \quad p_{\tilde{u}}(\tilde{u}) = \frac{1}{2} \exp(-|\tilde{u}|) + \frac{1}{4} C_{10} \tilde{u} \exp(-|\tilde{u}|) - \frac{1}{16} C_{20} (1 + |\tilde{u}| - \tilde{u}^2) \exp(-|\tilde{u}|) \\ 569 \quad - \frac{1}{96} C_{30} \tilde{u} (3 + 3|\tilde{u}| - \tilde{u}^2) \exp(-|\tilde{u}|) + \frac{1}{768} C_{40} (9 + 9|\tilde{u}| - 3\tilde{u}^2 - 6|\tilde{u}|^3 + \tilde{u}^4) \exp(-|\tilde{u}|) + \dots \quad (10)$$

$$570 \quad p_{\tilde{w}}(\tilde{w}) = \frac{1}{2} \exp(-|\tilde{w}|) + \frac{1}{4} C_{01} \tilde{w} \exp(-|\tilde{w}|) - \frac{1}{16} C_{02} (1 + |\tilde{w}| - \tilde{w}^2) \exp(-|\tilde{w}|) \\ 571 \quad - \frac{1}{96} C_{03} \tilde{w} (3 + 3|\tilde{w}| - \tilde{w}^2) \exp(-|\tilde{w}|) + \frac{1}{768} C_{04} (9 + 9|\tilde{w}| - 3\tilde{w}^2 - 6|\tilde{w}|^3 + \tilde{w}^4) \exp(-|\tilde{w}|) + \dots \quad (11)$$

572 The coefficients C_{j0} and C_{0k} are related to the moments m_{j0} and m_{0k} by

$$573 \quad C_{10} = m_{10}, \quad C_{20} = \frac{1}{2} m_{20} - 1, \quad C_{30} = \frac{1}{6} m_{30} - 2 m_{10}, \quad C_{40} = \frac{1}{24} m_{40} - \frac{3}{2} m_{20} + 2, \\ 574 \quad C_{01} = m_{01}, \quad C_{02} = \frac{1}{2} m_{02} - 1, \quad C_{03} = \frac{1}{6} m_{03} - 2 m_{01}, \quad C_{04} = \frac{1}{24} m_{04} - \frac{3}{2} m_{02} + 2 \quad (12)$$

575 In the above equations, the moments are

576

$$m_{j0} = \int_{-\infty}^{\infty} \tilde{u}^j p_{\tilde{u}}(\tilde{u}) d\tilde{u}, \text{ and } m_{0k} = \int_{-\infty}^{\infty} \tilde{w}^k p_{\tilde{w}}(\tilde{w}) d\tilde{w} \quad (13)$$

577 The coefficients C_{j0} and C_{0k} were therefore estimated from the experimental data. Thus, the
 578 relative frequency $f_{\tilde{u}}(\tilde{u})$ of the random variable \tilde{u} was determined from the experimental data at
 579 a given flow depth z . Then, from eq. (13), the values of m_{j0} were estimated by approximating
 580 $p_{\tilde{u}}(\tilde{u})$ by $f_{\tilde{u}}(\tilde{u})$ and the integrals were evaluated by a composite Simpson's rule. In the similar
 581 way, the values of m_{0k} were estimated from $f_{\tilde{w}}(\tilde{w})$ of the random variable \tilde{w} . Hence, the C_{j0} and
 582 C_{0k} were calculated by using eq. (12); and the PDFs were estimated to draw the theoretical curves
 583 for $p_{\tilde{u}}(\tilde{u})$ and $p_{\tilde{w}}(\tilde{w})$. Figs. 13(a and b) show the $p_{\tilde{u}}(\tilde{u})$ - and $p_{\tilde{w}}(\tilde{w})$ -distributions closest to the
 584 bed (at $z = 0.002$ m) for Runs 6a and 6b. The estimated values of coefficients C_{j0} and C_{0k} and the
 585 skewness M_{30} and M_{03} are tabulated in Table 4. The experimental data correspond closely to the
 586 computed $p_{\tilde{u}}(\tilde{u})$ - and $p_{\tilde{w}}(\tilde{w})$ -distributions. However, the computed distributions are sharply
 587 peaked at zero-velocity fluctuations, but the corresponding experimental relative frequencies
 588 were not available for such narrow ranges in the histograms. In addition, the computed values of
 589 skewness M_{30} and M_{03} given in Table 4 are supported by those in Fig. 9. It corroborates that the
 590 PDF distributions for the velocity fluctuations derived from a GC series expansion based on the
 591 exponential distribution preserve their universality being applicable to mobile-bed flows.

592 For the RSS, $-\tau/\rho$ is the mean value of the product of random variable $u'w'$ whose PDF depends
 593 on the joint PDFs of u' and w' . Therefore, the random variable is $\tilde{\tau} = \tilde{u}\tilde{w}$. From this
 594 consideration, Bose and Dey (2010) derived the PDF of $\tilde{\tau}$ as

595

$$p_{\tilde{\tau}}(\tilde{\tau}) = K_0(2\tau_1) - \frac{1}{8}(C_{20} + C_{02})(1 - \tau_1^2)K_0(2\tau_1) + \frac{1}{4}C_{11}\tilde{\tau}K_0(2\tau_1)$$

596

$$+ \frac{1}{64}C_{22}[(1 - \tau_1^2 + \tau_1^4)K_0(2\tau_1) - 2\tau_1^3K_1(2\tau_1)] - \frac{1}{96}(C_{31} + C_{13})\tilde{\tau}(3 - \tau_1^3)[K_0(2\tau_1) + \tau_1 K_1(2\tau_1)]$$

597

$$+ \frac{1}{384}(C_{40} + C_{04})[(9 - 9\tau_1^2 + \tau_1^4)K_0(2\tau_1) - 2\tau_1^3K_1(2\tau_1)] + \dots \quad (14)$$

598 where $\tau_1 = (|\tilde{\tau}|)^{0.5}$, and $K_n(\cdot)$ = modified Bessel function of order n . The coefficients in the
 599 above expression are given by the following moments:

600
$$\int_{-\infty}^{\infty} \tilde{\tau} p_{\tilde{\tau}}(\tilde{\tau}) d\tilde{\tau} = C_{11} + \frac{11}{8}(C_{31} + C_{13}), \quad \int_{-\infty}^{\infty} \tilde{\tau}^2 p_{\tilde{\tau}}(\tilde{\tau}) d\tilde{\tau} = 4 + 4(C_{20} + C_{02}) + \frac{25}{4}C_{22},$$

601
$$\int_{-\infty}^{\infty} \tilde{\tau}^3 p_{\tilde{\tau}}(\tilde{\tau}) d\tilde{\tau} = 144C_{11} + 7407(C_{31} + C_{13}) \quad (15)$$

602 Also, $C_{20} + C_{02} = 0.5(m_{20} + m_{02}) - 2$, and $C_{40} + C_{04} = 24^{-1}(m_{40} + m_{04}) - 1.5(m_{20} + m_{02}) + 4$. Fig. 14
603 compares the computed $p_{\tilde{\tau}}(\tilde{\tau})$ with those measured closest to the bed (at $z = 0.002$ m) for Runs
604 6a and 6b. The values of coefficients are furnished in Table 5. The experimental data collapse
605 satisfactorily on the computed curves, implying adequacy of the derivation of $p_{\tilde{\tau}}(\tilde{\tau})$ using the
606 GC series expansion based on the exponential distribution being applicable to mobile-bed flows.

607 To analyze the bursting events, the fractional contribution from each event towards the RSS
608 production is given by the random variable $\tilde{\tau} = \langle \tilde{u}\tilde{w} \rangle_{Q_i}$ that corresponds to appropriate quadrants.
609 Denoting the PDFs of $Q1$, $Q2$, $Q3$ and $Q4$ events by $p_1(\tilde{\tau})$, $p_2(\tilde{\tau})$, $p_3(\tilde{\tau})$ and $p_4(\tilde{\tau})$,
610 respectively, it follows that

611
$$p_1(\tilde{\tau}) + p_2(\tilde{\tau}) + p_3(\tilde{\tau}) + p_4(\tilde{\tau}) = p_{\tilde{\tau}}(\tilde{\tau}) \quad (16)$$

612 It was shown by Bose and Dey (2010) that

613
$$p_1(\tilde{\tau} > 0) = \frac{1}{2} p_{\tilde{\tau}}(\tilde{\tau}) + \frac{1}{4}(C_{10} - C_{01})\tau_1 K_1(2\tau_1) - \frac{1}{96}(C_{30} - C_{03})\tau_1 [\tau_1 K_0(2\tau_1) + (4 - \tau_1)K_1(2\tau_1)]$$

614
$$+ \frac{1}{32}(C_{21} - C_{12})\tau_1 [\tau_1 K_0(2\tau_1) + (1 - \tau_1^2)K_1(2\tau_1)] + \dots \quad (17)$$

615
$$p_2(\tilde{\tau} < 0) = \frac{1}{2} p_{\tilde{\tau}}(\tilde{\tau}) - \frac{1}{4}(C_{10} - C_{01})\tau_1 K_1(2\tau_1) + \frac{1}{96}(C_{30} - C_{03})\tau_1 [\tau_1 K_0(2\tau_1) + (4 - \tau_1)K_1(2\tau_1)]$$

616
$$- \frac{1}{32}(C_{21} - C_{12})\tau_1 [\tau_1 K_0(2\tau_1) + (1 - \tau_1^2)K_1(2\tau_1)] + \dots \quad (18)$$

617 In the above expressions, the coefficient $C_{21} - C_{12}$ is given by

618
$$\int_0^{\infty} \tilde{\tau} p_1(\tilde{\tau}) d\tilde{\tau} = \frac{1}{2} \int_0^{\infty} \tilde{\tau} p_{\tilde{\tau}}(\tilde{\tau}) d\tilde{\tau} + \frac{1}{4}(C_{10} - C_{01}) - \frac{3}{32}(C_{21} - C_{12}) \quad (19)$$

619 Figs. 15(a and b) compare the computed $p_i(\tilde{\tau})$ with those measured closest to the bed (at $z =$
620 0.002 m) for Runs 6a and 6b. Table 6 provides computed values of coefficients. It is evident that
621 the conditional RSS corresponding to the bursting events can be well represented by the PDFs
622 derived from a GC series expansion based on the exponential distribution being effectively
623 applicable to mobile-bed flows.

624

625 **10. DISCUSSION**

626 In the preceding sections, we have experimentally identified primarily the near-bed turbulence
627 characteristics corresponding to a bed-load transport. Now, a conceptual framework can be
628 planned to explain the physics of sediment transport. As a remark, we would here like to clarify
629 the link between the findings of the near-bed turbulence characteristics and the visual observation
630 of the sediment motion in mobile-bed flows.

631 A close observation during the bed-load transport revealed that the sediment entrainment takes
632 place as a common temporal (but continual) motion of many particles from the isolated regions of
633 the bed with changing locations very frequently covering the entire bed surface. This is well-
634 known to be governed by an intermittent coherent structure of turbulence. Grass (1971) and
635 Schmid (1985) postulated that the bed-load transport originates from the sweep events, while they
636 interact with the bed. The sweep events during the sediment transport have been quantified in this
637 study contributing about 70% towards the total RSS production [Figs. 12(a)]. The near-bed
638 shearing flow is highly retarded interacting with the bed roughness developing front vortex (Λ -
639 vortex) that has an intense vorticity core under pressure. Fig. 16 shows the conceptual schematic
640 of the coherent structure during the sediment motion; the sweeps are the part of a Λ -vortex
641 system, as a potential physical process of bed-load transport. In fact, the retardation produces a Λ -
642 vortex capable of dislodging the sediment particles from the bed surface through its low-pressure
643 core and they are drifted by the near-bed flow. Therefore, the most provoking turbulence
644 characteristic towards the bed-load transport is a sweep producing low-pressure field, as
645 confirmed in this study by the drastic change in pressure energy diffusion rate to a negative value
646 (see Fig. 11). It induces a lift force transporting the bed particles collectively from the isolated
647 regions, as was visually observed. The arrival of Λ -vortex system is rather temporal and
648 intermittent, but covers the whole bed surface in succession of arrivals making a continual

649 sediment motion, as a bed-load transport. This concept is, in fact, the basis of the sediment
650 motion by the turbulent flows, but it has not so far been given much attention in modeling the
651 sediment transport.

