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1. Introduction™

Let J(F,G) = Jx,y)(F, G) be the jacobian of F = F(X,Y) and G = G(X,Y) with respect
toX and V, i.e., let J(F, G) = FxGy — FyGyx where subscripts denote partial derivatives.
Here, to begin with, F and G are plane curves, ie., polynomials in X and Y over an
algebraically closed ground field k of characteristic zero. More generally, we let F and G
be meromorphic curves, i.e., polynomials in ¥ over the (formal) meromorphic series field
k((X))-

In terms of the the contact structure of F and G, we shall produce a factorization of
J(F,G). Note that if G= _X then J(F,G) = Fy; in this special case, our results
generalize some results of Merle [Me], Delgado [De], and Kuo-Lu [KL] who studied the
situation when F has one (Merle) or two (Delgado) or more (Kuo-Lu) branches. These
authors restricted their attention to the analytic case, i.e., when F is a polynomial in ¥
over the (formal) power series ring k[[X]]. With an eye on the ] acobian conjecture, we are
particularly interested in the meromorphic case.

The main technique we use is the method of Newton polygon, ie., the method of
deformations, characteristic sequences, truncations, and contact sets given in Abhyan-
kar’s 1977 Kyoto paper [Ab]. In § 2-5 we shall review the relevant material from [Ab]. In
§6 we shall introduce the tree of contacts and in §7-9 we shall show how this gives rise
to the factorizations. ,

The said Jacobian conjecture predicts that if the jacobian of two bivariate polynomials
F(X,Y) and G(X,Y) is a nonzero constant then the variables X and Y can be expressed
as polynomials in F and G, i.e., if 0+ J(F,G) € k for F and G in k[X, Y] then k[F,G]=
k[X,Y]. We hope that the results of this paper may contribute towards a better under-
standing of this bivariate conjecture, and hence also of its obvious multivariate
incarnation.

* Abhyankar’s work was partly supported by NSF Grant DMS 91-01424 and NSA grant MDA 904-
97-1-0010. ‘
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2. Deformations

We are interested in studying polynomials in indeterminates X and ¥ over an algebrai-
cally closed ground field k of characteristic zero. To have more elbow room to mano-

euver, we consider the larger ring R= k((X))[Y] of polynomials in ¥ over k((X)), i.e.,

with coefficients in k((X)), where k((X)) is the meromorphic series field in X over k.
Given any

g=8X,7) =) glx'=3"¢ycp,

i€Z j€zZ
with
gl = g[i](Y)e kY] and g((j)):g((j))(X) € k((X)),
we put
Supprg ={i € Z:g" #0} and Suppyg={jeZ: g 0},

and we call this the X-support and the Y-support of g respectively. Note that these
supports are bounded from below and above respectively, and upon letting

A= ordxg =the X-order of g and ~= degyg = the Y-degree of g

we have
i min(Suprg) ifg#0 max(Suppyg) if g#0
v = . and vy = .
00 ifg=0 - 00 if g=0.
Now
g[i](y) = Z gyl and g((j))(X) = Z g™ IXT with g% ek
jez i€z
and we put h

Supp(g) = Supp(xy18 = {(i, /) € Zx Z : g1 £ 0}
and we call this the support, or the (X, Y)-support, of g. We put
0 0 QI IET 0
incoxg = 4 & 1 87 and decoyg = 8 ,1 87
0 ifg=0 0 ifg=0

and we call this the X-initial-coefficient and the Y-

degree-coefficient of g respectively.
Upon letting

4 = ord(g) = the (total) order of g
= ordiy,y)g = the (X,Y)-order of g

we have

5= min{i+;j: (i, j) € Supp(g)} if g # 0
e'e) ifg=0
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and we put

S gWx'Y if g #0
info(g) = info(x,y)g =4 =7’

0 if g=0
and we call this the initial-form, or the (X, Y)-initial-form, of g.' If g € k[X, Y] then upon
letting
4 = deg(g) = the (total) degree of g
= deg(y y)8 = the (X,Y)-degree of g
we have
 (max{i+j: (i, j)€ Supp(g)} ifg#0
Y= .
— o0 ifg=0
and we put
S XY ifg#0
defo(g) = defoyx g = § =1

ifg=0
and we call this the degree-form, or the (X, Y)-degree-form, of g2

Given any z = z(X) € k((X)), we write

z=z(X) =Y 2fix" with zli]ek.
ieZ

and we put
Z[i] =0 forall i € Q\ Z,
and we let

the set of all (U,V,W) € 7? suchthat U >0 <V
e(z) =
and iV /U € Z for all i € Suppx2 with i < WU/V

