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The (Raman) spin-lattice relaxation rate 77 of a para-
magnetic ion in proteins probes the vibrational dynamics
of these systems. The cross-links between the various
parts of the polypeptide chain play a crucial role in the
dynamics. All theoretical attempts to explain the
temperature dependence of T; as a consequence of the
existence of short-range cross-links in the self-avoiding
walk models of linear polymers have had, at best, very
limited success. However, using a standard theorefical
technique, Elber and Karplus computed T; for several
proteins within the effective-medium approximation; the
temperature dependence of 7, was found to be in good
agreement with the corresponding experimental observa-
tion.

P

‘Some of us should venture to embark on a synthesis of facts
and theories, albeit with second-hand and incomplete
knowledge of some of them, and at the risk of making fools of
ourselves. So much for my apology.

-Erwin Schrodinger in What is Life?

ProTEINS are polymeric macromolecules with very large
molecular mass. For example, a molecule of haemo-
globin 1s much heavier than, say, a water molecule; the
mass of a water molecule is only 18 daltons whereas
that of a haemoglobin molecule 15 64,650 daltons. A
water molecule is approximately 4A in diameter
whereas the size of a molecule of myoglobin (the muscle
variety of haemoglobin) is 44 A x 44 A x 254

All proteins in living organisms are made up of only
twenty different amino acids. When two amino acids
combine to form a peptide bond, a molecule of water is
removed so that the carbon atom of the carboxylic acid
group on one amino acid 1s connected directly to the
nitrogen atom of the amine group on the next amino
acid. Typically, 100 to 500 amino acids hink in this
manner to form a polypeptide chain of amino-acid
residues. The order of the amino acid residues along the
polypeptide chain or chains of a protein is called the
primary structure of the protein.

A polypeptide chain forms secondary structures, e.g.
the so-called a-helix or f§-sheet, in appropriate environ-
ments. Hydrogen bonds, which are weak electrostatic
chemical bonds, are important in the formation of
secondary structure. Hydrogen bonds and disulphide
bridges, which are covalent bonds, contribute to the
tertiary structure of proteins, in which loops of the
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polypeptide chain are cross-linked. Hydrogen bonds are
more relevant for the discussion in this review. A single
hydrogen bond is very weak compared to the main-
chain carbon-carbon single bond; it 1s these weak
hydrogen bonds that are responsible for the extreme
flexibility of the protein chains.

In this review 1 shall consider the wibrational
dynamics of only two classes of proteins: (1) haem
proteins (2.g. myoglobin), and (1) 1iron-sulphur proteins
(c.g. ferredoxin). Haemoglobin and myoglobin play
crucial roles in the respiratory system of vertebrates;
haemoglobin acts as the ‘oxygen carrier’ and myoglobin
is the ‘oxygen container’’. Ferredoxins are part of

protein complexes that transfer electrons in photo-
synthesis.

Theoretical physicist’s model of a linear polymer

As stated earlier, proteins are polymers formed by the
chemical bonding of amino acids, For simplicity, let us
assume that all the monomers-—the amino acids—are
identical. If each monomer binds chemically with just
two other monomers at its two ends, the resulting
polymer 15 called a linear polymer. Strictly speaking,
proteins arc quasilinear polymers because of weak
cross-links between various parts of the polypeptide
chain.

[f one is not interested in phenomena that take place
at the length scales of individual monomers, a linear
polymer in a d-dimensional space 1s usually described
by a serpentine continuous curve c(g) parametrized by
the contour vanable ¢ (Figure la). This 1s a continuum
description. In the absence of intermonomer interaction
the discretized version of this model would look like a
random waik (RW) on a d-dimensional lattice where
the orientation of each of the steps of the walk 15 an
independent random variable. However, intermonomer
interaction leads to an effective repulsive core around
each monomer and, consequently, the chain cannot
cross itself. This is called the excluded-volume effect*. In
the corresponding discrete version the excluded-volume
effect 1s taken into account by imposing the constraint
that the random-walker cannot visit a lattice site more
than once. Such walks are called self-avoiding walks
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Figure 1. 2 A continuum model of linear polymers. b, A discrete
model of linear polymers {a self-avoiding walk).

(SAW) (Figure 10). Thus SAW is a non-Markovian
stochastic process whereas RW 1s Markovian.

