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N- and C-Terminal Domains of the Calcium Binding
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Abstract

Entamoeba histolytica, a protozoan parasite, is the causative agent of amoebiasis, and calcium signaling is thought to be
involved in amoebic pathogenesis. EhCaBP1, a Ca* binding protein of E. histolytica, is essential for parasite growth. High
resolution crystal structure of EnCaBP1 suggested an unusual arrangement of the EF-hand domains in the N-terminal part of
the structure, while C-terminal part of the protein was not traced. The structure revealed a trimer with amino terminal
domains of the three molecules interacting in a head-to-tail manner forming an assembled domain at the interface with EF1
and EF2 motifs of different molecules coming close to each other. In order to understand the specific roles of the two
domains of EhCaBP1, the molecule was divided into two halves, and each half was separately expressed. The domains were
characterized with respect to their structure, as well as specific functional features, such as ability to activate kinase and bind
actin. The domains were also expressed in E. histolytica cells along with green fluorescent protein. The results suggest that
the N-terminal domain retains some of the properties, such as localization in phagocytic cups and activation of kinase.
Crystal structure of EnCaBP1 with Phenylalanine revealed that the assembled domains, which are similar to Calmodulin N-
terminal domain, bind to Phenylalanine revealing the binding mode to the target proteins. The C-terminal domain did not
show any of the activities tested. However, over-expression in amebic cells led to a dominant negative phenotype. The
results suggest that the two domains of EhCaBP1 are functionally and structurally different from each other. Both the
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domains are required for structural stability and full range of functional diversity.
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Introduction

Calcium (Ca*") is a ubiquitous intracellular signal responsible
for controlling numerous cellular processes in wide spectrum of
organisms. Cells respond to an extra-cellular stimulus by a
transient change in intracellular Ca** concentration ([Ca?'];)
which, in turn, is sensed by calcium binding proteins (CaBPs) [1].
Ca”" signaling also plays a vital role in the biology of many
protozoa including FEntamoeba histolytica [2]. E. histolytica genome
encodes a large repertoire of CaBPs as revealed by a motif-based
search for EF-hand containing proteins suggesting an extensive
Ca®*-based signaling network in this organism [3]. Many of these
proteins are expressed in proliferating trophozoites suggesting that
these are likely to be functional proteins [3, Padhan unpublished
observations].

Our laboratory previously identified a 14.7 kDa calcium
binding protein, EhCaBP1 [4], from E. fistolytica. This protein
shares 29% sequence identity with the ubiquitous CaBP,
Calmodulin (CaM). However, this protein is functionally distinct
from CaM [5]. EhCaBPl is an essential protein, as down
regulation of its expression blocks proliferation of the parasite
[6]. A phagocytosis deficient E. hustolytica mutant, L6, showed
reduced expression of EhCaBP1, further confirming its involve-
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ment in phagocytosis [7]. Detailed analysis showed the involve-
ment of EhCaBPl in different forms of endocytosis, such as
pinocytosis and erythrophagocytosis [8]. EhCaBP1 is likely to
participate in the initiation step of endocytosis as it associated
transiently with phagocytic cups and was not found in phagosomes
[9]. Interestingly, the recruitment of EhCaBP1 to the phagocytic
cups was not dependent on its ability to bind Ca®". The
mechanism by which EhCaBP1 is recruited to the phagocytic
cups 1Is not yet clear, although its ability to bind both F- and G-
actin directly has been demonstrated [8].