and we call this the edge of z, and for any (U, V, W)€ e(z) we let

Axuv,wy= Y ZixMY e k()
i<WU/V

and

ﬂmeMuqzﬂnyM0+ﬂWeR

! In an obvious manner, the definitions of Suppxs. ordyg, incoxg, Supprg, degys. decoyg, Supp(x.v)8»
ord(x,r)&, and info(x,r)g, can be extended to any g in k((X))[Y, y~1], and for any such g we can also
define ordyg and incoyg, and then we have: g =0 < Suppxg = 0 & ordyg = 00 &> INCOxg =
0 & Suppyg = 0 < ordyg = 00 & degyg = —00 & incoyg = 0 <> decoyg= 0 < Supp(x )8 =0
& ordy )8 = 00 & info(x,y)g = 0. .

2 Again, in an obvious manner, the definitions of degx,y)g and defo(x,y)g can be extended to any g
in k[X,X~!,Y,Y""], and for any such g we can also define degyg and decoxg, and then we have:

g =0« degyg = —00 & decoxg = 0 < degxr)&8 = 00 ¢ defo(y ) = 0.
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and

XUV, W) = D 2IXVY e k(X))
i<WU/V

and we call these the (U, V,W)-truncation, the (U, V, W)-deformation, and the strict
(U, V, W)-truncation of z(X) respectively. Given any H = H(X, Y) € R, we are interested
in calculating ordxH(XV, 24X, U, V, W, Y)) and incoxH (X", 7t (X, U, V, W, ¥)).3 For this
purpose we proceed to give a review on characteristic sequences.

3. Characteristic sequences

Let R be the set of all monic polynomials in ¥ over k((X)), i.e., those nonzero members
of R in whom the coefficient of the highest Y-degree term is 1. Let R be the set of all
irreducible monic polynomials in ¥ over k((X)), i.e., those members of R! which generate
prime ideals in R; note that their Y-degrees are positive integers.

Given any f = f(X,Y) € RY of Y-degree n, by Newton’s theorem

fee =TT -5@)] with z(X)e k((x)),

1<j<n

where we note that Suppxz is independent of j. Let m(f) = m;( Focichim()+1 be the
newtonian sequence of characteristic exponents of f relative to # as defined on page 300
of [Ab], let d(m(f)) = d;(m(f))o<i<hiapm(s)))+2 b€ the GCD-sequence of m(f) as defined
on page 297 of [Ab], let g(m(f)) =—q,-(mé f )30<i<h(q(m( fy)+1 be the difference sequence of
m(f) as defined on page 301 of [Ab], let s(g(m(f))) = s:(a(m(f)) o<ichistameyy+1 O the
inner product sequence of g(m(f)) as defined on page 302 of [Ab], and let r(qam( =

ri(g(m( f)))OSiSh(r(q(m(f)))) + be the normalized inner product sequence of g(m(f)) as
defined on p. 302 of [Ab].* Note that then

h(d(m(f))) = h(m(f)) = h(g(m(F)))
= h(s(q(m(f)))) = h(r(q(m(f)))) = a nonnegative integer
and

do(m(f)) =0 and dygpmipy)s1(m(f)) =1

*To motivate the definitions of ¢(z) and 7, given any H = H(X,Y) =", . HO)X'Y/ € R with
H®) ek, let T and ©%(Y) be the values of ordyH(XV,z/(X,U,V,W,Y)J and incoxH(XV,z!
(X,U,V,W,Y)) when z=0, ie., let T* =ordyH(X" , X"Y) and ©%(Y) = incoxH(X", XV Y). Also let
I' and ©(X,Y) be the weighted order and the weighted initial form of H(X,Y), when we give
weights (V, Wg to (X,Y), ie, let T =min{iV +jW: (i, j) € Supp ¥ Y)H(X, Y)} and O(X,Y) =
Y wiwr XY Then T =T = ordy nH(XV,Y¥) and ©(X, ¥) = infoiy yyH (X", Y"). More-~
over, ©*(Y) and ©(X,Y) determine each other by the formulas ©%(Y) = ©(1,Y) and O(X,Y) =
XT/V@H(X-IVY). The parameter U is a normalizing parameter which essentially says that we want
to intersect the “meromorphic curve” H (X,Y) = 0 with a deformation of the “irreducible mero-
morphic curve” f(X, Y) = 0 where f(X, Y) is a monic irreducible polynomial of degree U = nin ¥
over k((X)); to do this we take a “fractional meromorphic” root y(X) of f(X,Y) = 0 with
¥(X™) =2(X) € k((X)), and then after “deforming” ¥(X) at X"/V we substitute the deformation in
f(X,Y) for Y. For further motivation see the definitions of €(f,\) and #(f, ) displayed in the
middle of the next section.