The end-to-end distance R of an N-step SAW
depends on the configuration. Very simple arguments
(the so-called Flory arguments) lead to the following
relation belween the mean-square end-to-end distance
(R*> and the number of steps ¥

(R*)~N*, (1)
where

p=3/Ad~+2) in d dimension (d =4) {2)

in the Flory approximation. The Flory value (2) for v 15
known to be exact in d =1 and 4 =2, and very close to
the most precise numerical estimate 1o d =3,

Note that, for RW, v=1/2 for all d. This implies that
the repulsive sell-avoiuding constraint leads to “swelhng’
of the chain compared to a chain without the seli-
avoiding constraint in all 4 <4. Physically, equations (1)
and (2) describe a fundamenial geometric property of a
linear polymer, namely the asymptotic dependence of
the mean-square end-to-end distance on the ‘molecular
weight’ N,

Fractal dimension and walk dimension

The relation (1) has been used quite extensively in
literature over the last three decades. However, very
recently, it has become [ashionable to express relations
(1) and (2) as

(R* ~ N4, (3)
where

df=U—1
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is called the fractal dimension (see Mandelbrot® for an
elementary mtroduction).

To briefly explain the concepts of fractals and fractal
dimension: Consider a box containing apples, the total
mass of the apples being M. Suppose the storage space
in the box 1s increased by increasing the length of each
edge from L to 2L. The box will now carry a mass 8M
of apples, 1.e.

M@2L)=8M(L)=2"M(L).
If the box 1s d-dimensional, then one would expect
MEL)=M(L).

Setting ¢=1/L, we have M~ L‘ However, fractal
objects are somewhat unconventional, because, for
fractals,

M ~ L4» where d; <d.

Usually, fractal dimensionality of a system without
translational symmetry is a consequence of the dilation
symmetry; a small part of the system, when magnified,
looks similar to the original system. When observed
through a ‘microscope’, if the system looks exactly
identical to the original one, irrespective of the
magnification factor, the system 1s called an exact
fractal. On the other hand, I the omnginal and the
magnified systems look similar only on the average the
system 1s called a statistical fractal.

In the hght of the definition of fractal dimension.
equation (3) can be interpreted physically as follows:
On the average, there are N monomers within a volume
R where d;<d. In the Flory approximation,

di=(d +2)/3 ford<4 (4)

Model linear polymers are statistical fractals; large
toops consist of smalier loops, and so on; there are
toops on all length scales. However, so far as real lincar
polymers are concerned, there is an upper cutoffl and a
lower cutoff of length scales; the system is not a fractal
outside these cutoffs.

Next, let us explore the relation between the mean-
square end-to-end distance of a t-step RW on a fractal.
Conventionally, this relation is expressed as

(R*) ~ 17, (3)

where 4,15 called the walk dimension. It is worth
mentioning here that for RWs on Euclidean lattices
d,, =2 for all space dimensionalities d.

ESR relaxation rate of iron in protein chains

Stapleton et al.* measured the (Raman) spin-lattice
relaxation rate of iron in several proteins at low
temperatures; the samples were in the form of frozen
solutions. In the regimes of temperature relevant for
these experiments, the relaxation rate 1/7, was argued
to be (see Appendix A)
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(1/T,)~T" with n=3+2D, (6)

provided the vibrational density of states (VDOS) of the
proteins is given by

Q(w)~w? L, (7)

It was observed that n~6.3 for haem protens and
n~5.67 for ferredoxin. These experimental data imply
D =5/3 for haem proteins and D =4/3 for ferredoxin.
Since, from (3) and (4), d;=5/3 and 4/3 1n d=3 and 2
respectively for model linear polymers, it 1s tempting to
identify D as the fractal dimenston 4; of the proteins. In
other words, the experimental data indicate that
(1/T )~ T2,

However, one may raise a serious objection against
the identification of D with d;, because the secondary
structure of proteins in frozen solution need not be
represented by the simple SAW-like Flory model of
hnear polymers. Besides, the Flory expressions (3) and
(4) are strictly valid for an isolated polymer chain. For
a convincing dentification, the fractal dimension of the
sample proteins used in the ESR experiments must be
measured by some other independent experimental
technique. Such experiments have also been carried out.
The coordinates of the xz-carbons in the polypeptide
chain can be obtained from the X-ray diffraction data.
Therefore, the fractal dimension d;of a protein chain can
be estimated using the defimition (3). Following this
method, Stapleton et al* and Wagner et al.° demon-
strated that d4;~5/3 for all the haem proteins they
studied, this value 15 in excellent agreement with the
corresponding Flory value 1 d=3. Simlarly, for
ferredoxin, they observed that 4;~1.37, very close to
the Flory value in d =2, Does this observation imply
that the cross-links are massless, so that the proteins
are effectively linear polymers? Or, is the agreement
between the experimental values of d; and the Flory
values for linear polymers merely accidental? (See
Stapleton® for a summary of the experimental results.)