Crystal structure of EhCaBP1 showed an unusual arrangement
of the domains of EhCaBP1 [10]. The region connecting EF
hands I and II was found to be less flexible with extended
conformation. On the other hand, the two glycines (G63, G67)
present in the central linker region makes it more flexible as
compared to CaM. The N-terminal domains of three molecules of
EhCaBP1 interact in a head to tail manner to form a trimer. In the
trimeric form, hydrophobic pockets are formed at each interface,
and inter-pocket distance is almost equal to the distance between
the hydrophobic pockets in the extended structure of CaM.
Hence, it is highly plausible that both the domains carry distinct
functional properties thus conferring several/ additional functional
features to the protein. Moreover, CaM and CaM-like proteins
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EhCaBP Domain Characterization

Figure 1. Cloning and Expression of EhCaBP1 domains. (A) Schematic representation of EhCaBP1 domains. Nter protein lacks the carboxy
terminus of the protein and contained only the initial 66 amino acids, while Cter protein lacks the initial 66 amino acids. (B) The induction and
purification profiles for both the Nter and Cter domains are shown. Induced lysates from the bacterial cells expressing the EhCaBP1 domains are
resolved on a 15% SDS-PAGE and the gel is stained with Coomassie Brilliant Blue R-250.

doi:10.1371/journal.pone.0005269.g001

(ex: Troponin C, Myosin ELC’s) bind to their respective target
proteins by anchoring to the hydrophobic residues. Particularly,
CaM binds to different types of target binding motifs, where the
hydrophobic residues are separated by 1-10, 1-14 and 1-16
residues [11].

In the present study, we decided to decipher the roles of the two
domains of EhCaBP1 and to understand the binding mode of
EhCaBP1 to its targets.

Results

Expression and characterization of recombinant domains

The nucleotide sequences encoding the two domains were
separately cloned in Escherichia coli expression vector pET 3(c) as
described in “materials and methods”. The amino terminal
domain (Nter) contained amino acids 1-66 and the carboxy
terminal domain (Cter) contained amino acids 67-134 (Figure 1A).
The integrity of each construct was checked by nucleotide
sequencing. The domains were expressed in presence of the
inducer IPTG and the expressed proteins were analysed by SDS-
gel electrophoresis (Figure 1B). Purification of the expressed
proteins from E. coli was carried out essentially as described before
[4]. The results show that the Cter domain is expressed at a higher
level compared to the Nter domain. At higher concentrations, the
domains were found to be less soluble compared to the whole
protein (data not shown here).

The Ca”* binding ability of a protein can be checked by a number
of methods. The methods, such as mobility shift assay and circular
dichroism spectroscopy (CD) measures changes in the conformation
of the protein after binding Ca** and therefore are indirect
approaches for determining Ca®" binding. The Nter and Cter
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domains were subjected to mobility shift assay where conformation
change on binding Ca”" was visualized on a SDS-PAGE gel. The
Ca?" bound form of the Nter domain underwent a mobility shift
similar to that observed for the full-length protein. No significant shift
was observed in the case of Cter domain (Figure 2A). This may be
due to a small conformational change undetectable by SDS-PAGE.
CD spectroscopy was subsequently performed to decipher any subtle
conformation change on Ca®" binding (Figure 2B). It is evident from
the spectra that both Nter and Cter domains underwent
conformational changes in presence of Ca®". As expected Nter
showed a larger degree of change in helicity compared to the Cter
domain (10% as compared to 3% in Cter). The ability of both the
domains to bind Ca** was confirmed by a direct *Ca®" binding
assay where western blotted proteins are incubated with radioactive
Ca®" (Figure 2C). EhCaBP1AEF, a mutant form that does not
bind Ca®" was used as a negative control [9]. The results clearly
showed that both the domains bound Ca®". It appears from these
results that though both the domains bind Ca®*, the consequence of
binding is not the same. Nter domain undergoes a major
conformation change whereas the change 1s much less for Cter. In
this respect, Nter domain behaved like the whole EhCaBP1.