41tis really not necessary to look up [Ab] for the definitions of the sequences m, d, g, s, r, since they
are completely redefined in the next three sentences ending with the displayed item (o).
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and
di(m(f)) = mo(f) = qo(m(f)) = so(q(m(f))) = ro(g(m())) = n,
and
Ay 2(m(F)) = Min(r)y+1 () = Grem( )1 (m(f))
= spim(p)+1(2(m(F))) = Tum(pn+1(@(m(f))) = o0,
and

mi(f) = g1 (m(H)) = s1(g(m(£)))/n = ri(g(m(£))) = min(Suppxz1),

with the understanding that the min of the empty set is co. Also note that: h(m(f))=0 <

f(X,Y)=Y. Finally note that if f(X, Y)# Y then for 2 <i < h(m(f)) we have that

gi('tn(f)), ms(F), ai(m(F)), si(g(m())), ri(g(m(f))) are integers with d;(m(f)) > 0 such
at:

(di(m(f)) = GCD(mo(f),m1(f), - ,mi1(f)),

mi(f) = min(Suppxz1 \ di(m(f))Z),

(o) qi(m(f)) = mi(f) — mi-1(f),

si(@m(£))) = @1 (m(H)di (m()) + - + a(m(£))di(m(£)),

[ and ri(g(m(1))) = si(a(m(1)))/di(m(1))

In the rest of this section we shall use the abbreviations

& = di(m(f)) and s; = si(g(m(f)))
for all relevant values of i. Let the sequence c(f)= ¢i(f)1<i<h(c(r)) PE defined by putting

h(c(f)) = h(m(f)) and  c(f) = mi(f)/n for 1 < i < hle(£))

and let us call this the normalized characteristic sequence of f. Note that then a(f)<
ea(f) < - -+ < cnge(sy(f) are rational numbers, out of which only ¢;(f) could be an
integer. To obtain an alternative characterization of the noninteger members of this
sequence, for any rational number A, we let

(F0)= the unique nonnegative integer < h(c(f)) such that
PEN=01) < A< ) for 152 p(F) < < Alelf)

and
i} the unique nonnegative integer < h(c( f)) such that
PFin2 = {c,-m <A< ) for 1 <i <p*(f, ) <J < ()
and
D(f,\) =n/dpr1 with p=p(f,})
and
D*(f,\) =n/dps1 With pr=p"(fiN) _
and

| [ (sp+ (MA = mp(N))dpia) /i p=p(f,2) 70
S(f”\)‘{x T e p=p(s 0 =0
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and, for any z € k((X)), we let

£) )
A(f,\,2) p(H ((di/ diar Yelmy( )4/ e DN

i=1

and

A(f, M 2) = A(f, A, 2)"/PU
and

E(f,22,Y) = YPUNDUA _ o [m NP UA/DUA
and -

BUA A5 ¥) = B 170

and we call these the A-position, the strict A-position, the \-degree, the strict A-degree,
the A-strength, the (), z)-reduced-constant, the (,z)-constant, the (A, z)-reduced-
polynom1a1 and the(A, z)-polynomlal of f respectively; note that the above objects p,
p*,D,D* S, A, A E, and E respectively correspond to the objects p(<), p(<), D, E, s, B,
B, P, and P introduced on pp. 326-328 of [Ab]. We also define the sequence
m(f,A) = mi(f, Nogichims a1 bY putting

h(m(f, X)) =p(f,\) and mi(f,\)=m;(f)D(f,\)/n for 0<i<p(f, \)+ 1

with the understanding that m;(f, A\)= oo fori = p(f, ) + 1, and we define the sequence
m* (f7 >‘) (f: )()<z<h (m*(f,A))+1 by puttlng

h(m™(f,X))=p"(f,)) and
mi(f,A) = mi(f)D*(f,))/n for 0 < i< p*(f,A) +1

with the understanding that m} (f, \) = oo for i= p*(f, A)+ 1, and we define the sequence
(£, ) = ai(f, A)lgigh(c(f,)\)) by putting

he(£,A) =p(£,2) and () = ci(f) for 1 < i < p(f,\)
and we define the sequence c*(f,\) = c*(J, A)1<ichies( £ by putting
WS (£ 2)=p"(f,A) and ¢ (f,\)=ci(f) for 1 <i<p*(f, N),

and we call these sequences the A-characteristic- -sequence, the strict A-characteristic-
sequence, the A-normalized-characteristic-sequence, and the strict A-normalized-
characteristic-sequence of f respectively. We also let