Since frozen solutions of the proteins were used 1n
the ESR experiment one would like to know the effect
of the solvents on the observed results. Colvin and
Stapleton’ repeated the ESR experiment with several
different solvent conditions and demonstrated that the
number n in relation (6) 1s weakly solvent-dependent.

Theoretical interpretation of the experimental
observation

The most general theoretical approach to protein
dynamcs, in principle, would be to construct the so-
called dynamical matrix from the equations of motion
of the monomers (or amino-acid residues) and, then, to
compute the distribution of the eigenvalues of this
matrix. Unfortunately, such direct calculation of Q(w)
is, In practice, difficuit to carry out, because, unlike
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crystalline solids, proteins lack long-range order. Of
course, some of the techniques developed to compute
((w) of other disordered systems can be used to
compute Q(w) of proteins. Nevertheless, 1t requires a lot
of hard work to compute Q(w) for just a single protein
by such a direct, albeit approximate, method.

On the other hand, as shown in Appendix B, often
the VDOS can be computed without diagonalizing the
dynamical matrix. This approach has been used quite
successfully to compute the VDOS of fractal objects. In
this review 1 shall first discuss these indirect fractal-
theoretic approaches i detail. Then, after pointing out
the shortcomings of these approaches, I shall describe
the approxtmate method {ollowed 1n the direct
approach for computing 2(w).

A fractal description of the vibrational dynamics of
protems

Motivated by the experimental work of Stapleton er al.*
Alexander and Orbach® (AQ} developed a simple, albeit
indirect, formalism for calculating the w-dependence of
(Q(w} utihizing the formal simulanties between the
phenomena of vibration and RW (see Appendix B). AO
showed that (see Appendix C [or details) the VDOS of
fractals s given by

Cw) ~wh !, (8)
where
d,=2dy/d, (9

18 called the spectral {or, fracton) dimension.

Let us now calculate 4, of lincar polymers following
the arguments of AQ. Suppose the random-walkers on
a polymer chain can hop only to the nearest-neighbours
along the chain. Then, if N(f} 15 the number of
monomers traversed in time ¢ and R{f) is the end-to-
end Euclidean distance of the walk,

NA{t)~1, (10}
and

N ~ R, (11)
Equations (10) and (11) together imply

(RE(e)) ~ 1!/ (12)

Comparing equation (12) with the definition (5) of the
walk dimension 4, we get

dw=2df [13)

for the AO model of diffusion on linear polymers. In the
latter model, therefore,

d;=1#d. (14)
Thus, the AO model predicts
(1/Ty )~ T35 2, (15)
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which does not agree with the corresponding experi-
mental result (6) because d;7 d; in this model.
Alexander and Orbach® concluded that ‘it is, in fact,
hard to think of a situation where the vibration
spectrum of a polymer would be adequately described
by our free fracton model’. They conjectured that the

solvent plays a dominant role.

Possible sources of error inadequacies in the fractal
description of protein dynamics

(i} The simple mechanism of diffusion only along the
chain assumed by AQ for calculating 4, might be an
oversimplified physical description of the diffusion
equations that map onto the equations of vibration of
the proteins under the transformation which led to

equation (8).

(ii) The polymer-solvent interaction, which has been
ignored in the theoretical analysis above, may play a
crucial role, as indicated by expertments and as already
conjectured by AO (see also Yang®). However, to my
knowledge, so far no attempt has been made to take
into account the protein—solvent interaction in order to

explain the ESR data.

(ii) The approximations made in deriving expression (6)
for 1/T, may not be justifiable; in that case the fact that
D =d; may be an accidental coincidence without any

underlying physical reason.