652 The results of this study are therefore instrumental in resolving a number of important issues
653 that can address how to analyze the sediment transport phenomenon, as a future scope of
654 research. The most important is how best to incorporate the sweep events into a theoretical model
655 describing the sediment transport process. Thus, the knowledge of how the sweep events to
656 contribute towards the near-bed RSS production governing the sediment motion would be an
657 essential prerequisite. In the near-bed flow zone, a gain in turbulence production due to negative
658 pressure energy diffusion rate is another aspect that can be given adequate importance for
659 developing a theoretical model. As the TKE-production and dissipation rates are almost equal for
660 mobile-bed flow (Fig. 11), little is contributed from the TKE-production rate towards the
661 sediment motion. Also, a reduction in near-bed TKE-dissipation rate leads to an increase in near-
662 bed eddy size, as reflected from the Taylor microscale in mobile-bed flows [Fig. 8(a)]. A
663 modified parameterization for the Basset term (Basset 1888) containing the temporal change of
664 flow velocity relative to that of a particle velocity could also be prepared for inclusion in a model
665 of sediment transport. The potential proposition of the modified turbulent boundary layer
666 characteristics due to sediment motion could be as follows:

667 Parker *et al.* (2003) put forward a bed-load transport model, where the transport rate was related
668 to an increasing function of the excess of the residual bed shear stress. The residual bed shear
669 stress was obtained from the fluid residual shear stress on the bed in excess of its critical value.
670 The foundation behind the model development was that the residual shear stress could be taken as
671 a measure of the predominating bursting events close to the bed. It therefore characterizes the
672 potentiality of the flow to produce those bursting events which could be the major hydrodynamics
673 related to the sediment transport. However, Parker *et al.* (2003) assumed a linear variation of the
674 average particle transport rate with the excess of the residual bed shear stress owing to dearth of
675 detailed experimental observations. Therefore, the present experimental findings would be
676 prompted in investigating the correlation between the residual fluid shear stress on the bed and
677 the bursting events in the shear boundary layer. Further, the overall transfer of momentum from
678 the fluid to the solid phase and the residual fluid shear stress on the bed could be calculated
679 employing the results of this study. It has been already indicated the disadvantage in calculating

680 the fluid bed shear stress from the bed slope balancing the gravity in presence of bed-load
681 transport. These results therefore allow (i) to carefully elaborate a more accurate parameterization
682 for the reduction of RSS in presence of bed-load transport and (ii) to define a relationship
683 between the average bed-load transport rate and the residual bed shear stress. Regarding the log-
684 law of wall in mobile-bed flows, the application of traditional log-law is highly questionable due
685 to reduced value of von Kármán coefficient (leading to a reduced the traversing length of an
686 eddy) and elevated levels of virtual bed and zero-velocity. Last but not the least, as the near-bed
687 turbulence creates the sediment transport process highly probabilistic, the universal PDF
688 distributions for the turbulence parameters developed by Bose and Dey (2010) could be employed
689 in developing a more realistic model for bed-load transport. It can be concluded that the state-of-
690 the-art of the bed-load transport models including local turbulence properties of fluid-particle
691 interactions is in an embryonic state. Further research is therefore required for mobile-bed flows
692 preferably by using high resolution flow measuring and visualizing techniques to characterize
693 these findings in the context of bed-load transport.

694

695 **11. CONCLUSIONS**

696 In this study, experiments were carried out to measure the turbulence characteristics in clear-
697 water and mobile-bed flows by a *Vectrino* probe. Analysis of experimental data has allowed
698 revealing the modifications in the turbulence parameters due to the difference in bed conditions.
699 As the influence of bed-load transport on the turbulence has been the main focus, the
700 experimental results for clear-water flows have been used as reference. For a lucid
701 comprehension, the predominating turbulence parameters in the inner- and outer-region of for
702 clear-water and mobile-bed flows are schematically displayed in Figs. 17(a – d). The important
703 conclusions related to the influence of bed-load transport on the turbulence characteristics are as
704 follows:

705 A reduction in RSS distributions over the entire flow depth in presence of bed-load transport is
706 associated with the provided momentum from the main flow to maintain sediment particle motion
707 overcoming the bed resistance. The near-bed RSS distributions undergo an excessive damping
708 due to a diminishing level of turbulence fluctuations resulting from a fall in magnitude of flow
709 velocity relative to particle velocity transporting sediment particles [Fig. 17(a)]. It leads to a

710 reduction of mobile-bed flow resistance and friction factor. The log-law in presence of bed-load
711 transport is characterized by a decrease in von Kármán coefficient and an increase in levels of the
712 virtual bed and the zero-velocity. The traversing length of an eddy decreases, but the eddy size
713 increases in mobile-bed flows, as compared to those in clear-water flows. The analysis of third-
714 order correlations reveals that during the bed-load transport, a streamwise acceleration directing
715 downward is established and associated with a streamwise diffusion of vertical RNS and a
716 downward diffusion of streamwise RNS [Fig. 17(b)]. In the near-bed flow zone, the bed-load
717 transport is associated with a positive streamwise TKE-flux directing towards the flow and a
718 negative vertical TKE-flux directing downward [Fig. 17(c)]. The influence of bed-load transport
719 on the TKE-budget is pronounced, reducing the TKE-production rate and changing the pressure
720 energy diffusion rate drastically to negative magnitude in the near-bed flow zone [Fig. 17(c)].
721 Conditional statistics of RSS suggests that the sweep events are the prevailing mechanism
722 towards the bed-load transport [Fig. 17(d)]. The PDF distributions of turbulence parameters close
723 to the bed for mobile-bed flows could be adequately predicted by the universal PDFs developed
724 by Bose and Dey (2010) using a GC series expansion based on the exponential distribution.

725

726

References

727 Balachandra, R., and F. Bhuiyan (2007), Higher-order moments of velocity fluctuations in an
728 open-channel flow with large bottom roughness, *J. Hydraul. Eng.* **133** (1), 77-87.

729 Basset, A.B. (1888), *A Treatise on Hydrodynamics*, Cambridge University Press, U.K.

730 Bennet, S.J., and J.S. Bridge (1995), An experimental study of flow, bedload transport and bed
731 topography under conditions of erosion and deposition and comparison with theoretical
732 models, *Sedimentology* **42** (1), 117-146.

733 Bennett, S.J., J.S. Bridge, and J.L. Best (1998), Fluid and sediment dynamics of upper stage plane
734 beds, *J. Geophys. Res.* **103** (C1), 1239-1274.

735 Bergeron, N.E., and P. Carbonneau (1999), The effect of sediment concentration on bedload
736 roughness, *Hydrol. Process.* **13** (16), 2583-2589.

737 Best, J. (1992), On the entrainment of sediment and initiation of bed defects: insights from recent
738 developments within turbulent boundary layer research, *Sedimentology* **39**, 797-811.

739 Best, J., S. Bennett, J. Bridge, and M. Leeder (1997), Turbulence modulation and particle
740 velocities over flat sand beds at low transport rates, *J. Hydraul. Eng.* **123** (12), 1118-1129.

741 Blanckaert, K., and U. Lemmin (2006), Means of noise reduction in acoustic turbulence
742 measurements, *J. Hydraul. Res.* **44** (1), 1-17.

743 Bose, S.K., and S. Dey (2010), Universal probability distributions of turbulence in open channel
744 flows, *J. Hydraul. Res.* **48** (3), 388-394.

745 Calomino, F., R. Gaudio, and A. Miglio (2004), Effect of bed-load concentration on friction
746 factor in narrow channels, *Proc. Second Int. Conf. Fluvial Hydraul., River Flow 2004*,
747 Volume 1, Taylor and Francis, London, U.K., 279-285.

748 Campbell, L., I. McEwan, V. Nikora, D. Pokrajac, M. Gallagher, and C. Manes (2005), Bed-load
749 effects on hydrodynamics of rough-bed open-channel flows, *J. Hydraul. Eng.* **131** (7), 576-
750 585.

751 Carbonneau, P.E., and N.E. Bergeron (2000), The effect of bedload transport on mean and
752 turbulent flow properties, *Geomorphology* **35**, 267-278.

753 Clifford, N.J., J. McClatchey, and J.R. French (1991), Measurements of turbulence in the benthic
754 boundary layer over a gravel bed and comparison between acoustic measurements and
755 predictions of the bedload transport of marine gravels, *Sedimentology* **38**, 161-171.

756 Crowe, C.T. (1993), Modelling turbulence in multiphase flows, *Engineering Turbulence
757 Modelling and Experiments*, Volume 2, W. Rodi, and F. Martelli, eds., Elsevier,
758 Amsterdam, The Netherlands, 899-913.

759 Detert, M., V. Weitbrecht, and G.H. Jinka (2010), Laboratory measurements on turbulent
760 pressure fluctuations in and above gravel beds, *J. Hydraul. Eng.* **136** (10), 779-789.

761 Dey, S., and R.V. Raikar (2007), Characteristics of loose rough boundary streams at near-
762 threshold, *J. Hydraul. Eng.* **133** (3), 288-304.

763 Dey, S., S. Sarkar, and L. Solari (2011), Near-bed turbulence characteristics at the entrainment
764 threshold of sediment beds, *J. Hydraul. Eng.* **137** in press.

765 Drake, T.G., R.L. Shreve, W.E. Dietrich, P.J. Whiting, and L.B. Leopold (1988), Bedload
766 transport of fine gravel observed by motion picture photography, *J. Fluid Mech.* **192**, 193-
767 217.

768 Gallagher, M., I. McEwan, and V. Nikora (1999), The changing structure of turbulence over a
769 self-stabilising sediment bed, *Internal Rep. No. 21*, Department of Engineering, University
770 of Aberdeen, Aberdeen, U.K.

771 Gaudio, R., A. Miglio, and F. Calomino (2011), Friction factor and von Karman's κ in open
772 channels with bed-load. *J. Hydraul. Res.* **49** (2), 245-253.

773 Gaudio, R., A. Miglio, and S. Dey (2010), Nonuniversality of von Kármán's κ in fluvial streams.
774 *J. Hydraul. Res.* **48** (5), 658-663.

775 Gore, R.A., and C.T. Crowe (1991), Modulation of turbulence by a dispersed phase, *J. Fluids
776 Eng.* **113** (6), 304-307.

777 Goring, D.G., and V.I. Nikora (2002), Despiking acoustic Doppler velocimeter data, *J. Hydraul.
778 Eng.* **128** (1), 117-126.

779 Grass, A.J. (1970), Initial instability of fine bed sand, *J. Hydraul. Div.* **96** (3), 619-632.

780 Grass, A.J. (1971), Structural features of turbulent flow over smooth and rough boundaries, *J.
781 Fluid Mech.* **50**, 233-255.

782 Gust, G., and J.B. Southard (1983), Effects of weak bed load on the universal law of the wall, *J.
783 Geophys. Res.* **88** (C10), 5939-5952.

784 Gyr, A., and A. Schmid (1997), Turbulent flows over smooth erodible sand beds in flumes, *J.
785 Hydraul. Res.* **35** (4), 525-544.

786 Heathershaw, A.D., and P.D. Thorne (1985), Sea-bed noises reveal role of turbulent bursting
787 phenomenon in sediment transport by tidal currents, *Nature* **316**, 339-342.

