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Abstract Identification of sequence motifs that favor cis peptide
bonds in proteins is important for understanding and designing
proteins containing turns mediated by cis peptide conformations.
From 1H NMR solution studies on short peptides, we show that
the Pro-Pro peptide bond in Pro-Pro-Phe almost equally popu-
lates the cis and trans isomers, with the cis isomer stabilized
by a CH� � �p interaction involving the terminal Pro and Phe.
We also show that Phe is over-represented at sequence positions
immediately following cis Pro-Pro motifs in known protein struc-
tures. Our results demonstrate that the Pro-Pro cis conformer in
Pro-Pro-Phe sequence motifs is as important as the trans con-
former, both in short peptides as well as in natively folded pro-
teins.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Cis peptide bonds, rarely observed in proteins [1–5] due to

unfavorable steric interactions between Ca(i) and Ca(i+1) in

the peptide unit Xaa(i)–Xaa(i+1), are known to exhibit a strong

bias for Pro at the (i+1) position. The sequence bias arises from

additional unfavorable Ca(i)–Cd(i+1) steric interactions, intro-

duced by Pro in the trans conformers of Xaa-Pro units [6].

Nuclear magnetic resonance (NMR) studies of cis–trans equili-

brium in short designed peptides [7–11] have shown that the

Xaa-Pro motif exhibits the highest (23–38%) [7] cis content

when Xaa is an aromatic residue, while the lowest cis content

(6%) [7] is observed when Xaa is Pro. Yet, surprisingly, surveys

of protein structures [1,7] indicate that along with the aromatic

residues, Pro is also over-represented at the Xaa position in cis

Xaa-Pro motifs. What is the origin of this discrepancy? In an

earlier work [1] it was noted that in some proteins containing

Pro-Pro cis bond, the first Pro residue was involved in a CH� � �p
interaction [12–16] with Phe side-chain following the second
Abbreviations: NMR, nuclear magnetic resonance; NOESY, nuclear
Overhauser effect spectroscopy; TOCSY, total correlation spectro-
scopy; DQF-COSY, double quantum filtered correlation spectroscopy;
NOE, nuclear Overhauser effect; OPfp, pentafluorophenyl ester
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Pro. However, there were other examples where no such inter-

action was present in Pro-Pro-Phe cis units (Fig. 1). The pres-

ence of a large number of many-body tertiary interactions in

a folded protein restricts one to draw any clear conclusion

about the role played by potential CH� � �p interactions in stabi-

lizing the cis Pro-Pro conformer in Pro-Pro-Phe motifs. To

overcome this problem, we synthesized two model peptides,

PPF (Ac-Pro-Pro-Phe-NH2) and PPA (Ac-Pro-Pro-Ala-

NH2). Since the peptides are devoid of all potential tertiary

interactions similar to that present in a folded protein, the

cis/trans equilibrium of the Pro-Pro unit in these peptides can

only be influenced by local interactions. The purpose of this

study is to determine if Pro-Pro cis conformation in PPF shows

enhanced stability than in PPA and if it is accompanied by any

CH� � �p interaction between Pro(1) and Phe(3).
2. Materials and methods

Peptides PPF and PPA were synthesized using standard solid phase
Fmoc protocol (pentafluorophenyl ester [OPfp] activation) and puri-
fied by reverse phase HPLC (C18 column). The peptides were charac-
terized by the presence of two consecutive Pro residues (total
correlation spectroscopy [TOCSY] pattern and presence of aa(i,i+1)
or ad(i,i+1) nuclear Overhauser effect [NOE] crosspeaks) followed by
a Phe residue (TOCSY pattern and presence of aN(i,i+1) NOE cross-
peaks). 1H NMR experiments were performed in dmso-d6 and H2O
(Watergate solvent suppression) at 25 �C in a Bruker DRX 500 MHz
spectrometer. After sequence-assignment the resonances were isomer-
assigned from Pro-Pro NOE cross peaks as cis (aa(i,i+1) crosspeaks)
or trans (ad(i,i+1) crosspeaks). The Phe 3Jab values were measured
from double quantum filtered correlation spectroscopy (DQF-COSY)
experiments.