Alternative mechanisms of diffusion on polymer chains,
Calculation of d,

Helman et al.'? suggested that the AO model of diffusion
on polymer chains is too simple to account for the
experimental observation. They generalizced the AO
model, taking into account the existence of cross-links.
One way ol incorporating cross-links i this model (note
that since all the monomers are assumed to be identical
in the SAW model of polymers this cross-linking
procedure 1s not unique) 1s as fotlows: those sites on a
SAW that are not nearest-neighbours along the SAW
but are nearest-neighbours on the Euclidean lattice can
be assumed to be connected by massless cross-hnks
(Figure 2a). Note that, by construction, such cross-links
are short-ranged. I shall refer to such short-range cross-
links as ‘bridges’. Diffusion on the polymer chamns can
now be modelled by RWs on SAWs, This phenomenon
1s somewhat similar to the phenomenon of RWs on
other fractals (see Havlin and Ben-Avraham''for a
review). Helman et al.*® conjectured that if the density of
such bnidges 1s large enough, a random-walker would
‘see’ an eflectively Euclidean lattice for which 4, =2.
Moreover, since the bridges are assumed to be
effectively massless, dr remains unaffected by the
existence of such cross-links, and hence one would
expect d,=d;. If this scenario captured the essential
physics of the problem, theory would have reconciled
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Figure 2. 2 A self-avoiding walk (solid line) with bridges {daghed
hnes). Random walk on the structure 15 like Levy flight in one
dimension where the walker cccasionally hops over a tong distance.
b, A one-dimenstonal lattice (solid line) with occasional long-range
hops (dashed lines).

with experimental results. But, as we shall see, Nature
chose to behave quite differently!

In order to test the validity of the conjecture of
Helman et al.'° (the phenomenon of diffusion on SAWs
with bridges), one must first appreciate the crucial
differences between RW on SAWs with bridges and that
without bridges. Consider a typical configuration of a
segment of a polymer chain (Figurc 2a). The sites
labelled 2 and 5, for example, are not adjacent sites
along the cham but are certainly ncarest-neighbours on
the square lattice in which the SAW has been embedded.
The bond between the sites 2 and 5 constitutes a bridge.
If hops of a random-walker across such bridges arc not
allowed the RW would be effectively one-dimensional,
just as in the AQ model. On the other hand, if hops of
the random-walker across the bridges are also allowed
this phenomenon would be somewhat similar to Levy
flights in one-dimensional space (sec Montroll and
Schlesinger!? for an introduction to Levy flights). The
analogy between RWs on SAWSs with local bridges and
one-dimensional Levy flights becomes clear by stretch-
ing 2 SAW to a straight-line configuration (Figure 2b);
hops across the bridges 1n Figure 2a correspond fo
long-range hops in ¥igure 2b. This analogy between the
RWs on SAWs with bridges and Levy flights was first
pointed out by Chowdhury and Chakrabarti!®. Com-
puter simulation (see Kremer and Binder'* for the
techniques of simulating SAWs) by two independent
groups (Chowdhury and Chakrabarti*®, Yang et al*?)
convincingly refuted the conjecture of Helman et al.®
Moreover, despite some earlier claims!” that the RWs
on SAWs with bridges belong to a new universality
class, more recent calculations'®™'® using longer chains
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strongly suggest that the latter belong to the same
universality class as that without bridges, ie. d, =24,
In other words, contrary to the conjecture of Helman
et al'® inclusion of bridges in the AO model is
inadequate to reconcile theory with experiment. Results
of small-cell real-space renormalization’® 2°, although
not very reliable, seem to be consistent with the
computer simulation data.

Bouchaud and Georges*' made another attempt to
rescue the fractal approach. They assumed that the
model considered by, for example, Chowdhury and
Chakrabarti'? captures the essential physical aspects of
the real proten systems but the theoretical treatments
carried out by the latter authors were erroneous. The
methodology followed by Bouchaud and Georges?® is
quite different from all the earlier ones. Suppose P(l) is
the probability of a loop of size [ joining two monomers
across a bridge. We know (des Cloijeaux??, Duplant-
ier>?) that for large |,

P({y~17* (u=43/16 and 2.18 in d=2 and
3 respectively). (16)

As a first approximation, let us suppose that on each
monomer the walker can choose the size of his jump
according to the probability distribution P(I). Let s be
the length of the walk measured along the chain. Then,

where d, =2/(u—1). (17)

In the next approximation let us take into account the
fact that the configuration of the polymer is quenched,
on each monomer the lengths of the possible jumps are
fixed for a given configuration of the chain. A diffusion
law of the form s® ~t% means that each bond is crossed
t/s times (i.e. t!74%/2 times) and that s different bonds
(i.e. t4/2 different bonds) are probed. Therefore, in the
second approximation,