788 Hetsroni, G. (1993), The effect of particles on the turbulence in a boundary layer, *Particulate
789 Two-Phase Flow*, M.C. Raco, ed., Butterworth-Heinemann, 244-264.

790 Kline, S.J., W.C. Reynolds, F.A. Schraub, and P.W. Runstadler (1967), The structure of turbulent
791 boundary layers, *J. Fluid Mech.* **30**, 741-773.

792 Krogstad, P.Å., R.A. Antonia, and L.W.B. Browne (1992), Comparison between rough- and
793 smooth-wall turbulent boundary layers, *J. Fluid Mech.* **245**, 599-617.

794 Lacey, R.W.J., and A.G. Roy (2008), Fine-scale characterization of the turbulent shear layer of an
795 instream pebble cluster. *J. Hydraul. Eng.* **134** (7), 925-936.

796 Lu, S.S., and W.W. Willmarth (1973), Measurements of the structures of the Reynolds stress in a
797 turbulent boundary layer, *J. Fluid Mech.* **60**, 481-511.

798 Monin, A.S., and A.M. Yaglom (2007), *Statistical Fluid Mechanics, Volume II: Mechanics of*
799 *Turbulence*, Dover Publications, New York, USA.

800 Nakagawa, H., and I. Nezu (1977), Prediction of the contributions to the Reynolds stress from
801 bursting events in open-channel flows, *J. Fluid Mech.* **80**, 99-128.

802 Nelson, J.M., R.L. Shreve, S.R. McLean, and T.G. Drake (1995), Role of near-bed turbulence
803 structure in bed load transport and bed form mechanics, *Wat. Resour. Res.* **31** (8), 2071-
804 2086.

805 Nezu, I., and H. Nakagawa (1993), *Turbulence in Open-Channel Flows*, Balkema, Rotterdam,
806 Netherlands.

807 Nikora, V.I., and D.G. Goring (1999), Effects of bed mobility on turbulence structure, *NIWA*
808 *Internal Rep. No. 48*, National Institute of Water and Atmospheric Research, Christchurch,
809 New Zealand.

810 Nikora, V., and D. Goring (2000), Flow turbulence over fixed and weakly mobile gravel beds, *J.*
811 *Hydraul. Eng.* **112** (5), 335-355.

812 Nikora, V., D. Goring, I. McEwan, and G. Griffiths (2001), Spatially averaged open-channel
813 flow over rough bed, *J. Hydraulic Eng.* **127** (2), 123-133.

814 Owen, P.R. (1964), Saltation of uniform grains in air, *J. Fluid Mech.* **20**, 225-242.

815 Papanicolaou, A.N., P. Diplas, C. Dancey, and M. Balakrishnan (2001), Surface roughness
816 effects in near-bed turbulence: implications to sediment entrainment, *J. Eng. Mech.* **127** (3),
817 211-218.

818 Parker, G., G. Seminara, and L. Solari (2003), Bedload at low Shields stress on arbitrarily sloping
819 beds: Alternative entrainment formulation, *Wat. Resour. Res.* **39**, 1249,
820 doi:10.1029/2001WR000681.

821 Pitlick, J. (1992), Flow resistance under conditions of intense gravel transport, *Wat. Resour. Res.*
822 **28**, 891-903.

823 Pope, S.B. (2001), *Turbulent Flows*, Cambridge University Press, U.K.

824 Radice, A., and F. Ballio (2008), Double-average characteristics of sediment motion in one-
825 dimensional bed load, *Acta Geophys.* **56** (3), 654-668.

826 Raupach, M.R. (1981), Conditional statistics of Reynolds stress in rough-wall and smooth-wall
827 turbulent boundary layers, *J. Fluid Mech.* **108**, 363-382.

828 Robinson, S.K. (1991), The kinematics of turbulent boundary layer structure, *NASA TM-103859*.

829 Sarkar, S., and S. Dey (2010), Double-averaging turbulence characteristics in flows over a
830 gravel-bed, *J. Hydraul. Res.* **48** (6), 801-809.

831 Schmid, A. (1985), Wandnahe turbulente bewegungsabläufe und ihre bedeutung für die
832 riffelbildung, Ph.D. thesis and *Report R22-85*, Institute for Hydromechanics and Water
833 Resources Management, ETH Zürich, Switzerland.

834 Smith, J.D., and S.R. McLean (1977), Spatially averaged flow over a wavy surface, *J. Geophys.*
835 *Res.: Oceans* **82** (12), 1735-1746.

836 Song, T., Y.-M. Chiew, and C.O. Chin (1998), Effect of bed-load movement on flow friction
837 factor, *J. Hydraul. Eng.* **124** (2), 165-175.

838 Song, T., W.H. Graf, and U. Lemmin (1994), Uniform flow in open channels with movable
839 gravel bed, *J. Hydr. Res.* **32** (6), 861-876.

840 Sumer, B.M., L.H.C. Chua, N.-S. Cheng, and J. Fredsoe (2003), Influence of turbulence on bed
841 load sediment transport, *J. Hydraul. Eng.* **129** (8), 585-596.

842 van Rijn, L.C. (1984), Sediment transport, part I: bed-load transport, *J. Hydraul. Eng.* **110** (10),
843 1431-1456.

844 Wang, Z., and P. Larsen (1994), Turbulent structure of water and clay suspensions with bed load,
845 *J. Hydraul. Eng.* **120** (5), 577-600.

846 Yang, Y., and M. Hirano (1995), Discussion on 'Uniform flow in open-channel with movable
847 gravel bed' by T. Song, W.H. Graf, and U. Lemmin, *J. Hydr. Res.* **33** (6), 877-879.

848 Yang, S.Q., S.K Tan, and S.Y. Lim (2004), Velocity distribution and dip-phenomenon in smooth
849 uniform open channel flows, *J. Hydraul. Eng.* **130** (12), 1179-118.

850 Yeganeh-Bakhtiary, A., H. Gotoh, and T. Sakai (2000), Applicability of the Euler-Lagrange
851 coupling multiphase-flow model to bed-load transport under high bottom shear, *J. Hydraul.*
852 *Res.* **38** (5), 389-398.

853 Yeganeh-Bakhtiary, A., B. Shabani, H. Gotoh, and S.S.Y. Wang (2009), A three-dimensional
854 distinct element model for bed-load transport, *J. Hydraul. Res.* **47** (2), 203-212.

855

856

Table 1

857 Characteristics of sediment used in the experiments: d_{50} is the median diameter of sediments, s is
 858 the relative density of sediments, σ_g is the geometric standard deviation of particle size
 859 distribution, u_{*c} is the critical shear velocity for the initiation of sediment motion, and ϕ is the
 860 angle of repose of sediments.

d_{50} [mm]	s	σ_g	u_{*c} [m/s]	ϕ [deg]
0.95	2.65	1.28	0.0224	27
2.6	2.65	1.20	0.0429	30
4.1	2.65	1.13	0.0575	33

861 Note: The values of u_{*c} were determined from the Shields diagram.

862

863

Table 2

864 Uncertainty estimation for *Vectrino* data.

d_{50} (mm)	Case	\bar{u} (m/s)	\bar{v} (m/s)	\bar{w} (m/s)	$(\bar{u}'\bar{u}')^{0.5}$ (m/s)	$(\bar{v}'\bar{v}')^{0.5}$ (m/s)	$(\bar{w}'\bar{w}')^{0.5}$ (m/s)	$-\bar{u}'\bar{w}'$ (m^2/s^2)
0.95	Clear-water	$4.32 \times 10^{-3}^*$ ($\pm 3.61 \dagger$)	2.95×10^{-3} (± 2.11)	3.67×10^{-3} (± 4.89)	5.32×10^{-3} (± 4.83)	4.54×10^{-3} (± 4.75)	1.98×10^{-3} (± 4.92)	7.81×10^{-5} (± 8.19)
	Mobile-bed	4.93×10^{-3} (± 4.67)	3.29×10^{-3} (± 3.09)	2.59×10^{-3} (± 4.19)	4.88×10^{-3} (± 4.26)	4.56×10^{-3} (± 5.01)	5.31×10^{-3} (± 3.06)	9.83×10^{-5} (± 4.17)
	Clear-water	3.11×10^{-3} (± 4.21)	1.83×10^{-3} (± 2.25)	3.77×10^{-3} (± 4.01)	3.12×10^{-3} (± 4.83)	3.66×10^{-3} (± 4.19)	4.17×10^{-3} (± 4.21)	6.12×10^{-5} (± 5.24)
	Mobile-bed	5.23×10^{-3} (± 4.03)	4.02×10^{-3} (± 4.12)	3.89×10^{-3} (± 4.44)	3.8×10^{-3} (± 3.32)	2.93×10^{-3} (± 3.99)	5.11×10^{-3} (± 5.45)	8.38×10^{-5} (± 6.74)

865 *Standard deviation.

866 †Average of maximum (negative and positive) percentage error.

867

869 Experimental data: U is the mean velocity, h is the flow depth, S_h is the relative submergence, R is
 870 the flow Reynolds number, F is the flow Froude number, g_s is the bed-load transport rate per unit
 871 width, u_{*s} is the shear velocity obtained from slope, λ_s is the friction factor obtained from
 872 $8(u_{*s}/U)^2$, $u_{*\tau}$ is the shear velocity obtained from RSS, λ_τ is the friction factor obtained from
 873 $8(u_{*\tau}/U)^2$, R_* is the particle shear Reynolds number, κ is the von Kármán coefficient, Δz^+ is the
 874 nondimensional depth of virtual bed level, ζ^+ is the nondimensional depth of zero-velocity level, ε
 875 is the Nikuradse equivalent sand roughness, and S is the streamwise bed slope.

Run	U [m/s]	h [m]	S_h [$\times 10^3$]	R [$\times 10^{-5}$]	F	g_s [kg/(ms)]	u_{*s} [m/s]	λ_s	$u_{*\tau}^\dagger$ [m/s]	λ_τ	R_*	κ	Δz^+	ζ^+	ε [mm]
$d_{50} = 0.95 \text{ mm}; S = 0.13\%$															
1a	0.594	0.10	9.5	2.4	0.60	—	0.036	0.029	0.036	0.030	69	0.40	0.45	0.039	1.11
1b	0.594	0.10	9.5	2.4	0.60	2×10^{-3}	0.036	0.029	0.033	0.025	63	0.37	0.20	0.045	1.28
2a	0.628	0.12	7.9	3.0	0.58	—	0.039	0.031	0.037	0.029	70	0.42	0.41	0.033	0.94
2b	0.628	0.12	7.9	3.0	0.58	3.5×10^{-3}	0.039	0.031	0.036	0.027	69	0.39	0.30	0.039	1.11
3a	0.665	0.15	6.3	4.0	0.55	—	0.044	0.035	0.039	0.028	75	0.41	0.50	0.035	1.00
3b	0.665	0.15	6.3	4.0	0.55	7×10^{-3}	0.044	0.035	0.037	0.025	71	0.39	0.12	0.047	1.34
$d_{50} = 2.6 \text{ mm}; S = 0.30\%$															
4a	0.767	0.10	26.0	3.1	0.77	—	0.054	0.040	0.057	0.043	294	0.41	0.32	0.03	2.34
4b	0.767	0.10	26.0	3.1	0.77	2×10^{-3}	0.054	0.040	0.051	0.035	265	0.38	0.36	0.032	2.50
5a	0.813	0.12	21.7	3.9	0.75	—	0.059	0.043	0.057	0.040	299	0.41	0.55	0.039	3.04
5b	0.813	0.12	21.7	3.9	0.75	3.5×10^{-3}	0.059	0.043	0.052	0.033	270	0.38	0.18	0.038	2.96
6a*	0.851	0.15	17.3	5.1	0.70	—	0.066	0.049	0.059	0.039	308	0.42	0.35	0.031	2.42
6b*	0.851	0.15	17.3	5.1	0.70	7×10^{-3}	0.066	0.049	0.053	0.031	277	0.37	0.21	0.048	3.74
$d_{50} = 4.1 \text{ mm}; S = 0.38\%$															
7a	0.839	0.12	34.2	4.0	0.77	—	0.067	0.051	0.065	0.048	533	0.42	0.3	0.023	2.83
7b	0.839	0.12	34.2	4.0	0.77	3.5×10^{-3}	0.067	0.051	0.059	0.040	485	0.35	0.17	0.039	4.80
8a	0.918	0.15	27.3	5.5	0.76	—	0.075	0.053	0.067	0.043	549	0.41	0.27	0.039	4.80
8b	0.918	0.15	27.3	5.5	0.76	7×10^{-3}	0.075	0.053	0.062	0.037	508	0.35	0.16	0.033	4.06

876 *Runs used for length-scales and higher-order correlations analyses.