3= the set of all (z, U,V, W) €k((X)) x Z° such that U=n, W/V =,
elfi M= and (U, V, W) €e(z) where z=z(X) € k(X)) with (X", z(X)) =

and we call this the A-edge of f. Finally we define 1( 7, A) =t(f,N)(X, Y) to be the unique
member of R* such that

1(f, (XY, 21 (X, U, V,W))= 0 for some |
(and hence for all)(z, U, V, W) €e(f, A)

and we call this the )\-nor'nahzed-truncanon of f, and we define *(f, \) = r*(f, A)(X, Y)
~ to be the unique member of R such that
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£ (f, N (X", z*(X, U, V,W))= 0 for some
(and hence for all) (z, U, V, W)€ e(f, )
and we call this the strict A-normalized-truncation of f; note that on p. 294 of [Ab] we
have called these the open and closed (n))-truncations of f respectively.
From the above definitions of the various objects, we see that

(p(f,\) and p*(f, X) are integers with
0 < p(f£,\) < p(f,A) < h(m(f)), and (NP1)
) D(f,A) and D*(f, ) are positive integers with
#/D*(f,) € Z and D'(f,)/D(f, ) € Z
and
(1(f,\) and t*(f, \) are elements of R such that:
m(t(f, N))=m(f, \) and m(t*(f, \)) = m"(f, ),
c(1(£, ) = e(f, N) and e(£' (£, )= ¢"(f, X), F2)
degy t(f, )= D(f, ) and degy £*(f, \) =D’ (f, ), and

hm{£(£, \))) = A{e(e(£, N)) = p(f, ) and (m(r" (£, )))
k = (el (f, M) =" (£, N)

and
A(f,\z) €k and A(f, N 2)=A(f, A z)"/D(f”\) € k are such that: (NP3)
if £(X",z(X))= 0 then A(f,\,z) #0 # A(f,\2)
and
E(f,\z, V)= yP (/DA Z[n)\]D*(f,)\)/D(f,A) € kY]
and E(f, Az, V)= E(f, ), Y7 U e kY] (NP4)
are monic polynomials of degrees D*(f, \)/D(f, ) and n/D(f, )
respectively, where z[n\] €k is such that: z[n\]#04 nA€ Suppyz

and
D*(f,N)/D(f, ) > 1
@)::c,-(f)glfor some i € {1,...,h(c(f))} (NPS)
& E(f,\z,Y) has more than one root in k
for any z = z(X) € k((X)) with f(X",z(X)) =0

e

and

{S( £, € Q is such that:
(NP6)
if (z, U,V, W)€ e(f, A) then S(f, MnVeZ.

With this preparation, what we have called Newton polygon (3) on p. 334 of [Ab] can be
restated by saying that:
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if (2, U,V, W) € e(f, A)
then ordgf(XV, 24X, U, V,W,Y)) = S(f, \)nV (NP7)
and incoxf(X",z' (X, U,V,W,Y))= A(f, A\, 2)E(f, \, 2, Y).
In view of (NP3) and (NPS5), the last line of (NP7) tells us that the noninteger members of
the sequence ¢;(f), <;<p(c(y)) are exactly those values of \ for which incox(f(X",z(X, U,

V,W,Y))) has more than one root in k; this then is the alternative characterization we
spoke of.

Given any other ' = f/(X,Y) € R* of Y-degree n/, by Newton’s theorem
FEY =[] P-4@)] with Z(X)e k(X)).

1<j<n’
Recall that on p. 287.of [Ab] the contact cont(f, f') of f with f is defined by putting
cont(f, f) = max{(1/n")ordy[z;(X") — Z,(X")]: 1 <j<nand 1 < <n'},

We define the normalized contact noc(f, f') of f with f' by putting noc(f, f') = (1/n)
cont(f, f'), i.e., equivalently, by putting

noc(f, f')= max{(1/(nn’))ordx[zj(X"’)—z}(X”)]: 1<j<mnand 1<j<n'}.