Functional characterization of the domains

EhCaBP1 is known to activate endogenous kinase(s) in a Ca*"
dependent manner [5]. The ability of the domains to activate these
kinase(s) was tested as described before, using histone phosphor-
ylation visualized by autoradiography [9] (Figure 3A). While Nter
could activate the endogenous kinase more efficiently than the
complete EhCaBP1, Cter showed a marked reduction in activity of
about 50-60% of the control (Figure 3B).
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Figure 2. Characterization of Ca?* binding property of the EhCaBP1 domains. (A) Gel mobility shift of Ca>*-bound and Ca*'- free forms of
EhCaBP1 (WT) and respective domains. Recombinant proteins are purified from E. coli lysates expressing EnCaBP1 WT or indicated domains. Five
micrograms of purified proteins (as indicated) are subjected to electrophoresis on a 15% SDS-PAGE in presence of 5 mM Ca*" (C) or 2 mM EGTA (E).
The proteins are stained with Coomassie Brilliant Blue R-250. (B) Far UV spectra of EnCaBP1 domains in presence and absence of Ca®* are shown
separately. (C) Ca®" binding by the domains is also checked by “°Ca overlay assay. The figure represents an autoradiogram (upper panel) and the
corresponding SDS-PAGE gel is stained with Coomassie Brilliant Blue R-250. CaBP1AEF, a Ca®" insensitive mutant of EhCaBP1 [9] was used as a
negative control. The vertical line indicates that few unwanted lanes have been deleted from the gel picture.
doi:10.1371/journal.pone.0005269.9002
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Figure 3. Ability of EhCaBP1 domains to activate endogenous
kinase(s). (A) E. histolytica cell-free lysate (25 ng) is used as the source
of kinase and histone type Ill (15 ng) as the substrate. EhCaBP1, Nter or
Cter (2 nM) is added to the reaction mixture at varying concentration
and the assay is performed using [y->2P] ATP as the phosphate donor.
The concentration of Ca®" used is 10 pM. The reaction products are
separated on a 12% SDS-PAGE, air dried and autoradiography is done.
The first lane is histone alone. (B) The amount of radioactivity
incorporated into histone as determined by densitometry. The reaction
mixtures are precipitated and the incorporated counts are measured
using liquid scintillation counter. The graph represents the intensity
measurement of three independent experiments *s.d.
doi:10.1371/journal.pone.0005269.g003

Since EhCaBP1 has been shown to bind G actin directly each
domain was also tested separately for their ability to bind G-actin
using a solid phase assay [8]. The results showed no significant
binding for either of the domains, suggesting that G-actin binding
requires intact protein (Figure 4).

Expression of individual domains in transfected E.
histolytica trophozoites

The domains were expressed in E. fustolytica cells in order to
study their function. The DNA fragments encoding the two
domains were separately cloned in the Entamoeba shuttle vector,
pEh-NEO-GFP as described in “Materials and Methods”. These
constructs were then transfected in E. Justolytica cells, generating
over-expressing Nter-GFP and Cter-GFP cell lines. The expres-
sion of the fusion protein was checked by immunoblotting, using
anti-EhCaBP1 antibody (Figure 5A). Densitometric analysis of the
immunoblot showed a 3.5 fold increase in the expression of Nter-
GFP and 2.5 fold in case of Cter-GFP at 30 pug/ml of G418 as
compared to the cells maintained at 5 ng/ml of the antibiotic.

It has been shown that EhCaBPl has a crucial role in the
initiation of erythrophagocytosis and erythrophagocytosis has been
linked to the pathogenesis in amebiasis [12]. In order to find out
the level of erythrophagocytosis in Nter-GFP and Cter-GFP cell
lines these cells were incubated with RBCs (Figure 5B). There was
no significant difference in the level of erythrophagocytosis

@ PLoS ONE | www.plosone.org

EhCaBP Domain Characterization

Figure 4. Actin binding properties of EhCaBP1 domains. The
ability of the domains to bind G-actin is tested using solid phase assay
at different concentrations (5 and 10 uM). The histogram shows the
relative mean intensity *s.d. of three independent experiments.
doi:10.1371/journal.pone.0005269.g004

between Nter-GFP cells and the cells containing the vector
containing GFP alone. However, a marked reduction (40%) was
seen in case of Cter-GI'P cells when grown at 30 pg/ml of G418.
This suggests that over-expression of Cter domain results in a
dominant negative phenotype with respect to erythrophagocytosis.
Absence of dominant negative effect in Nter-GFP cells suggests
that this domain is likely to behave like the full length EhCaBP1
protein. Over expression of full length EhCaBP1 also did not
change significantly the level of erythrophagocytosis [8].