877 †The values of shear velocity used for analysis.

879

Table 4

880 Coefficients and skewness for the computation of $p_{\tilde{u}}(\tilde{u})$ and $p_{\tilde{w}}(\tilde{w})$.

Case	C_{10}	C_{01}	C_{20}	C_{02}	C_{30}	C_{03}	C_{40}	C_{04}	M_{30}	M_{03}
Clear-water	0.0139	-0.0080	-0.5435	-0.5179	-0.0309	0.0224	0.7430	0.6908	-0.0650	0.0650
Mobile-bed	-0.0011	-0.0039	-0.5137	-0.5141	0.0081	0.0014	0.6505	0.6687	0.0400	-0.0460

881

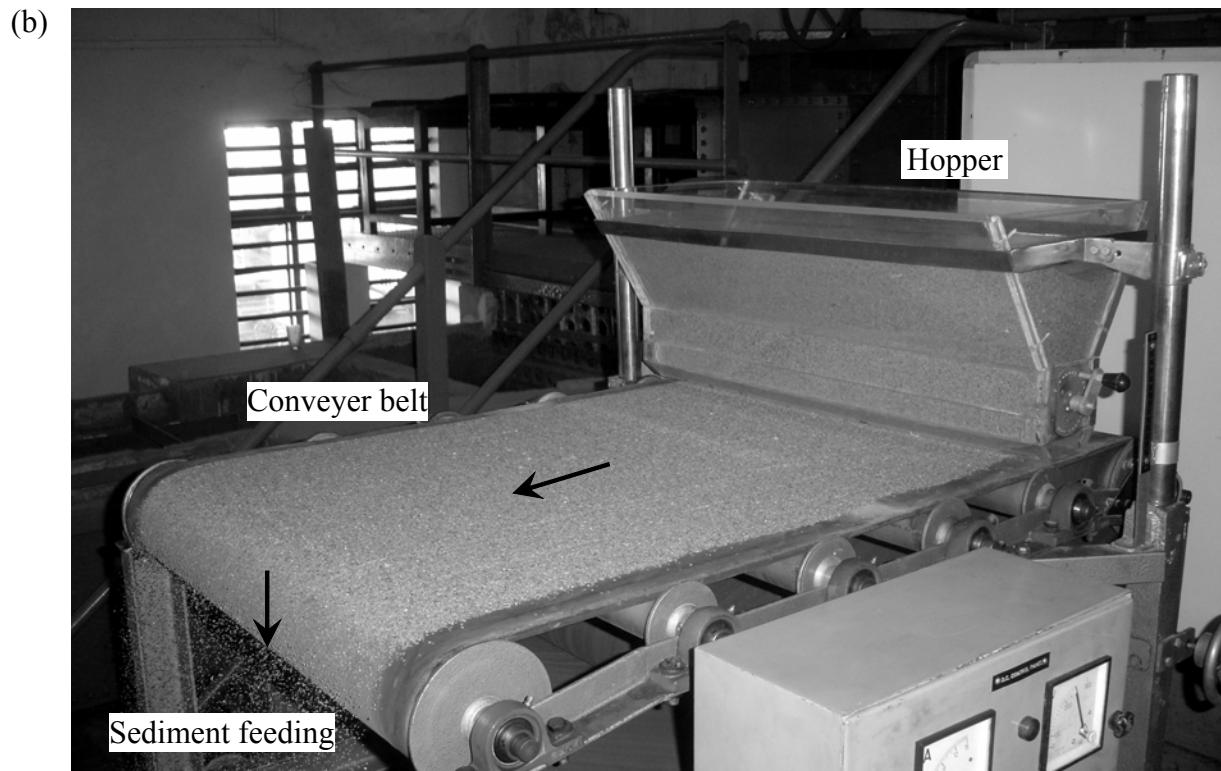
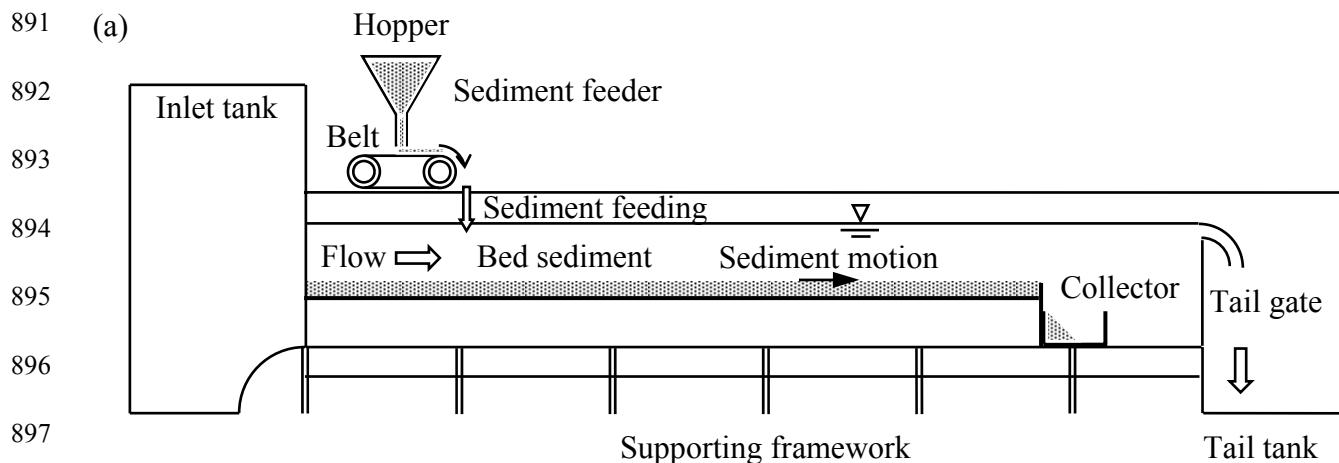
882

883

Table 5

884 Coefficients for the computation of $p_{\tilde{\tau}}(\tilde{\tau})$.

Case	C_{11}	$C_{20} + C_{02}$	$C_{31} + C_{13}$	$C_{40} + C_{04}$
Clear-water	-0.29070	-1.06142	0.00043	1.43360
Mobile-bed	-0.33452	-0.57970	0.37817	0.97779



885

886

888 Coefficients for the computation of $p_i(\tilde{\tau})$.

Case	$C_{10} - C_{11}$	$C_{30} - C_{03}$	$C_{21} - C_{12}$
$p_1(\tilde{\tau})$			
Clear-water	0.02192	-0.07417	-1.3076
Mobile-bed	0.00279	0.00288	-1.3730
$p_2(\tilde{\tau})$			
Clear-water	0.02192	-0.07417	1.1682
Mobile-bed	0.00279	0.00288	1.0670
$p_3(\tilde{\tau})$			
Clear-water	0.02192	-0.07417	-1.0738
Mobile-bed	0.00279	0.00288	-1.0922
$p_4(\tilde{\tau})$			
Clear-water	0.02192	-0.07417	1.0668
Mobile-bed	0.00279	0.00288	1.2036

890

901 Fig. 1. (a) Schematic of experimental setup and (b) photograph of sediment feeding arrangement.
902 Direction of the sediment feeding is different from that shown in schematic due to the
903 photographic angle.