We note that if f#f then noc(f,f’) is a rational number, and if f=f' then

noc(f, f') =oc. We also note the isosceles triangle property which we shall tacitly use
and which says that

f” € Rh = UOC(f, f”) > min(HOC(f, f,)a DOC(f,, f”))

and
f"€ R with noc(f, f') # noc(f', f') = noc(f, f")
= min(noc(f, ), noc(f',f")).
In view of the confluence lemmas given on pp- 338-344 of [Ab] we see that
(if A< N = noc(f, 1)
then p(f', )= p(£, X), D(f',\)= D(£,X), S(f', )= S(f, ),

m(F,N) =m0, el )= (Aot ) = £ F, ),
and A(F', 0, )= A(F, ) ) (GNP1)

where we have chosen z= z(X) and 7 = 7(X)in k((X)) such that
X 2X)) = 0=F(X",2(X)) and (1/(nn'))ordy[o(X") - 2 (X")] = X

(ITP)

and
if A<X = noc(f, f)
then p* (', X)=p*(£,A), D*(f', \)=D*(£, \),

m*(f’,/\)=m*(f,>\)a¢*(f’, =c* (£, A, (f, ) =1*(f, ),
and E(f',\,2,Y)=E(f,\,z,Y) '

where we have chosen z=2z(X) and 7 =7/(X) in k((X)) sﬁch that
(X", 2(X))=0=f(X",7(X)) and (1/(nn)) ordx [2(X™ ) — 2 (X™)] =X

(GNP2)
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and
if A= \=noc(f,f)
then E(f',\,Z,Y) and E(f, \,z,Y) do not have a common root NP3
where we have chosen z=z(X) and 7 =2 (X) in k((X)) such that ( )
S 2(X)) = 0= F(¢", 2 () and (1 (an)Jordx z(X") = 2 (X")] = X
and

{if A< N=noc(f, f) and (2, U, V, W) € (£, 1) (GNP4)

then S(f, \)n'V € Z.
What we have called generalized Newton polygon (6) on pp. 346-347 of [Ab'] can now be
restated by saying that:
(if X < N =noc(f,f) and (z,U,V, W)€ €(f, A)
then ordy f'(X¥, 2 (X, U, V, W)) = S(f, )n'V
1 and incoy f/(XV,2H (U, V, W, Y)) = A(f, A 2)E(f, 12, Y) (GNPS)
where we have chosen 7' = Z(X) € k((X)) such that

kf’(X",,z'(X)) =0 and (1/(nn’))ordx[z(X"') —Z(xM=X
and
(if A > N =noc(f,f)and (z,U,V,W) € e(f,})
then ordyf' (XY, 21 (X, U, V, W)= S(f, \)n'V
and 0 # incox f'(X", 2/ (U, V, W, Y))

=A(f N, )E(f X, Z,2n\]) €k
where we have chosen 7 = 7/ (X) € k((X)) such that
|7/, 2(X)) = 0 and (1/(wn'))ordx[e(X")— 2 (X")]= X

(GNP6)

and

(GNP7)

if A= N =noc(f, f') and f(X",z(X))= 0 with 2(X) €k((X))
then ordy f'(X",2(X)) = S(f, An'n.

Finally we note that, for the truncations t(f, \) and £*(f, \), we obviously have

{noc(f, t(f,\)) > X and

(GNPS)
noc(f,*(f, \)) > A

4. Truncations and buds

To continue discussing truncations, we let R’ be the set of all buds in R, where by a bud
we mean a pair B=(c(B), \(B)) with 0 # o(B) C RY and \(B) € Q such that noc(f, f) 2
A(B) for all f and f’ in o(B); we call o(B) the stem of B, and A(B) the level of B; we

also let 7(B)={f € R: noc(f, f') > A\(B) for all f'€5(B)}, and we call 7(B) the flower
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of B3 For any f€ R" and B€ R’, we let noc(f,B) be the rational number defined by
saying that if f € 7(B) then noc(f, B) = A(B), whereas if f ¢ 7(B) then noc(f, B) equals
the common value (see (ITP)) of noc(f, ') as f' varies in 7(B); we call noc(f,B) the
normalized contact of f with B, and we mnote that: noc(f,B)# A(B)< noc(f,B) <
A(B)& f¢ 7(B).S For any f€ R* and A € Q, we let R(f,A\)={B'€R:fe 7(B') and
A(B')= A}; members of R(f, A) may be called A\-buddies of f. For any f € R*and B € R,
we let R(f,B) = R(f,noc(f, B)); members of R(f, B) may be called B-buddies of f. For
any B € R, we let R(B)={B' € R’: 7(B')= 7(B) and A\(B')= A(B)}; members of R(B)
may be called buddies of B.