Fluorescence microscopy was used for subcellular localization of
expressed domains in amoebic cells during erythrophagocytosis.
Arrows in the figures indicate positions of some RBCs. Confocal
sections showed the presence of the Nter domain at the phagocytic
cup and its complete co-localization with F-actin (Figure 5C).
Furthermore, majority of Nter molecules were found around the
phagocytic cups and not much in cytoplasm (Figure 5C). The full-
length EhCaBP1 protein molecules are found around phagocytic
cups as well as in the cytoplasm (Figure 5D). Distribution of Cter
protein was quite different. Most of the molecules were found in
the cytoplasm, with no specific relation with F-actin at the site of
attachment of RBC (Figure 5E). Moreover, in the majority of cells,
RBCs were seen bound to the surface and only a few phagocytic
cups were observed.

Structural analysis

The two EF hand motifs belonging to N-terminal domain of
EhCaBP1 are separated by long helix. In contrast, the corresponding
EF motifs in CaM are connected by a short loop, thus bringing these
two EF hand motifs into close proximity and forming a two EF-hand
domain. The N-terminal domain of three molecules of EhCaBP1
participates in domain swapping to form trimers (Figure 6A) [10].
This allows the EF1-hand motif of one molecule to interact with EF2
of an adjacent molecule to form a two EF-hand domain. This
assembled domain is similar to that of the two EF hand domains of
CaM and TnC. This is essentially facilitated by a couple of critical
residues in the linker that separate EFl and EF2 motifs in
comparison to CaM and ELC’s [10]. GaM and CaM-like proteins
bind to their targets by anchoring hydrophobic residue of the target.
Two EF hand motifs of each domain of CaM bind to one
hydrophobic residue of the target. To understand the target binding
mode, EhCaBPl was co-crystallized with Phenylalanine (Phe).
Crystal structure of EnCaBP1 with Phe showed that the hydropho-
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Figure 5. Expression and localization of GFP tagged EhCaBP1 domains in Entamoeba trophozoites. (A) Inmunoblot analysis of the
lysates prepared from cells over-expressing GFP tagged Cter or Nter domains of EnCaBP1grown at 5, 10, 30 ug/ml G418. Fifty microgram of whole
cell lysate is resolved on a 12% SDS-PAGE and blotted on to a nitrocellulose membrane. The blots were probed with anti-EhCaBP1 (1:2000) followed
by anti-Rabbit HRPO (1:10000) and visualized using chemiluminescence substrate. (B) Erythrophagocytosis in cells over-expressing EhCaBP1 domains.
The cells expressing Nter-GFP, Cter-GFP, GFP-EhCaBP1 (GC1) or vector alone (GFP) are grown at 10 pg/ml and 30 ug/ml of G418. Erythrophagocytosis
is measured after incubating 10° amoebae with 107 RBC for 20 min at 37°C. The histogram shows relative mean optical density *+s.d of three
independent experiments. (C-E) Nter (C), WT HM1:IMSS (D) and Cter (E) was visualized during erythrophagocytosis by immunolocalization in cells
expressing Nter-GFP (C) or Cter-GFP (E) at 30 ug/ml G418. EhCaBP1 domains are stained with anti-GFP antibody (green) and phalloidin (red) and
viewed using CSLM. Full length EhCaBP1 (D) is stained with a polyclonal antibody against EnCaBP1. Arrows indicate position of some of the RBCs.
Scale bars represents 20 um.