A representative list from pdb [17] (PISCES April 2005; 1608 chains;
sequence identity <25%; R 6 2 Å) [18] was surveyed for Pro-Pro
motifs. The propensity of a residue Xaa immediately following a cis
Pro-Pro motif is given by:

P Xaa ¼
N cPPX=ðN cPPX þ N tPPXÞ

N cPP=ðN cPP þ N tPPÞ
ð1Þ

where NcPPX, NtPPX, NcPP, and NtPP correspond to the total number cis
Pro-Pro-Xaa units, trans Pro-Pro-Xaa units, cis Pro-Pro units and
trans Pro-Pro units, respectively, in database. CH� � �p hydrogen bonds
were identified using a fairly relaxed criteria: (i) distance between the
center of Phe ring and Ca/Cd

6 4.5 Å, (ii) angle between the center
of Phe ring, protons attached to Ca/Cd atom and Ca/Cd > 110�.
3. Results and discussion

3.1. Equilibrium population of cis conformers in PPA and PPF

The amide regions of the 1D 1H NMR spectra of the pep-

tides in dmso-d6 are shown in Fig. 2a and b. In both peptides
blished by Elsevier B.V. All rights reserved.



Fig. 1. Two examples of cis Pro-Pro peptide bond in Pro-Pro-Phe sequence motifs in proteins: (a) with Pro(i)-Phe(i+2) interaction (pdb code: 1nr0;
v1 = �39.54 (gauche+)) and (b) without Pro(i)-Phe(i+2) interaction (pdb code:1gsa; v1 = �174.64 (trans)).
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there are two Xaa-Pro bonds (Ac-Pro and Pro-Pro) each of

which can be present as cis or trans giving rise to four possible

conformers (cc, ct, tt, tc; see Fig. 3a). As can be seen in Fig. 2a

and b, four amide peaks are observed for both peptides, PPF

and PPA. The relative peak integrals, listed in Table 1, corre-

late with the relative populations of the four conformers. All

four conformers of PPF were unambiguously assigned using

NMR (TOCSY and nuclear Overhauser effect spectroscopy

[NOESY]) experiments. For PPA, there was ambiguity in

assigning the trans/cis state of the Ac-Pro bond. The combined

populations of the cis Pro-Pro conformers (cc and tc) were:

42% (PPF) and 16% (PPA) in dmso-d6 and 47% (PPF) and

17% (PPA) in H2O. The results demonstrate that the Pro-

Pro cis conformer experiences extra stability in PPF than in

PPA. The origin of this extra stability, due to the presence of

the Phe side-chain, was then examined.
Fig. 2. 1D 1H NMR spectra of: (a) Ala amide protons of PPA in
dmso-d6, (b) Phe amide protons of PPF in dmso-d6, (c) Phe Cb–H
protons of PPF in H2O. Each amide peak is annotated as one of the
four cis/trans isomers defined in Fig. 3a with the relative peak integral
within parenthesis. For PPA the cc and tc isomers could not be
unambiguously assigned and annotated as xc.

Fig. 3. (a) A schematic representation of multiple equilibria for the
peptides PPA and PPF. (b) Temperature dependence of the four
microscopic equilibrium constants (shown in Fig. 3a).

Table 1
Relative populations of cis and trans conformers in PPF and PPAa

PPF PPA

H2O dmso-d6 H2O dmso-d6

cc# 29 26 8 8
tc# 18 16 9 8
ct 9 17 37 25
tt 44 41 46 59

aRelative populations were estimated from integrals of NMR amide
peak signals. # For PPA the cis/trans states of the Ac-Pro peptide bond
could not be confirmed by NMR when the Pro-Pro bond was cis, so cc
and tc should be read as xc, where x indicates unassigned cis/trans
states.
3.2. Interacting Pro(1) and Phe(3) side chains in Pro-(cis)-

Pro-Phe

Closely interacting Pro(1)-Phe(3) side-chains, as found in

some proteins (Fig. 1a), may give rise to the observed stability

of Pro-Pro cis conformers in PPF. A consequence of such close

proximity is the ring current effect on Ca–H protons of Pro(1).

Indeed a systematic upfield shift was observed in the chemical
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shifts of Pro(1) Ca–H protons for the two cis isomers (cc: 2.90

and tc: 3.32 ppm) when compared to the trans isomers (ct: 4.52

and tt: 4.34 ppm) or the Pro(2) Ca–H chemical shifts of all four

isomers (cc: 4.02, tc: 4.05, ct: 4.15 and tt: 4.10 ppm) of PPF in

H2O. In dmso-d6, one of the two cis isomers (cc: 3.39 ppm)

exhibited an upfield shift. The upfield shifts therefore points

towards a closely interacting Pro and Phe side-chain, exclu-

sively in cis isomers. The absence of upfield shifted Pro(1)

Ca–H proton in one cis isomer (tc in dmso) may not necessarily

mean an absence of Pro(1)-Phe(3) interaction since ring cur-

rent shift depends not only on the proximity of a proton and

the Phe ring but also on their mutual orientations.