14/2

s~[rl=d2]E Y, (18)
i=1

s~ tds

For P(l}~17# we must have
s~ (£~ ds2y112 (tdsfz)lfm—n:

1.€. )

by dy
REATEN (19)
At this point we demand that the expressionsw(lﬂ) and

(19) for s must be consistent with each other. Imposing
this self-consistency condition, we get

ds=2(p—1)/(3u—73). (20)

Using the known values of u in d=2 and 3, we get
d;=1.19 in d=2 and d,=1.69 in d =173 respectively?’.
Note that in this treatment d; has been expressed in
terms of a new exponent y, which charactenzes the loop
statistics of linear polymers. Unfortunately, the quantity
P(l) used by these authors is somewhat different from
the quantity calculated by des Clojjeaux** and hence

52~ t
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the applicability of the value of p computed by the
latter authors to the work of Bouchaud and Georges
remains questionable. Moreover, although the com-
puted value of dgis 1n very good agreement with the
experimentally observed value of D for haem proteins
the reason for lower D for ferredoxin remains to be
explained.

One may argue that better agreement with experi-
mental data is expected if the range of the cross-links is
longer than that of the bridges considered so far®*.
However, there is no unique prescription for inserting
long-range cross-links tn the SAW model.

Finally, it is worth mentioning that the models
discussed in this section do not take into account the
interaction of the polymer chains with the solvent.

Thus I conciude that at this point we are unable to
find any satisfactory physical mechanism that could
alter d, (and 4;) so as to reconcile theory with
experiment without taking imto account the effects of
the solvent.

Questionable validity of expression (6) for the
relaxation rate

So far we have assumed that the experimental data can
be described quite satisfactorily by the approximate
expression (6) for 1/7T,. Fitting the experimental data
with this expression we obtained D = d;rather than the
theoretically expected value D = d,, thereby getting into
a puzzling situation. [s it possible that the whole puzzle
1s an artefact of using an incorrect expression for 1/7,
(Liu%°)? Liu did not study the vibrational spectrum of
polymers. He calculated the normal modes of vibration
of an exact fractal, the Sierpinski gasket. He argued
that, since the spin-lattice couphng matrix element 1s
proportional to the local strain of the magnetic atom,
1/T, should also be site-dependent. He pointed out that
Stapleton et al* derived expression (6) assuming the
spin-latiice coupling matnx e¢lements to be site-
independent. For the Sierpinski gasket no simple power
law dependence of the average 1/T, on T was observed
over the entire temperature range. Liu conjectured that
these results are consequences of the fact that the fractal
system under consideration 15 not translationally
invariant and, therefore, should be applicable also to the
proteins. However, the vibrational properties of similar
fractal structures need not be similar.

‘Gentle warning on fractal fashions’

So far I have described attempts to infer the vibrational
properties of proteins indirectly from the properties of
RW on such structures by utilizing the formal
simiarities between those two problems, as explained in
appendices B and C. But, as summarized in the
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preceding sections, all such indirect approaches of

estimating the VDOS of proteins have failed.
K rumhansl®® noted that ‘Orbach and others have

developed theories of vibrational spectra on fractals,
proposing that anomalous vibrational-state densities
occur in frequency regimes determined by the fractal
structure’. But he warned that ‘the inverse conclusion-—
anomalous vibrational spectra imply [ractal structure—
cannot generally be drawn on either experimental or
theoretical grounds’. He drew attention to the well-
known old results for many nonfractal systems to
emphasize that such anomalous vibrational spectra can
arise ‘as a result of anmisotropy and 1mportant
noncentral forces’.

Subsequently, John Maddox?’ wrote: ‘Fractal struc-
tures are understandably one of the captivating fashions
of our times.... But fashions that are too pervasive
can also be misleading, and require occasional
correction. . .. J. A. Krumhansl, ..., m the gentlest
manner, warns people against the tendency to look for
fractal explanations everywhere’,

I have stated in an earlier section that there 1s
considerable anisotropy in proteins; hydrogen bonds
forming the cross-licks are much weaker than the
covalent bonds that form the prmary structure.
Moreover, there are important noncentral forces that
give rise to the secondary structure?®. The anomalous
T-dependence of T is not necessarily a ‘geometrical
effect” of the fractal structure of proteins; it could be
a ‘dynamical effect’ of the anisotropy of the interactions.