doi:10.1371/journal.pone.0005269.9005

bic pocket formed at the interface between EF1 and EF2 in the with Ile 8, Phe 24, Val 21 and Val25 residues of EF hand motif 1 of
assembled domain is bound to Phe (Figure 6B) with good electron one molecule and Tyr 61, Phe 60, Phe 57, Ile 40 and Leu 37 residues
density (Figure 6C). The Phe forms several hydrophobic interactions of EF hand motif 2 of another molecule (Figure 6C).
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Figure 6. Structural Characterization of EhCaBP1 bound to Phenylalanine molecule. (A)Structure of trimeric EhCaBP1 showing the
phenylalanine molecule bound in the hydrophobic pocket formed by the assembled domain. Three molecules interact with each other by head-tail
manner forming an assembled domain at the interface. (B) Close view of assembled domain showing phenylalanine in the hydrophobic pocket
surrounded by several hydrophobic residues. (C) 2Fo-Fc electron density map of phenylalanine at 2c level. (D) The N-terminal domain of CaM-
peptide complex is superposed on the assembled domain of EhCaBP1-phenylalanine complex. The hydrophobic hankering residue of the peptide in
CaM-peptide complex is bound to similar location as Phe in the assembled domain of EF1 of one molecule (hot pink) and EF2 of neighboring

molecule (deep teal).
doi:10.1371/journal.pone.0005269.9g006

The Phe-bound assembled domain was superimposed on the N-
terminal domain of CaM, bound to hydrophobic IQ) motif of
cardiac Ca®" channel [13] (Figure 6D). Both structures superim-
posed very well with an RMS deviation of 1.23 A, The
hydrophobic residue Phe of the peptide (bound to CaM N-
terminal domain) and Phe bound to EhCaBP1 assembled domain
are located at similar regions. Both ligands bound their targets at
their respective hydrophobic pockets.

The distance between the two assembled domains is approx-
imately the same as the N and C-terminal domains of CaM. But
the assembled domain can not change its structure after binding to
target as CaM wraps around its target. This rigidity in the trimeric
structure may be responsible for differential recognition of the
targets.

@ PLoS ONE | www.plosone.org

Discussion

Ca”" signaling plays an important role in amoebic pathogenesis.
Ca”" signal is perceived by a set of proteins known as calcium
binding proteins. The £E. fhistolytica genome encodes a large
repertoire of such CaBPs. One of them, EhCaBPl, has been
characterized in our laboratory and shown to be essential for the
parasite growth [6]. High resolution crystal structure showed an
unusual arrangement, with three molecules of EhCaBP1 interact-
ing in a head to tail manner to form a trimer [10]. This
arrangement allows the N-terminal EF-hand motif of one
molecule to interact with that of an adjacent molecule to form
two EF-hand domains, similar to that seen in CaM and TnC. The
data was intriguing and prompted us to carry out structure-
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function studies of the individual domains of EhCaBP1. The
results presented here clearly shows that the N-terminal half of this
protein is capable of carrying out some of the functions of the full-
length protein, such as localization in phagocytic cups along with
actin and activation of endogenous kinase in a Ca?" dependent
manner. The observation indicating absence of dominant negative
phenotype on over-expression, also supports the view that the N-
terminal half of the protein is capable of carrying out some
functions of the full molecule. This may be due to expressed N-
terminal domains forming trimeric complexes with each other as
well as endogenous N-terminal domains of EhCaBP1 molecules.
However, not all functions can be carried out by the N-terminal
half. For example, it could not bind G-actin. The differential
behavior suggests that the two halves of the molecule have
different functions. The behavior of Cter cells can also be due to
alteration in the property of Cter due to its fusion with GFP, the
latter being much larger than the former.

It has been demonstrated that both domains of EhCaBP1 have
distinct folding features [14,15]. This is similar to TnC and CaM
where N and C-terminal domains were found to be structurally
independent and likely to bind different targets [16-18]. TnC
interacts with only two proteins, troponin I and troponin T. The
N-terminal domain functions as the Ca*"-specific regulatory
switch, while the C-terminal domain plays mainly the structure
stabilizing role [19,20]. On the other hand, domain independence
is the key to high level of versatility of CaM [21]. A genetic screen
in Paramecium has also revealed that the domains of CaM have
separable physiological roles [22]. EhCaBP1 is also thought to be
involved in multiple pathways as it binds a variety of target
proteins observed by immunoprecipitation and mass-spectromet-
ric studies [5, unpublished observation]. It is likely that these
domains function independently contributing to the diversity of
functions carried out by EhCaBP1.