Further evidence of closely interacting Pro(1) and Phe(3)

side chains in the cis conformers of PPF came from the ob-

served 3Jab coupling constants of Phe(3). For both the cis iso-

mers, the 3Jab values were a combination of two numbers, one

large and the other small (<5 Hz; �12/13 Hz) indicating re-

stricted rotation of the Phe ring [19] in both DMSO-d6 and

H2O (Fig. 2c). On the other hand, for the trans conformers

the 3Jab values were roughly equal (�6–7 Hz), indicating con-

siderable rotation about the v1 angle [19]. The observation of

restricted rotation of Phe side-chain in a three-residue peptide

is remarkable. The combined observation of restricted rotation

of the Phe side chain and the upfield shift of Pro(1) Ca–H

chemical shifts clearly demonstrate that there is a strong

Pro(1)-Phe(3) side chain interaction in the cis (and not trans)

conformers of peptide PPF.
Table 2
Occurrence of cis and trans Pro-Pro peptide bonds in Pro-Pro-Xaa
motifs in proteins

Xaa EcPPX
a NcPPX

b NtPPX
c PXaa

d ze

Phe 2.13 10 18 4.68 5.39
Tyr 1.83 6 18 3.28 3.09
His 1.30 3 14 2.31 1.50
Cys 0.53 1 6 1.87 0.64
Ala 4.12 7 47 1.70 1.42
Arg 2.52 3 30 1.19 0.31
Ile 1.91 2 23 1.05 0.07
Asn 1.98 2 24 1.01 0.01
Leu 4.12 4 50 0.97 �0.06
Thr 3.20 3 39 0.94 �0.11
Lys 2.97 2 37 0.67 �0.57
Gly 4.96 3 62 0.61 �0.88
Val 3.66 2 46 0.55 �0.87
Asp 2.06 1 26 0.49 �0.74
Gln 2.13 1 27 0.47 �0.78
Ser 3.89 1 50 0.26 �1.47
Glu 4.96 1 64 0.20 �1.78
Met 0.61 0 8 0.0 �0.78
Trp 0.46 0 6 0.0 �0.68
Pro 2.67 0 35 0.0 �1.64

Total 52 630

Number of (a) expected cis Pro-Pro-Xaa peptide bonds, (b) observed
cis Pro-Pro-Xaa peptide bonds, and, (c) observed trans Pro-Pro-Xaa
peptide bonds. (d) Propensity (Eq. (1)), of cis Pro-Pro-Xaa peptide
bond. (e) z-value: (NcPPX–EcPPX)/SQRT{EcPPX(N � EcPPX)/N} where
N is the total number of Pro-Pro (cis and trans) in the data base.
|z| P 1.96 signifies 95% confidence level.
3.3. Energetic of cis–trans equilibrium

As shown in Fig. 3a, there are four microscopic equilibria be-

tween distinct trans/cis species in peptides PPF and PPA. The

corresponding equilibrium constants can be estimated from

the ratio of amide peak integrals corresponding to the four spe-

cies (cc, ct, tc and tt) for respective peptides, as shown in Table

1. Of these, the tt fi tc equilibrium (equilibrium constant Ktc) is

relevant to folded protein structures and we will focus on this.

For peptide PPF, Ktc and the corresponding free energies DGtc

(�RTlnKtc; T = 298 K) are 18/44 and 0.53 kcal/mol in H2O,

and 16/41 and 0.56 kcal/mol in dmso. The cis/trans states of

the Ac-Pro bond in peptide PPA for the two minor conformers

(cis Pro-Pro unit) could not be assigned unambiguously leading

to two possible values of Ktc (8/46 or 9/46) and DGtc (1.03 or

0.97 kcal/mol) in H2O and two possible values of Ktc (both val-

ues 8/59) and DGtc (both values 1.18 kcal/mol) in dmso. In

terms of free energies, the cis forms of both peptides are unfa-

vorable compared to the corresponding trans forms. However,

the cis form is less unfavorable than the trans from in peptide

PPF than in peptide PPA, both in H2O (DGtc (PPA) � DGtc

(PPF) = 0.41–0.47 kcal/mol), and in dmso (DGtc (PPA) � DGtc

(PPF) = 0.62 kcal/mol). This extra stability of the cis isomer in

PPF, about 0.4–0.6 kcal/mol, arises solely due to the presence

of Phe instead of Ala side-chain in PPF.