Direct computation of the VDOS of proteins

Elber and Karplus®”? computed the VDOS of several
proteins from the dynamical matrix using the effective-
medium approximation (EMA), In EMA one replaces
the random system by an effective ordered medium
such that the Green’s function for the latter 1s equal to
the configuration-averaged Green’s function of the
original system.

In the Elber~Karplus model each amino acid has the
possibility of strong interactions with four neighbours;
two of the neighbours are bonded to it along the chain
whereas bonding with the two other neighbours occurs
through 1ts hydrogen-bonding groups (e.g. CQO and
NH). If all of these bonds could be formed by each of
the amino acids the protein would behave as an
effectively two-dimensional object (d;=2). However, in
the proteins under consideration all the possible
connectivity 1s not saturated; the lower connectivity
leads to d;<2. Now one assumes that the protein may
be described by an effectively two-dimensional network
of bonds on the scale of acoustic wavelengths, which is
the reievant length scale for the Raman ESR experi-
ments. Within this EMA the distribution of the random
variables 1s replaced by a single frequency-dependent
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variable. In the Elber-Karplus model the most
convenient frequency-dependent vanable i1s the so-
called Dyson variable, M, "4, .., (X,—X,. )X,
where the subscript labels either the rows or the
cclumns. The vanabies X, are the Laplace transforms
of the dihedral angles and the random vanables 4, ..,
are the force constant matrix elements.

implementing this scheme numerically, Elber and
Karplus?® computed the VDOS for myoglobin and
ferredoxin. Then inserting the DOS thus calculated,
instead of the AQ expression, in the expression for 1/T,
and integrating over w, they showed that, indeed, 1/T,
~ 1770 where D= 1.6 for myoglobin and D =14 for
ferredoxin, in good agreement with the corresponding
expenmental values.

Conclusion

Let me now answer the guestion posed in the title of
this paper. In general, the fractal-theoretic description is
not comphcated. In spite of allegations by a section of
physicists that such descriptions are ‘beautifully compli-
cated’ these approaches have been quite useful in
explaining experimentally observed properties of several
fractals. However, so far as the proteins are concerned,
we must admit that fractal theories could not explain
the experimental observations satisfactorily.

Why does the conjecture of Helman et al.'® fail to
explain the experimental data for proteins? The density
of lony-range cross-links in the secondary structure of
the proteins is not as high as assumed by Helman et al.
The fraction of hydrogen bonds involved in long-range
cross-connection 15 only 14% in myoglobin and 60% in
ferredoxin; the relatively lower value in myoglobin is a
consequence of the formation of a-helix®®. Thus the
failure of the comjecture of Helman et al'® is a
consequence of the secondary structure (conformation)
of the proteins in solution. If this 1s true, one would
naturally expect that bridges would be absent in
denaturated samples so that the experimental data
should be conststent with the AO prediction, viz. d,=1.
This, indeed, has been observed in recent experiments>°.

Chowdhury et al’! computed d, for SAWs with
bridges, assuming different hopping probabilities along
the chain and along the bridges. But it was observed
that d,, =2d; for all the finite ratios of these hopping
probabilities. Using the definition of d, and the AQ
expresston for QQ(w), one would get D=1. Does this
observation contradict the Elber-Karplus theory? Not
at all, because the underlying physical pictures and
methodology are quite different. So far as the model of
Chowdhury et al’' is concerned, the result d, =2d;is
correct. However, the fallure of such models to explain
the ESR data and the success of the Elber-Karplus
model clearly demonstrate that the anomalous
temperature-dependence of T, is a dynamical conse-
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quence of the distribution of the strength of the
interaction between the amino-acid residues, rather
than a geometrical effect.

There is another interesting and, perhaps, more
challenging aspect of protein dynamics that we have
not discussed in this work. Usually, the primary
structure of proteins folds into a globular, three-
dimensional form, called the native form. However, the
conformations of the proteins are not static; these
conformations transform spontaneously due to thermal
fluctuations®. The dynamical effects of the conform-
ational transformations of proteins®* are very similar to
some of the dynamical properties of a class of magnetic
systems called spin glasses®*. The physical reason for
these similarities and the consequences will be explored
in detail in a future publication.