904

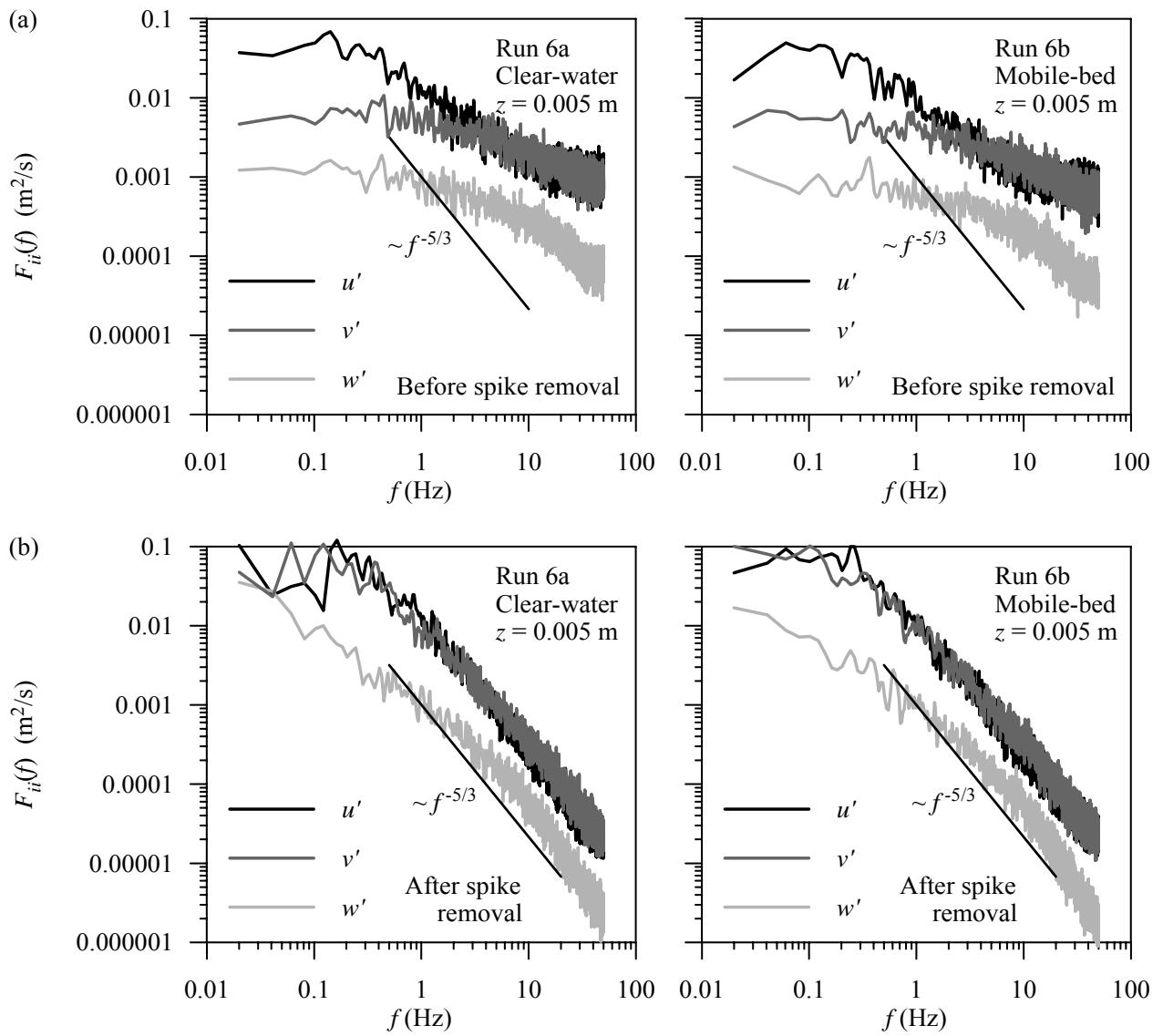
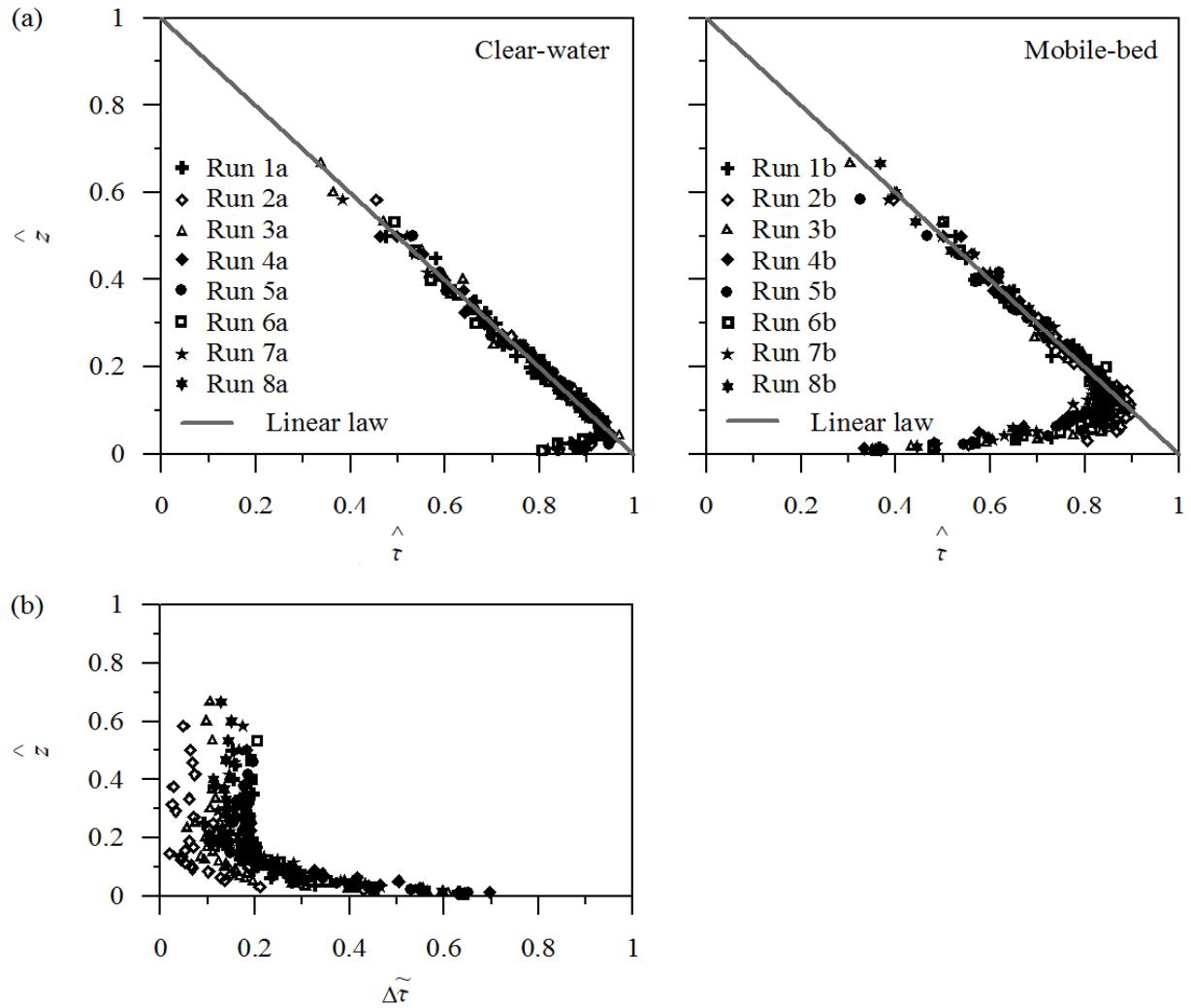
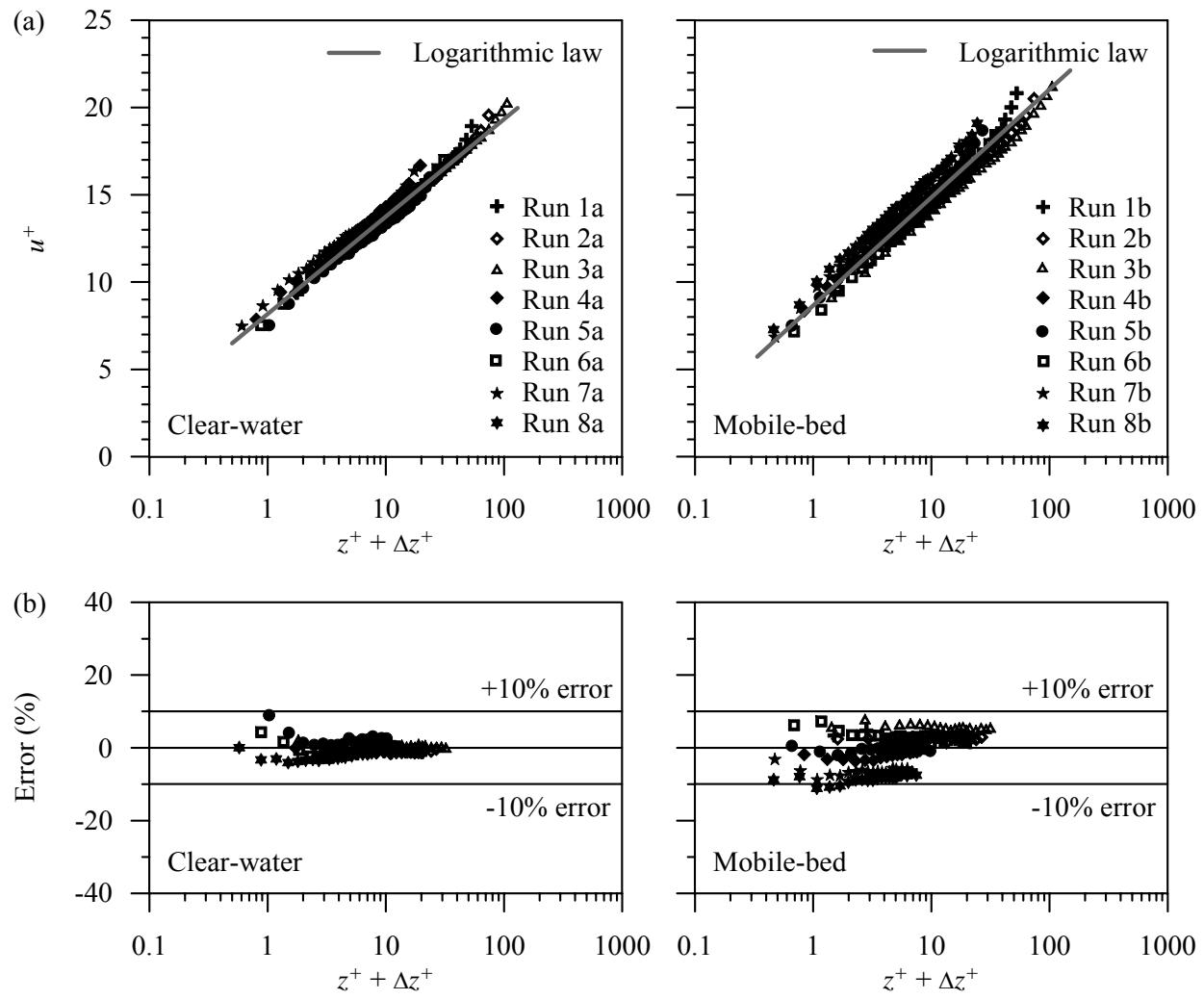
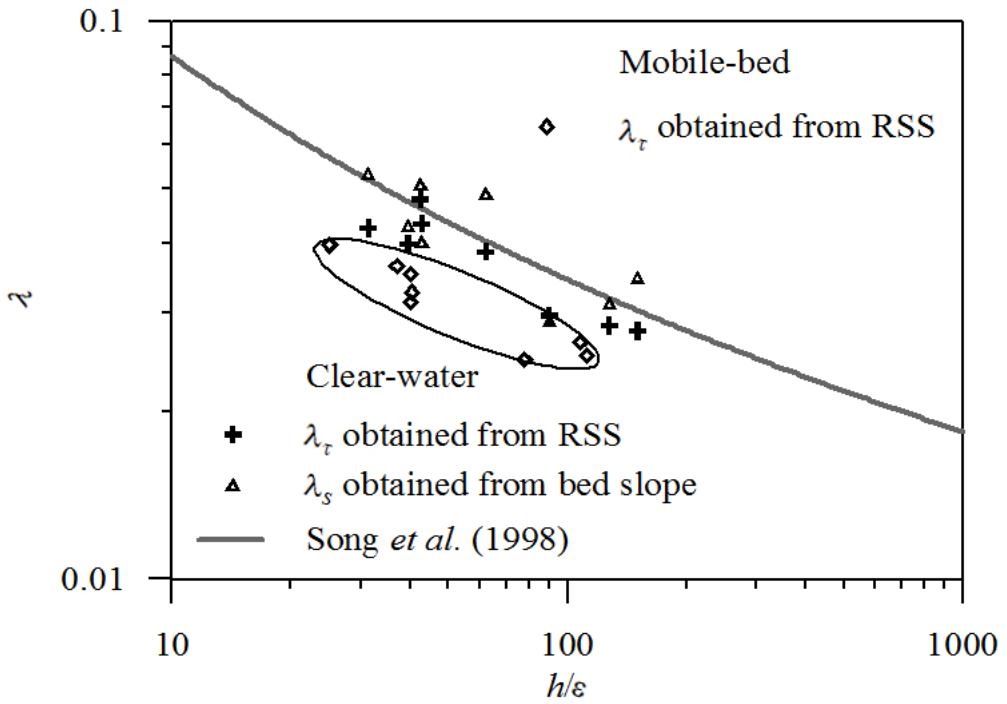
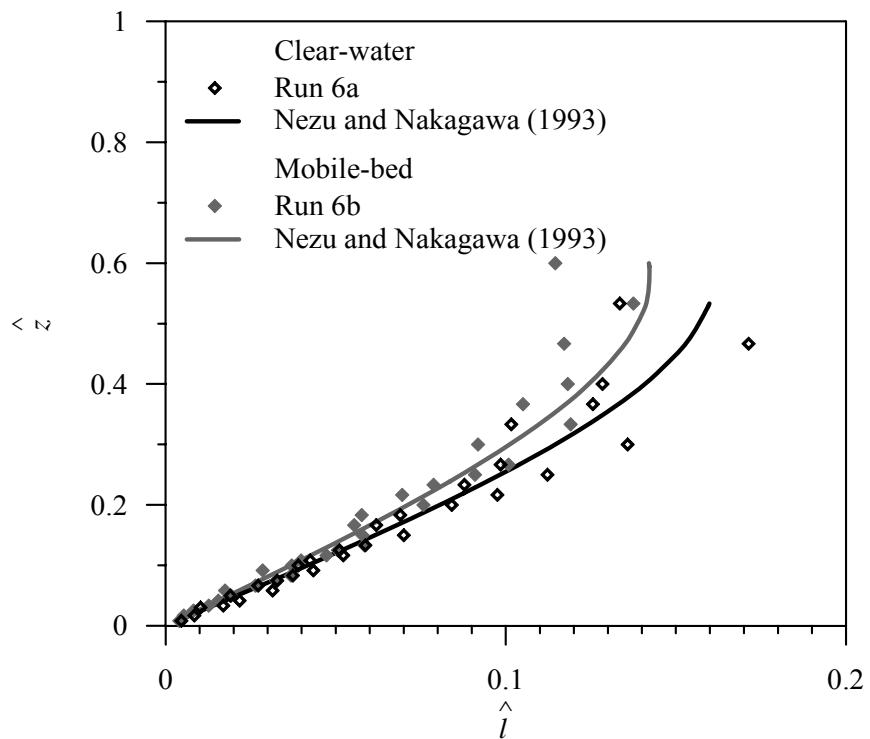




Fig. 2. Velocity power spectra $F_{ii}(f)$ for clear-water and mobile-bed cases: (a) before spike removal and (b) after spike removal.