Given any bud B, by (GNP1) we see that there is a unique nonnegative integer p(B), a
unique positive integer D(B), a unique rational number S(B), a unique sequence of
integers m(B) = m;(B)g;<,p(5+1 With the exception that m(z),1 = 00, a unique sequence
of rational numbers ¢(B) = ci(B);<;<y(5)> @ Unique member t(B) of R", a unique nonzero
element A(B) of k, and a unique nonempty set €(B) of triples (z, V, W) with z = z(X) €
k((X)) and 0 < V€ Z and W € Z, having the bud properties which say that

(for every f € 7(B), upon letting degy f = n, we have:

p(f, A(B))= p(B), D(f, M(B))= D(B),S(f, A(B)) = S(B),

m(f, NB)) = m(B), c(f, (B)) = (B, (£, A(B)) = 1(B),

Y A(f, \(B),2)=A(B) for all z=3(X) € k((X)) with £(X",%(X)) =0,
and (z,n,V, W)—(2, V, W) gives a surjection of ¢(f, A\(B)) onto ¢(B)
| where 2(X)=z'(X,n, V,W).

(BP1)

We call p(B), D(B), S(B), m(B), c(B), t(B), A(B), and €(B), the position, the degree, the
strength, the characteristic sequence, the normalized characteristic sequence, the norma-

lized truncation, the reduced constant, and the edge of B respectively, and we note that
then for #(B) we have

t(B) € 7(B), degy 1(B) = D(B), m(1(B)) = m(B),
c(#(B))= c(B), h(m(t(B))) = h(c(#(B)))= p(B), and

eB)={(z,V,W):0 < VED(B)Z and W= A\(B)V € Z and (BF2)
z = z(X) € k((X)) with #(B)(X",z(X))= 0}.
Given any bud B, by (BP1) and (BP2) we see that
(for any B'€ R’ we have:
B' € R(B)< R(B)=R(B) . .
. & 7(B)NT(B)# 0 and A\(B')= A\(B) | (BP3)
= p(B')=p(B), D(B')= D(B),S(B')=S(B), m(B") = m(B),

c(B")= c(B),t(B')=t(B),A(B')= A(B), and ¢(B')=¢(B)

> Basically, the stem o(B) of a bud B = (o(B), A(B)) is a nonempty set of irreducible meromorphic
curves f(X,Y) = 0 whose fractional meromorphic roots mutually coincide up to X*®), and its
flower 7(B) is the set of all irreducible meromorphic curves whose fractional meromorphic roots
coincide with the fractional meromorphic roots of members of o(B) up to X&),

6 Equivalently, noc(f,B) can be defined by saying that, for any f € R' and B € R’, we have
noc(f, B) = min{noc(f, f') : ' € 7(B)}. |
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and by (NP1), (GNP4), (GNP5) and (GNP6) we see that
for any f € T(B), with degyf =n, we have n/D(B) € Z,
and for any (z,V, W) € €(B) we have

ordg F(X¥,z(X) + XVY)=S(B)nV € Z (BP4)
and degyincoxf(XV,z(X) +x%Y)=n/D(B)
and
for any f € R\ 7(B) and (z,V, W)€ ¢(B) we have
0 incoxf (XV,z(X) + X"Y) €k, (BPS)

and for any B'€ R(f',B), upon letting degy f'=n', we have
ordg /(X" ,2(X) + X" Y)=S(B)n'VE Z.
Next we let R™* be the set of all strict buds in R, where by a strict bud we mean a bud B

such that noc(f, f")> A(B) for all f and f' in o(B); we also let (B)= {f € R%:
noc(f, f/)> A(B) for all '€ o(B)}, and we call 7*(B) the strict flower of B.” For any

feR and A€ Q we let R (f,\)={B¢€ R*:f € 7*(B) and \(B) = A}; members of

R*(f, \) may be called strict A-buddies of f.Forany f€ R' and BE R, weletR (f,B)=
R (f,noc(f,B)); members of R°(f,B) may be called strict B-buddies of f. For any
B ¢ R, we let R (B)= R*NR(B); members of R’ (B) may be called strict buddies of B.
Finally, for any B € R**, we let R*(B)={B €R (B): T*(B)=T1" (B)}; members of
R (B) may be called doubly strict buddies of B.