Appendix A

Calculation of the { Raman) spin-laitice relaxation rate

In the Raman process the spin relaxes by absorbing one quantum of
lattice vibration and emitting another. The relaxation rate for the spin
at the ith site 15 given by

(I/Tl)"“‘E[Miiwnjlll Ml(wn’lzwnwn‘f(wn}{l _f[wn']] X
5y — W, -+ g uH), (A1)
where
o0 =[e™—1]72,

Stapleton et al® argued that, assuming w, = w,, equation {1} can be
approximated by

Wirux

/T~ [ Qw)w[ef/{efM—1}2]dw {A.2)
0

where w,, is the upper cutoff of excitation energy. Further, let us
assume for the time being that (see appendices B and C for the
details)

Qiw)~w?™ 1,

where D should be regarded as an adjustable parameter whose value
15 0 be determined by fitting the experimental data with the
corresponding theoretical expression. So, finally, in the low-
temperature regime of interest, (A.2) reduces to the form

(lfiTi)”“THM stm{ﬂfﬂa (A.3)

where F 13 a scaling function of 1ts arguments, T is the temperature,
and 6 =w,_, tkgT is the Debye temperature. In the high-temperature
limit we have

F3+1D(GI|'FT]~ T-[lﬂ—”, {T:’}ﬂ},
whereas 1n the low-temperature limit we have
Fi . ,p{0/T)—constant.

Thus, in the regime of temperature relevant for the Raman ESR
experiment, the relaxation rate is given by

(1/7,)~T" where n=3+2D. (A.4)
Appendix B
Relation between the phenomena of vibrarion and random walk

Consider the problem of RW on a one-dimenstonal lattice where the
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lattice sites are labelled by integers n. The corresponding Master
equation is given by

qu{E]/df= M"J’r:,.ﬂ"-I(PM—-] _Pn}-l- Hfmn+1{Pn+t _Fn}' (B”

where P (i) is the probability that the particle (1.e. the random-
walker) is at the sile labelled » at ume ¢, and W is the rate of
hopping from the ith site 1o one of its nearest-neighbours j. Let us
assume that the (ransfer rates W are independent random
variables, distributed according to a given probability distribution.
Next, let us consider the vibrational motien of 2 one-dimensional
harmonic chain with unit masses and force constants W, , the latter
being assumed to be independent random vartables. The equations of

motion are
{dzpnfdrl]: Wn.n- l{pnﬂl - Pnj+ Wn.ni | [Pn+1 ""P"), [BE}

where P, denotes the displacement of the nth sile. Noite that equation
(B.2) is formally very similar to (B.1) except for the [act that (B.1)
involves the Nirst derivative of P, () whereas (B.2) involves the second
derivative. The initial condition for (B.I) is P,({t=0)=4,, whercas
for {B.2) we need two inttial conditions, viz. P (t=0}=9,, and
(dP,/dt),.o=0. The Laplace fransform of equation {(B.2) can be
obtained by substituting —w by w* in the Laplace-transformed {B.1).

It 15 quite straightforward to show that the “density of states’ {or the
RW problem, defined by (B.1}, is given by (Alexander ot al.”?)

Qiw )= ~(l/m) {Po{—w'}).

In other words, the averaged avtocorrelation
Po(t)~ J Qw'ye™ " dw', (B.3)
{}
which, [or discrete time steps N, 1s given by
PO,N) ~ T Qw'Ye " Ndw', (B.4)
0

Physically, P(0,N) 15 thc probability that the random-walker returns
to the origin aflter N steps i he was there imtially. If P{0, N) 18 known
by some other independent method, then (B4} can be used to
compute Q(w").

Appendix C

Density of vibrational modes of u fractal

The probability P(0, N) on a fractal is inversely proportional to the

total volume Vi) available on the fractal within the diffusion
distance, Le.

P{O, N}~ I/V(N), (C.1)
where

V(N)~ (RHN)YU? (C.2)
and

(RE(N)) ~ N3, (C.3)
Therefore, on a fractal,

P{O,N) ~ N ~ldtdu) (C.4)
Using (C.4) and (B.4) we get

Q(w)dw ~w'dw', (C.3)
where

x ={d¢/d,,) - 1. (C.0)

In order to get the DOS for vibrational modes of the fractal we must
replace —~w' by w? Thus we get (Alexander and Orbach?)

Q(w)dw ~w*d(w?)~ w2+ 1 dy
Le.

Q(w)~ wh 1 (C.7)
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