Our previous biochemical studies have clearly shown that the
calcium binding affinity of the EF3 and EF4 are much higher than
that of the EF1 and EF2 [23]. This strongly indicates that only
EF1 and EF2 are affected by the Ca" concentration fluctuations
around it and C-terminal domain (EF3 and EF4) should be rigid
and may not be influenced by Ca®" concentration changes. This is
also evident from the results obtained from crystallization studies
presented here that the assembled domain in trimer bind to the
hydrophobic amino acid revealing the mode of target binding.
Therefore the evolution of the CaBPs, such as EhCaBP1 may have
been designed to offer both functional and structural diversity
suitable for a pathogen to modulate host-pathogen relationship.

Materials and Methods

Strains and culture conditions

Entamoeba histolytica strain HM1:IMSS clone 6 was maintained
and grown in TYI-S-33 medium containing 125 pl of 250 U ml ™
Benzyl Penicillin and 0.25 mg ml™" Streptomycin per 100 ml of
medium. Neomycin (Sigma) was added at 10 pg ml-1 for
maintaining transgenic cell lines.

Escherichia coli strains BL21 (DE3) and C 41 were maintained in
Luria Broth containing 100 pg ml~! ampicillin,

Cloning of EhCaBP1 domains in pET 3(c) expression
vector

The gene fragments corresponding to the two domains (amino
and carboxy) of EhCaBP1 protein were cloned in the bacterial
expression vector, pET 3(c). The construct having EhCaBP1 gene
in pET 3(c) vector was used as a template and a stop codon was
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mtroduced by site directed mutagenesis at position 199. The
primers used for the mutation were

Primer NF: 5' CTATGGATCAATTCAATAACAA-
GATCTTTCTGATG 3’ and

Primer NR: 5° CATCAGAAAGATCTTGTTATT-
GAATTGATCCATAG 3'.

The carboxy terminus of EhCaBP1 was amplified using a pair
of primers designed to amplify the region 199-405 of the gene.
Nde I and BamH T sites were introduced in forward and reverse
primer respectively. The primers used were:

Primer CF: 5’ GCGCATATGGGACAA-
GATCTTTCTGATG 3’ and

Primer CR: 5" GGGGGATCCGAGTGAAAACT-
CAAGG 3'.

The constructs were confirmed by nucleotide sequencing. The
constructs carrying the amino and carboxy terminus of EhCaBP1
gene in the bacterial expression vector were further transformed in
E. coli strains C41 or BL21 (DE3) to produce recombinant Nter or
Citer protein respectively.

Generation of cells over-expressing GFP-tagged EhCaBP1
domains

EhCaBP1 cloned in pEhNEO/GEFP vector [9] was used as a
template and a stop codon was introduced at 199 bp position by
site directed mutagenesis using the primers NF and NR. In order
to clone the Cter domain of EhCaBP1 in pEhNEO/GFP vector,
the region was amplified using primers:

Primer F: 5 GCGGGATCCGGACAA-
GATCTTTCTGATG 3’ and

Primer R: 5° GGGGGATCCGAGTGAAAACT-
CAAGG 3'.

Both the constructs were confirmed by nucleotide sequencing.
These constructs or the one carrying the WT gene were
transfected in E. fustolytica trophozoites by electroporation as
described earlier [8].

Expression and purification of recombinant EhCaBP1
domains from E. coli

The purification of the recombinant EhCaBP1 domains was
done as described earlier for WI' EhCaBP1 [4] except for a few
changes. In case of Cter protein, > mM CaCl, was used in elution
buffer in place of 10 mM CaCl,.

For the growth of recombinant Nter protein, Terrific Broth was
used instead of Luria Broth due to very less induction in the latter.
Briefly, 2% of the primary culture (overnight grown culture) was
used as an inoculum for the secondary culture. The culture was
induced with 1 mM IPTG for 5-6 h after it attains an O.D of 1
(normally takes 34 h) at 37°C. The purification was further
followed as done for WT' EhCaBP1.