910

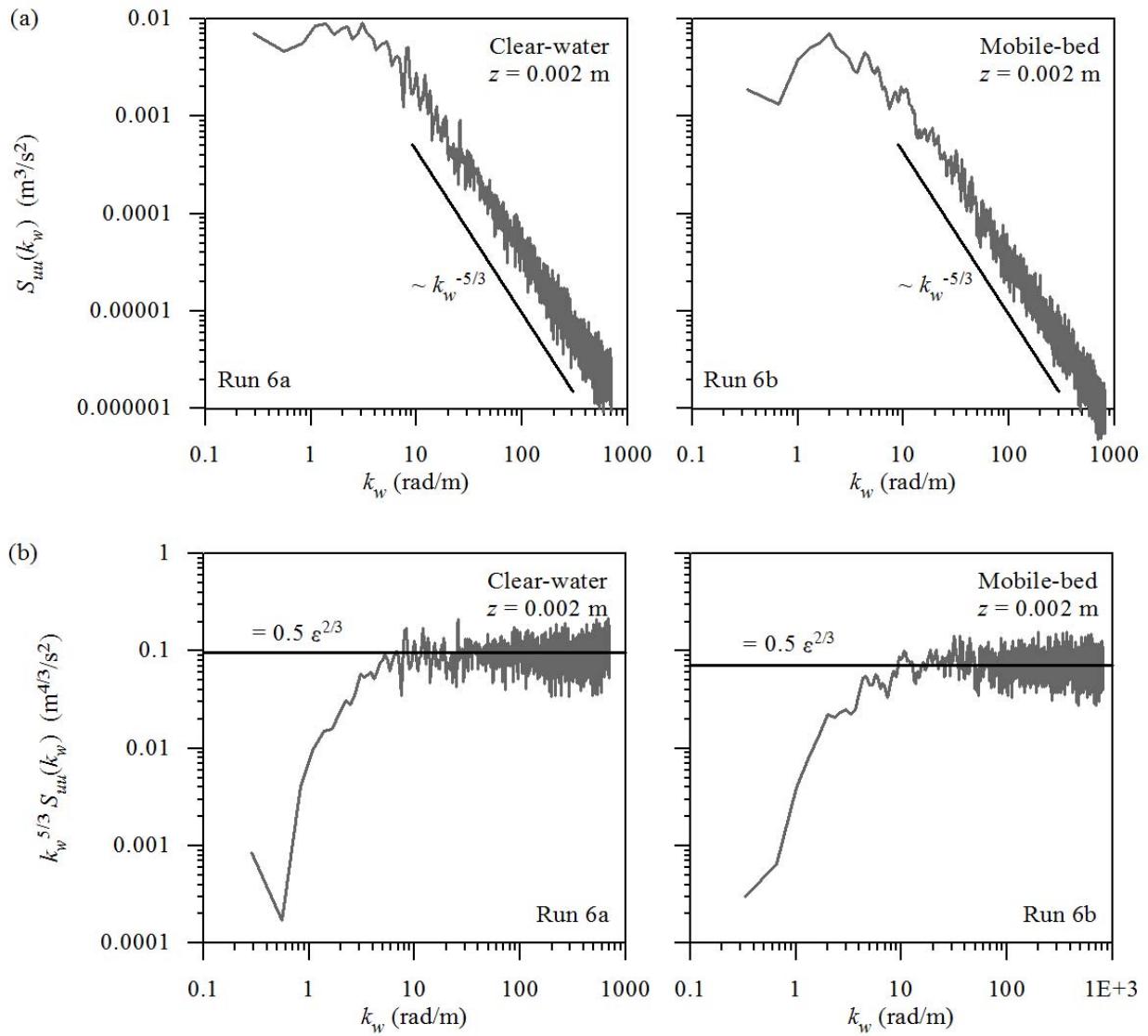
911 Fig. 3. Vertical distributions of (a) nondimensional RSS $\tilde{\tau}$ for clear-water and mobile-bed cases
 912 and (b) relative difference of RSS $\Delta\tilde{\tau}$ between clear-water and mobile-bed cases.

915 Fig. 4. Vertical distributions of (a) nondimensional time-averaged streamwise velocity u^+ and (b)
 916 error in prediction of u^+ from the log-law for clear-water and mobile-bed cases.


917

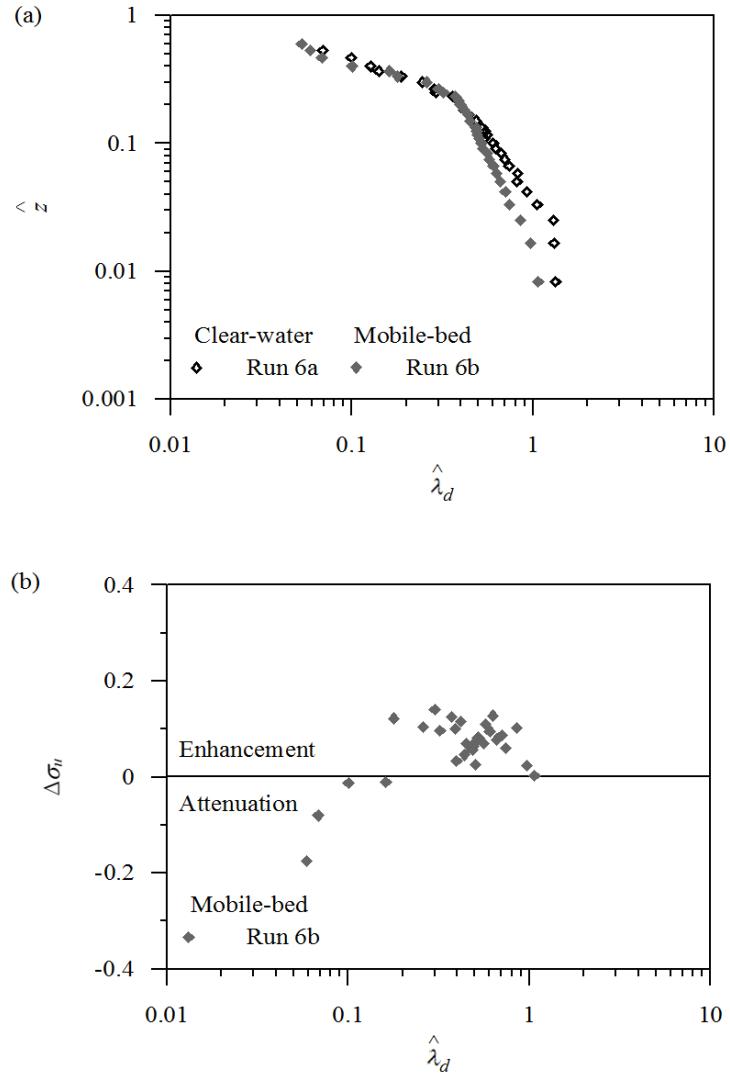
918

919 Fig. 5. Friction factor λ dependency on h/ε for clear-water and mobile-bed cases.


920

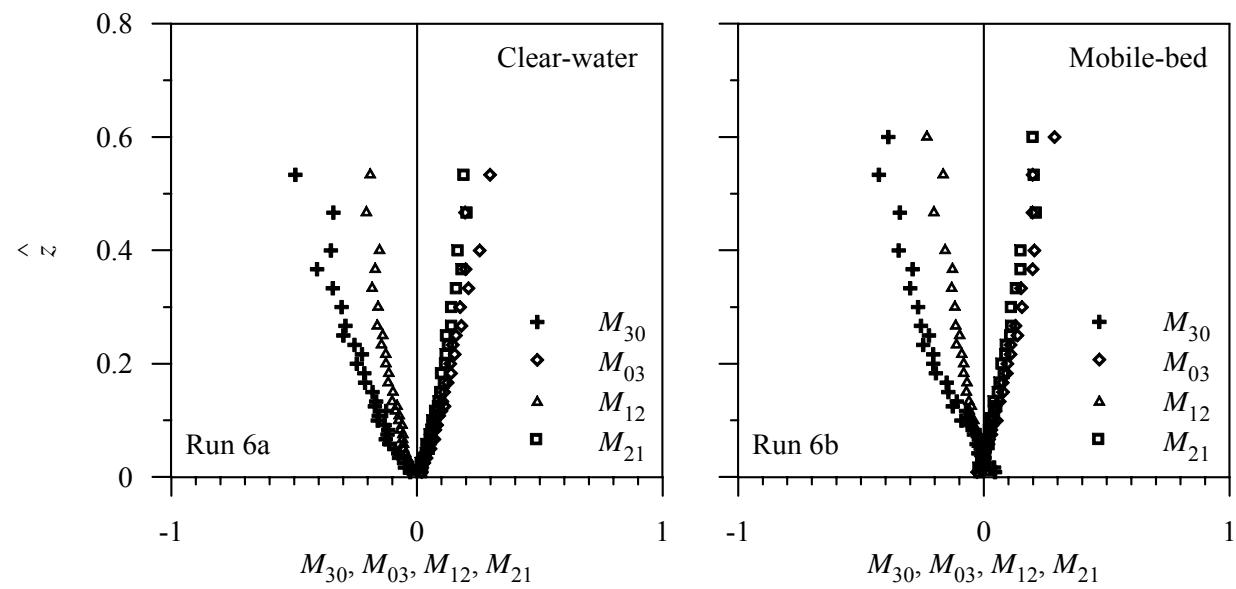
921

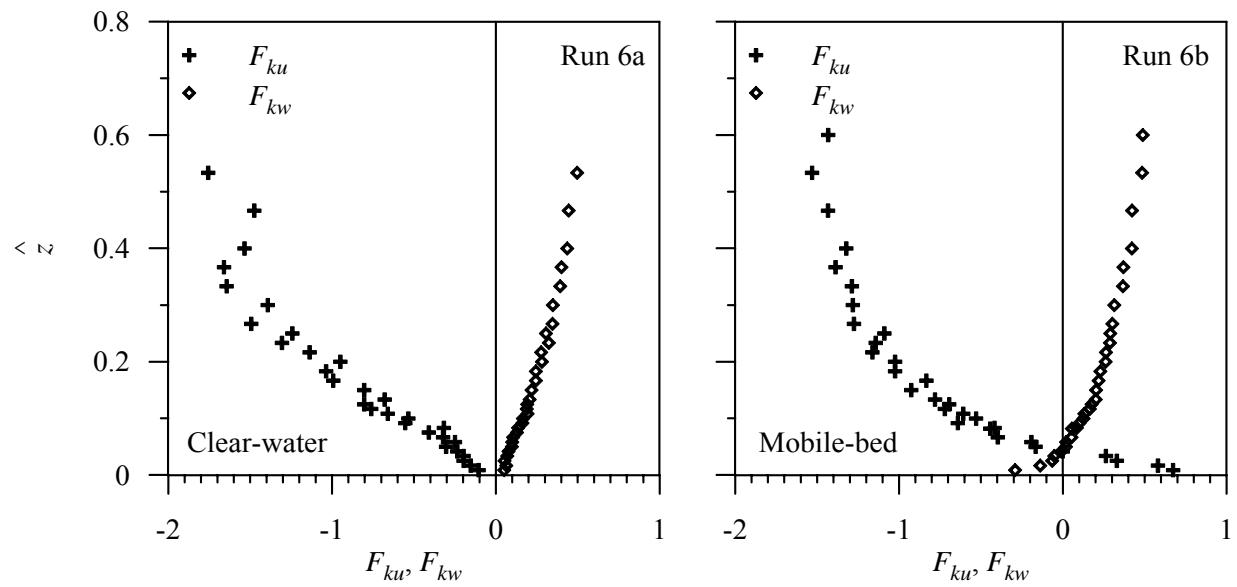
922 Fig. 6. Mixing length \hat{l} as a function of flow depth for clear-water and mobile-bed cases.