Given any strict bud B, by (GNP2) we see that there is a unique nonnegative
integer p*(B), a unique positive integer D (B), a unique sequence of integers m*(B) =
m(B)o<i<p(B)+1 with the exception that 7, gy, ; =00 and a unique sequence of rational
numbers ¢*(B)= ¢} (B) <icp(p) & Unique member #*(B) of R, a unique monic poly-
nomial E(B, Y) in k[Y], 2 unique element Eo(B) in k, and a unique nonempty set ¢*(B) of
triples (z,V, W) with z = Z(X) € k(X)) and 0 < VEZ and W € Z, having the strict bud
properties which say that

for every f € 7*(B), upon lettiﬁg degy f=n, we have:

" (£, X(B))=p"(B) > p(B), D" (f, \(B)) = D"(B) € D(B)Z,

m* (f, N(B)) = m"(B), ¢* (£, A(B)) = ¢*(B), " (f, A(B) = t(B),
E(f,\(B),z,Y)= E(B,Y)= yP B)/P(B) _ Ey(B) (SBP1)
for all 7= z(X) € k((X)) with f(x*,z2(X))=0,

and (z,n,V,W)—(2,V, W) gives a surjection of €(f, A(B)) onto €*(B)
{where 3(X)=Z*(X,n, V, W).

™

We call p*(B), D*(B), m"(B), ¢*(B), t* (B), E(B,Y), Eo(B), and ¢*(B), the strict position,
the strict degree, the strict characteristic sequence, the strict normalized characteristic
sequence, the strict normalized truncation, the reduced polynomial, the polynomial

7 Again, basically, the stem o(B) of a strict bud B = (o(B), A\(B)) is 2 nonempty set of irreducible
meromorphic curves f(X, Y) = 0 whose fractional meromorphic roots mutually coincide through
XMB)_ and its strict flower 7*(B) is the set of all irreducible meromorphic curves whose fractional

mf(rB(;morphic roots coincide with the fractional meromorphic roots of members of o(B) through
X9,
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constant, and the strict edge of B respectively, and we note that then for *(B) we have

t*(B) € 7"(B), degy t"(B) = D"(B),m(t"(B)) = m"(B),

c(t*(B)) = ¢*(B), h(m(¢*(B))) = h(c(t" (B)))= p*(B), and ‘
€B)={(z,V,W):0< Ve D*(B)Z and W=\(B)V€ Z and

| z=2(X) € k((X)) with £*(B)(X",z(X)) = 0}.

(SBP2)

Given any strict bud B, by (SBP1) and (SBP2) we see that

(for any B' € R™* we have:
B eR"(B) & R"(BY=FR"(B)
< (B )N 1" (B)# 0 and A\(B')= A\(B)
= p*(B)=p"(B),D"(B')= D*(B), m"(B') = m"(B),
¢*(B')=c*(B),t*(B')=t*(B),E(B',Y)= E(B,Y),
| and €*(B')= ¢*(B)

(SBP3)

and by (NP1) and (GNP5) we see that

for any f € 7(B), with degy f=n, we have n/D*(B)€ Z,
and for any (z,V, W)€ ¢(B) we have (SBP4)

incoy f(X", z(X)+ X" ¥)= A( B)H/D(B) EB,Y)"P'®.

Given any bud B, by (NP2), (NP4) and (GNP3) we get the mixed bud properties which

say that

and

and

(for any B'€ R'(B) and B" € R*(B) we have :
E(B,Y)#E(B",Y)s r*(B)# 7 (B")

& BN B =0
\  © E(B,Y) and E(B",Y) have no common root in k

(MBP1)

(for any B’ € R*(B) we have:
Ey(B)=0<« B € R'(¢(B),B)

= p"(B)=p(B),D"(B)= D(B),m"(B) = m(B'),
{ ¢*(B)=c(B),t*(B)=t(B'), and ¢*(B')= ¢(B')

"

(MBP2)

for any B'€ R’ (B) \ K" (¢(B), B) and B" € K'(B)\ K" (:(B), B)
we have : p"(B') = p*(B"),D*(B') = D*(B"), m*(B') = m*(B"), (MBP3)
Lmd ¢*(B')= c*(B").

5. Contact sets

Given any F= F(X,Y) € R of Y-degree N, we can write

F= T[] F where Fy=Fy(X)eK((X))
0<j<x(F)



e

S

r—

Jacobian of meromorphic curves 129

and
F,=FX,Y)e R with degyF;=N;for 1<) < x(F)

and x(F) is a nonnegative integer such that: x(F)=0& F€ k((X)).® We define the
contact set C(F) of F by putting

C(F)={ci(Fj):1<j< X(F) and 1 < i < h(c(F;)) and ci(F;) ¢ Z}
U{HOC(Fj,FjI) 1<K <j, < X(F) with FJ7é Fjl}.