The entropic and enthalpic components of the free energy

difference were estimated from the temperature dependence

of Ktc (derived from NMR spectra) as shown in Fig. 3b. A

van’t Hoff analysis yielded DH = �0.45 kcal/mol and

DS = �3.34 cal/mol/deg for PPF, and DH = 0.62 kcal/mol

and DS = �1.59 cal/mol/deg for PPA in H2O. For both pep-

tides, the cis conformer is entropically disfavored (1.00 kcal/

mol for PPF and 0.47 kcal/mol for PPA at 298 K). However,

the trend in enthalpic stability of the cis form is opposite in
PPF and in PPA. The cis form is enthalpically favored in

PPF and disfavored in PPA. The net effect of Ala to Phe sub-

stitution is therefore an enthalpic stabilization of the cis form

by �1.07 (�0.45 to 0.62) kcal/mol and a corresponding entro-

pic destabilization by 0.53 (1.0 � 0.47) kcal/mol (at 298 K).

A model where the cis isomer in PPF is stabilized by CH� � �p
interaction between Pro(1) and Phe(3) predicts that the pres-

ence of the Phe ring in the cis form will make it entropically

disfavored (locking of Phe rings) and enthalpically favored

by an energy corresponding to that arising from a CH� � �p
hydrogen bond. The experimentally observed entropic and

the enthalpic components for the cis form of PPF, after sub-

tracting appropriate energy and entropy components of

PPA, are consistent with this model. The cis form of PPF

is indeed associated with an additional unfavorable entropic

component (0.53 kcal/mol) and is favored by an enthalpic

component (�1.07 kcal/mol), compatible with the reported

CH� � �p hydrogen bond energy of �0.88 kcal/mol [20].

3.4. Occurrence of Pro-(cis)-Pro-Phe motifs in known protein

structures

NMR results showed that the Pro-Pro peptide bond is almost

equally distributed between the cis and the trans conforma-

tional states in PPF. Without any tertiary structure, PPF is rep-

resentative of the unfolded state of a protein. What is the fate of

the Pro-Pro peptide bond in Pro-Pro-Phe motifs in a folded

protein? To address this question we computed propensities

of residues to be present at the (i+2) position of cis Pro-Pro mo-

tifs in proteins and the associated z-score (Table 2). The highest

propensity is shown by Phe, followed by Tyr and His, all capa-

ble of exhibiting CH� � �p interaction. It should be pointed out

that due to sparse data, Trp, Met and Cys have been left out

of the current analysis. Out of a total 28 Pro-Pro-Phe motifs,



Fig. 4. v1 angle distribution of Phe residues following cis (thick line)
and trans (shaded) Pro-Pro motifs in proteins.
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ten were found to be present in the cis and 18 in the trans con-

formation. The side chain angle v1 of Phe residues also showed

very different distributions when present in the cis and the trans

Pro-Pro-Phe motifs (Fig. 4). As was observed for PPF, the trans

conformers showed no preference among the three canonical

side chain isomers (t, g+, g�) while the cis isomer was found

to almost exclusively (8/10) populate the g+ state. As a rule

we found a Pro-Pro VIb b-turn [21,22], followed by Phe

(v1 = g+ and / � �94� ± 24� always showed the Pro(i)-

Phe(i+2) CH� � �p interaction (4/10 cases). No Pro(i)-Phe(i+2)

CH� � �p interaction was present in any of the trans conformers.
4. Summary and perspectives

We have demonstrated that the Pro-Pro peptide bond in the

sequence motif Pro-Pro-Phe is predisposed to be present in the

cis as well as the trans conformation with comparable likeli-

hood. When present in a short peptide, devoid of any tertiary

interaction, a CH� � �p interaction, between the first Pro residue

and the Phe side-chain is the origin for the stability of the cis

state. In proteins the Pro-Pro unit in Pro-Pro-Phe motifs also

exhibited a high propensity to be present in the cis state, with

or without the CH� � �p interaction. Incorporation of the se-

quence motif Pro-Pro-Phe may be useful in designing peptides,

for example, peptides that contain a cis bond (type VI b-turn)

[11,23] or where a Pro-Pro motif is used as a nucleating tem-

plate for peptides [24]. The higher probability of having a cis

peptide bond, which is not compatible with polyproline II con-

formation [25], may also be a reason why aromatic residues

has a very low frequency of occurrence in polyproline II heli-

ces. In addition, our results point to new subtleties in the

mechanism of protein folding, especially how the cis–trans

isomerization [26] of Pro-Pro peptide bond can be modulated

by the type of the residue following it.
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