923

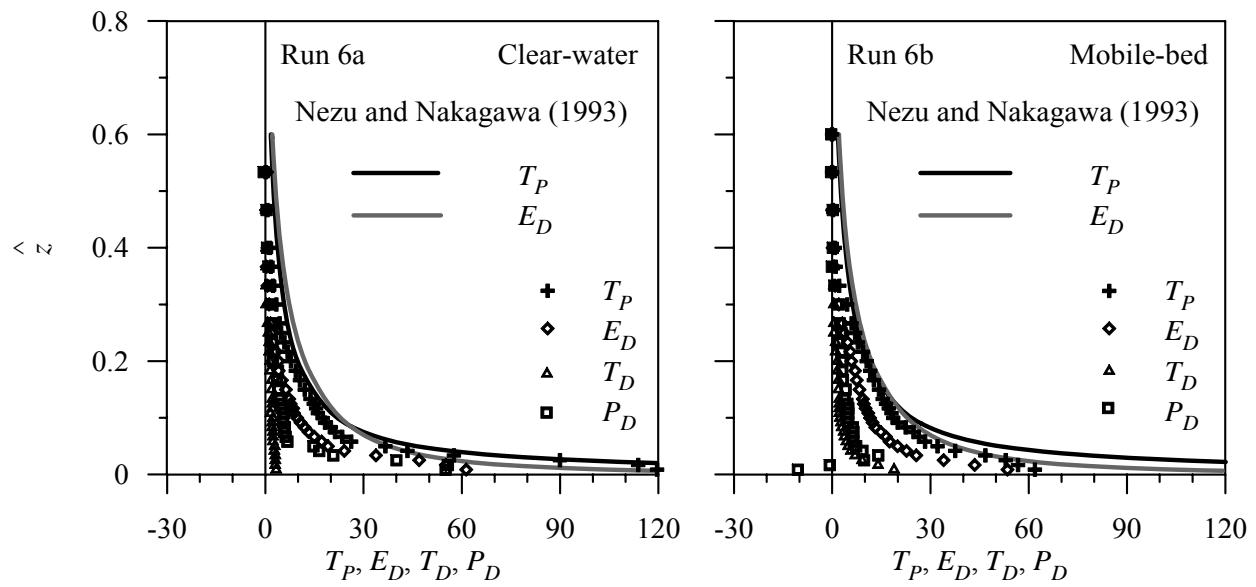
924

925 Fig. 7. (a) Velocity power spectra $S_{uu}(k_w)$ and (b) estimation of turbulent dissipation rate ϵ for
926 clear-water and mobile-bed cases.


927

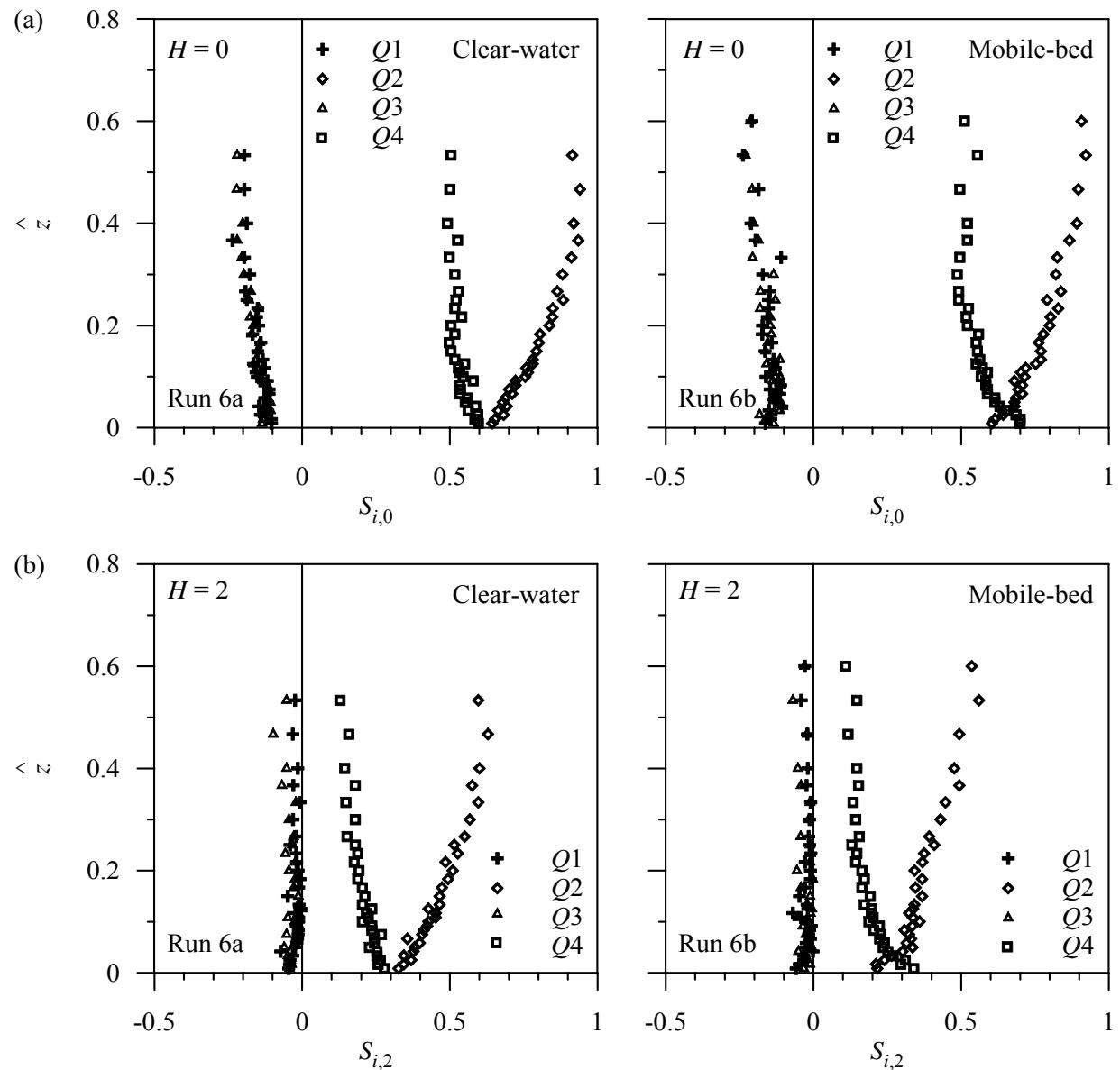


928


929 Fig. 8. (a) Ratio of particle size to Taylor microscale $\hat{\lambda}_d$ as a function of flow depth for clear-
 930 water and mobile-bed cases and (b) $\hat{\lambda}_d$ for mobile-bed flows as a function of relative difference
 931 of streamwise turbulence intensities $\Delta\sigma_u$ between clear-water and mobile-bed cases.