The purified proteins were finally dialyzed against MilliQ) and
concentrated using Amicon with a cut off of 3 kDa.

Circular dichroism spectroscopy

CD measurements were performed using a Jasco-815 spectro-
polarimeter. Each spectrum was measured in the far-UV region
(200-260 nm) and was an average of 5 scans. Scans were done at a
protein concentration of 33 UM in the buffer containing 50 mM
Tris.Cl, pH 7.0 and 100 mM NaCl using a cuvette of path length
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1.0 cm in presence of 5 mM CaCl,. Percentage helical content
was calculated using the method described by Barrow et al. [24].

Radioactive *>Ca overlay assay

The ability of WT or EhCaBP1 domains to bind Ca®" was
tested by radioactive Ca®" overlay assay. Briefly, 2 ug of purified
protein was run on a SDS-PAGE and blotted to a PVDF or NC
membrane. The blot was first washed with 10 mM Imidazole and
2 mM EGTA for 10 min, followed by two washes with chelex
treated Milli Q each for 5 min. It was further incubated in Buffer
D (10 mM Imidazole pH 6.8, 60 mM KCI, 5 mM MgCl,) for 15—
20 min at RT and then 1 pCi [**Ca] was added to 15 ml of Buffer
D and the incubation was continued for another 1 h with constant
slow shaking. The blot was then given a brief and gentle wash with
chelex treated Milli Q) for 2 min, followed by wash with 50%
ethanol for 30 s. The blot was finally air dried and exposed for
autoradiography.

In vitro kinase assay

Total Entamoeba cell extract was prepared and the activity of
EhCaBPl-dependent kinases was estimated as described previ-
ously [25]. Varying amounts of either full length or EhCaBP1
domains was added. The gels were dried and exposed to an X-ray
film or an imaging plate and densitometry was done.

Alternately, the reactions were by adding 10% TCA and total
protein precipitation carried out at 4°C for 45 min. The reaction
mixture was spotted onto a GF/C paper and washed with 5%
TCA (10 ml) followed by wash with ethanol (5 ml). The filter was
then air dried and counts were taken in Cocktail O.

Phagocytosis of RBC by trophozoites

RBC uptake was monitored spectrophotometrically by estimat-
ing the amount of heme present in the trophozoites as described
carlier [8]. Samples were measured against a formic acid blank at
a wavelength of 400 nm.

Solid phase assay

The solid phase assay was used to monitor the binding of
EhCaBP1 domains to G-actin as described earlier [8]. Briefly, the
wells of a 96-well plate were coated with 5 UM G-actin in PBS
overnight at 4°C and were blocked with 3% BSA in PBS for an
additional 24 h. After washing with PBS-T, EhCaBP1 (positive
control) and target proteins (EhCaBP1 domains) were added to the
wells in duplicates at varying concentrations. Bound protein was
detected with anti-EhCaBP1 antibody followed by HRPO-linked
anti-rabbit IgG using the colorimetric substrate TMB (Sigma).
The reaction was stopped with 2 N HySO,4 and absorbance was
monitored at 405 nm with a microplate reader (Bio-Rad, USA).

Immunofluorescence staining

E. histolytica cells were stained using different antibodies as
described earlier [9]. Antibody dilutions used were: 1:500,
Phalloidin (Sigma, 1 mg/ml in methanol); Anti-GFP; 1:200,
Anti-Rabbit Alexa 488; 1:300, Anti-Rabbit Alexa Cy3. The
preparations were mounted on a glass-slide using DABCO (1,4-
diazbicyclo(2,2,2)octane, SIGMA), 10 mg/ml in 80% glycerol.
Sealing of the cover-slip edges was done with nail-paint to avoid

drying.

Confocal laser scanning microscopy

Fluorescent samples were examined on LSM 510 confocal laser
scanning microscope (CSLM) (Zeiss, Germany) equipped with a
63 x objective. Rhodamine-labeled samples were visualized after
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excitation at 543 nm using He/Ne Laser and Alexa-green labeled
samples after excitation at 488 nm using Argon Laser. Pictures
were processed using offline version of LSM 510 software, Zeiss.

Western analysis

For immunodetection, samples were separated on a 12% SDS-
PAGE. The gel was then transferred to a nitrocellulose membrane
by semidry method and processed using standard methods. The
antigens were detected with polyclonal anti-GFP (1:2000,
Molecular probes), polyclonal anti-EhCaBP1 (1:3000) and with
anti-Rabbit HRPO (1:10 000, Amersham). ECL reagents were
used for visualization (Amersham).

Crystallization of EhCaBP1-Phe complex

The purified protein was concentrated to 30 mg/ml in 50 mM
Tris pH 7.5 buffer containing 10 mM CaCl, and 2 mM
phenylalanine. This mixture was kept for crystallization similar
to native crystallization condition. The complex was crystallized in
hanging drops by mixing equal volumes (3 to 5 pl) of the complex
with the precipitant solution containing 63 to 65% MPD, 5 mM
CaCl, and 50 mM Acetate buffer pH 4. Rod shaped crystals
(400x75%75 UM?) of EnCaBP1-Phe appeared at 16°C approx-
imately after one week.

Table 1. Data-collection and refinement statistics.
Data Set EhCaBP1-Phenylalanine
Crystallographic data

X-ray Source Microstar

Wave length 1.5418

Space group P65

Unit-cell parameters (A)

a=95.201, b=95.201, c=64.287

Resolution range (A) 50.0 - 2.8

Rsym (%) 6.1(7.33)
Completeness (%) 97.9(86.1)

Total No. of observations 15536

No. of unique observations 8289

Redundancy 8.9 (5.4)

Average I/s (1) 51.92 (2.07)

Crystal mosaicity (°) 0.5

Refinement

Resolution (A) 50 - 2.8

R factor (%) 25.7 (26.4)

Free _R factor (%) 28.5 (28.8)

Mean B factor 93.4

Number of atoms

Protein/Ca/water /Phe/Acetate 1024/4/42/2/2

RMS deviations

Bonds (A) 0.009

Bond angles (%) 1.5

Dihedrals angles (°) 18.8

Improper angles (°) 0.73

Cross validated error 0.50

Values in parentheses are for the last resolution shell. Free R factor was
calculated with a subset of 7.5% randomly selected reflections.
doi:10.1371/journal.pone.0005269.t001

April 2009 | Volume 4 | Issue 4 | 5269



Data collection and processing

The X-ray diffraction experiments were done at 100 K with
EhCaBP1-Phe crystals mounted on cryoloops in mother liquor
and flash frozen in liquid nitrogen. These crystals diffracted to
2.9 A with in-house rotating anode generator (Advanced Instru-
mentation Facility, JNU). They belong to space group P6s
(Table 1) with two molecules per asymmetric unit similar to
native structure [10]. The data sets were indexed, processed and
scaled with Auto-mar program.

Structure determination

The structure was solved by molecular replacement with
Phaser program [26] using the native structure of EhCaBP1
(2NXQ) as the scarch model. The structure was refined to 2.4 A
resolution by iterative model building by the COOT graphics
package [27] combined with conjugate-gradient minimization
with bulk solvent correction in CNS [28]. The structure looked
similar to native EhCaBP1 structure expect large Fo-Fc density
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at the interface of EF1 and EF2 of the assembled domain to
accommodate Phenylalanine. The final model refined well with
good electron density and bound Phe (Figure 6D) and
crystallographic Ry, cor and Ry (Table 1) values that are within
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resolution [29]. Despite acceptable refinement statistics, electron
density for the C-terminal half of the molecule was absent similar
to the native structure. The water molecules, acetate molecules
and phenylalanine molecules were added manually where Fo-Fc
electron density at =3.0 o contour level and justified by
hydrogen bonds or hydrophobic interactions in the final stages of
refinement (Table 1).
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