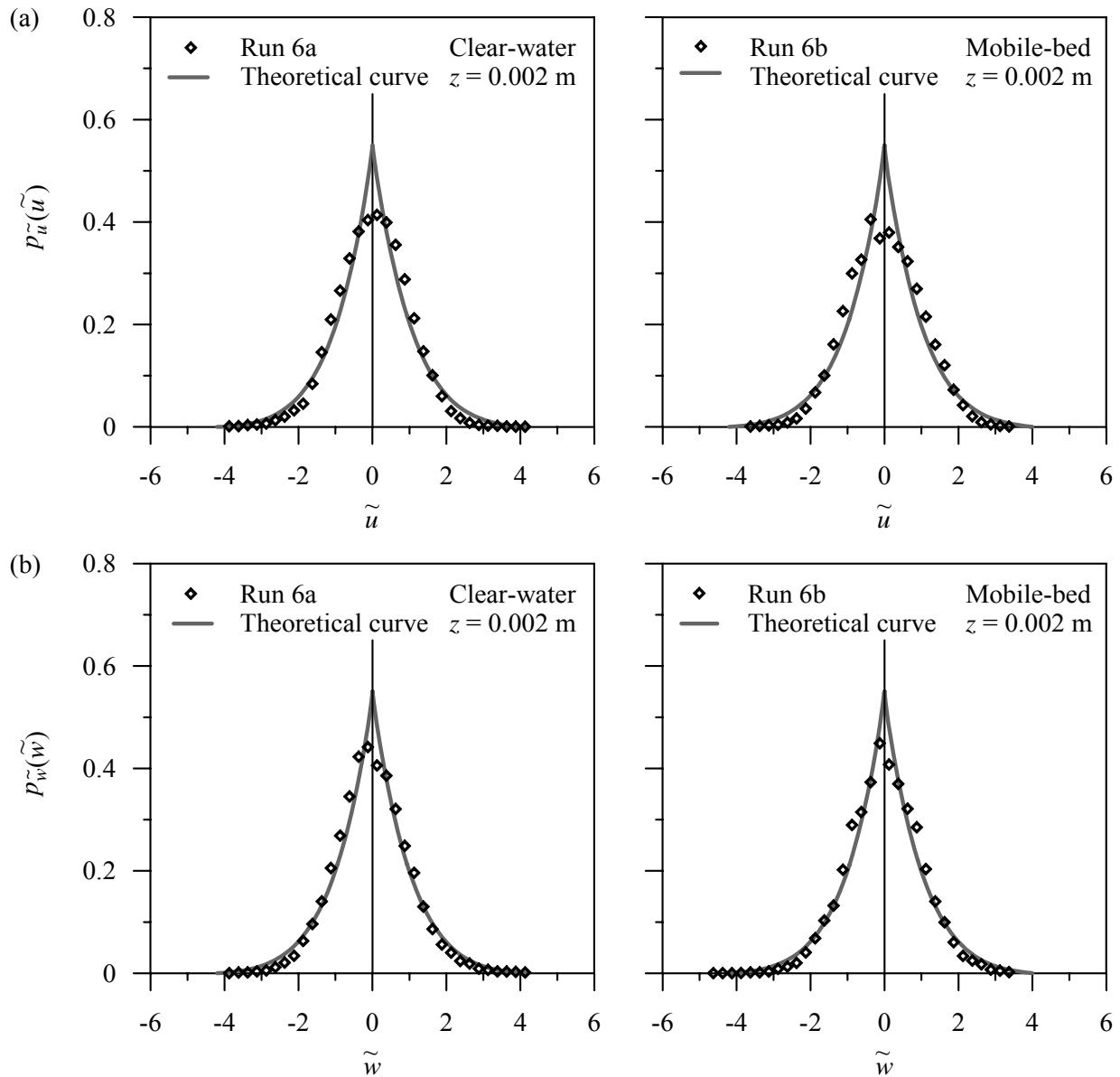
932

935 Fig. 9. Vertical distributions of third-order correlations M_{jk} for clear-water and mobile-bed cases.


939 Fig. 10. Vertical distributions of TKE-flux components F_{ku} and F_{kw} for clear-water and mobile-
 940 bed cases.

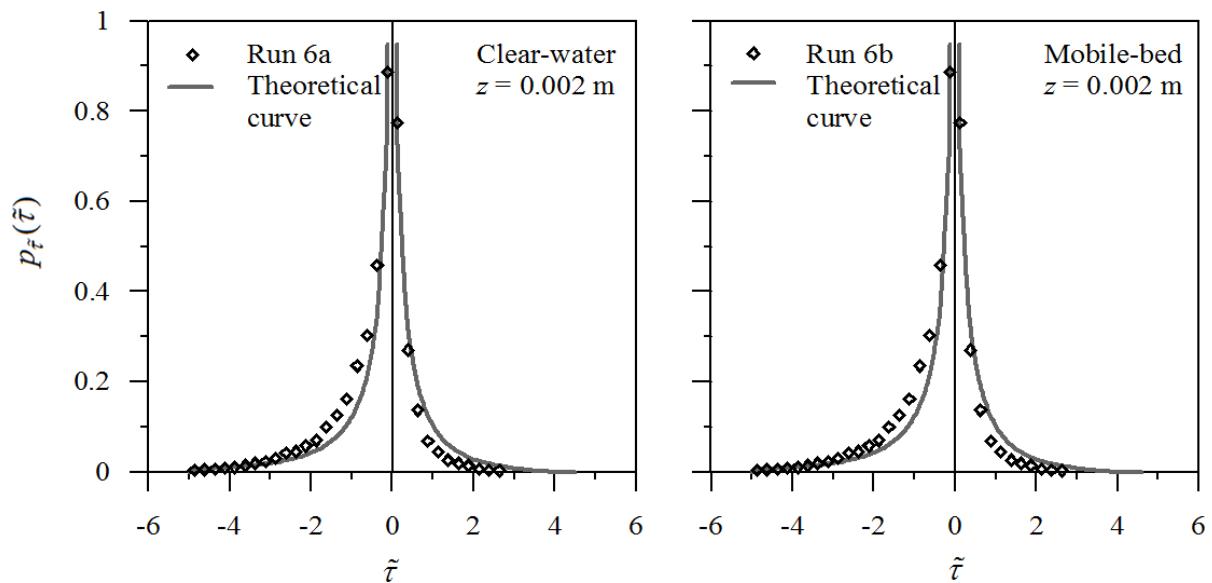
942

943 Fig. 11. Vertical distributions of TKE-budgets for clear-water and mobile-bed cases.


944

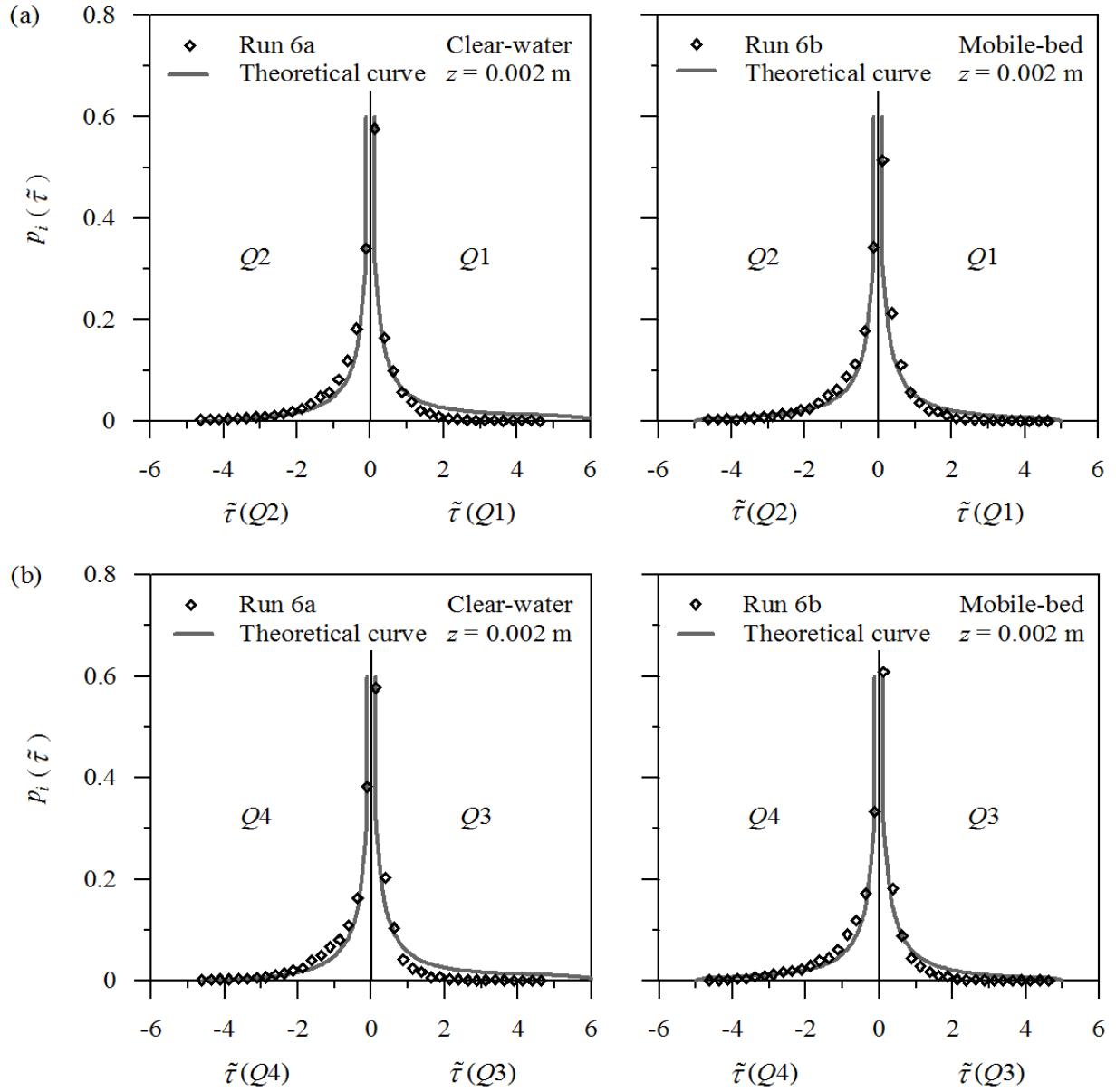
945

946 Fig. 12. Vertical distributions of (a) $S_{i,0}(\hat{z})$ and (b) $S_{i,2}(\hat{z})$ for clear-water and mobile-bed cases.


947

948

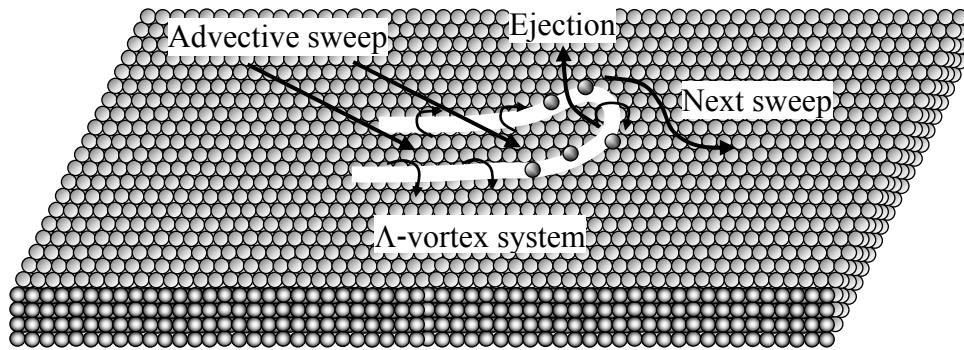
949 Fig. 13. Comparisons of computed (a) $p_{\tilde{u}}(\tilde{u})$ and (b) $p_{\tilde{w}}(\tilde{w})$ with experimental data for clear-
950 water and mobile-bed cases.


951

952

953 Fig. 14. Comparisons of computed $p_{\tilde{\tau}}(\tilde{\tau})$ with experimental data for clear-water and mobile-bed
 954 cases.

955



956

957 Fig. 15. Comparisons of computed (a) $p_{1,2}(\tilde{\tau})$ and (b) $p_{3,4}(\tilde{\tau})$ with experimental data for clear-
 958 water and mobile-bed cases.

959

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

971 Fig. 16. Schematic of coherent structure during bed-load sediment transport.

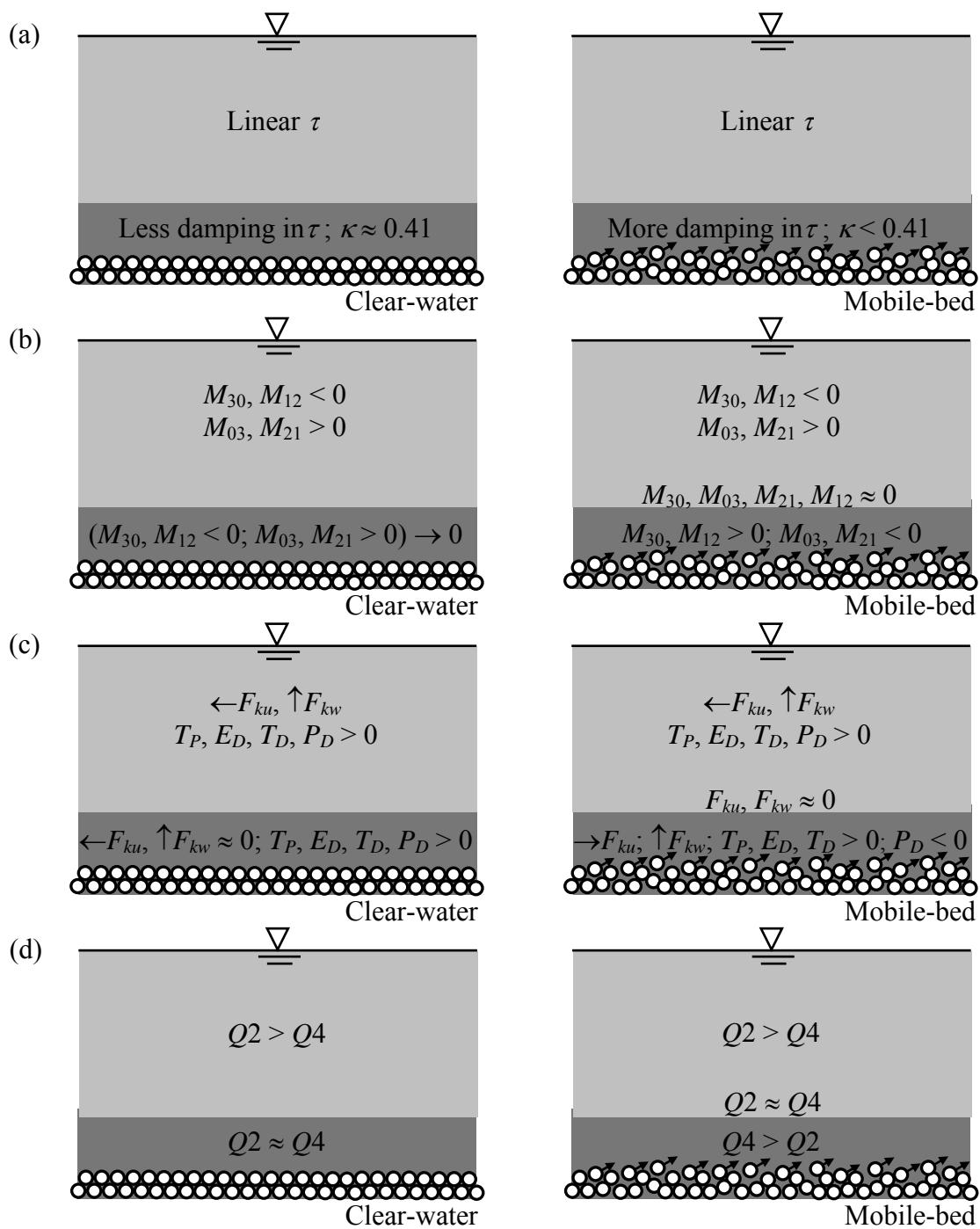


Fig. 17. Schematic close-up of the predominating turbulence parameters in near-bed and away-bed flow zones for clear-water and mobile-bed cases: (a) RSS, (b) third-order correlations, (c) TKE-flux components and budget and (d) bursting events for clear-water and mobile-bed flows.