Upon letting

M= ] N

1<j<x(F)

(with the usual convention that the product of an empty family is 1), by Newton’s
theorem we have

Fx™, v)=F(x) [[ T—4)] with 2(X) € k(X))

1<jEN
and by the material on p. 300 of [Ab], as an alternative characterization of C(F), we get
C(F)={(1/N*) ordy[Z(X) — Z(X)]: 1 <j <j < N with 2(X)# 2 (X)}-
Note that
CF)=0&N=1for1<j< x(F) and Fj=Fy for 1 <j <j < x(F).
Given any G = G(X,Y) € R of Y-degree M, we can write

G= [] G wher Go = Go(X) € K((X))
0<j<x(G)

and
G =Gj(X,Y) €R' with degyG;=M;forl<j< x(G)

and x(G) is a nonnegative integer such that: x(G) = 0 & G € k((X)). Note that now
C(FG)= C(F) U C(G)U {noc(F;, Gy): 1 < j < x(F) and '

1 < < x(G) with F; # Gy}

Let
J(F,G) = Jixy)(F, G)

be the jacobian of F = F(X,Y) and G = G(X,Y) with respect to X and Y, ie., let
J(F,G) = FxGy — GxFy

where subscripts denote partial derivatives. Our aim is to produce a factorization of
J(F,G) in terms of the contact set C(FG).

8 In other words, if F € k((X)) then x(F) = 0, whereas if F ¢ k((X)) then x (F) equals the number
of irreducible factors of F in R.
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In case of F # 0 we can write
F = X' P + (terms of X-degree > N*)
where
N'=ordy(F) and 0# P=P(Y)=incox(F)€ k[Y] with deg,(P)=v.
Likewise, in case of G # 0 we can write
G = X" Q + (terms of X-degree > M*)
where ‘
Mi=o0rdx(G) and 0# Q= Q(Y)=incox(G)€ k[Y] with degy(Q)=up.
Now in case of F # 0 # G we get
J(F,G) =XV Y (Nt POy — M*PyQ)

(JE1)
+ (terms of X-degree > N* + M* — 1)
and hence
ordyJ(F,G)> N¥ + M* — 1 (JE2)
and
ordyJ(F,G)= N* + M* — 1 & N*PQ, — M*PyQ # 0 (1E3)

= incoxJ(F, G) = N*PQy— M*PyQ.

These Jacobian estimates are basic in getting a factorization of J(F, G) out of C(FG) or,
more precisely, out of the “tree” T(FG) which, in §6, we shall build from C(FG).
Moreover, as we shall explain in § 7, most of this set-up works in getting a factorization of
any H € R out of any tree 7. In §8 we -shall apply it to the situation when H=J
(F,G)= Fy with G= —X. In §9 we shall consider the general case of H=J(F,G).

6. Trees

By allowing the level A\(B) of a bud B to be —co we get the set R  of all improper buds B;
note that any nonempty subset of R* can be the stem o(B) of an improper bud B;
moreover, for any improper bud B we have A(B)=—oc and 7(B)= R!. We put R’ =
R UR_, and we call a member of R* a generalized bud. For any BE R* we let
7 (B)={f € 7(B): noc(f, f') > A(B) for some f' € o(B)}, and we call 7*(B) the strict
flower of B; note that for any B€ R** this definition coincides with the definition made
earlier; also note that for any B€ R°, we have 7*(B)=R!. For any BE R* we let
7(B)= 7(B)\ 7*(B), and we call 7(B) the primitive flower of B. Previously we have
defined the normalized contact noc(f, B) for all f € R and B R’; now we extend this by
putting noc(f, B)= —oo for all f € R* and B € R’_. For any f € Rh and B€ R’ we define
R*(f,B) to be the unique member of R whose stem is { f} and whose level is noc(f, B)
and we call R*(f, B) the strict B-friend of f; note that then R*(f, B) belongs to R”* or R®_
according as B€ R’ or B€ R’ . For any B€ R* we define R*(B) to be the set of all
B'€ R* UR’_ such that (B’ ) A(B) and o(B')= 7*(B')N o(B), and we call members

R*(B) strict Friends of B; note that o(B) = ] [pcg.(z 0(B') gives a partition of o(B) into
pairwise disjoint nonempty subsets.
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Now the set R’ is prepartially ordered by defining B > B to mean A\(B') > A(B) and
7(B')C 7(B).? For any B’ and B in R* we write B’ > B or B < B’ to mean B'> B and
M(B') > A(B), i.e., to mean A(B') > A(B) and 7(B') C 7(B). For any B'>> B in R* we define
y R*(B',B) to be the unique member of B’ whose stem is o(B') and whose level is A(B),
and we call R*(B', B) the strict B-friend of B': note that then R*(B’, B) belongs to R or
R®_ according as A(B) 7 —oo or A(B) = —oo. For any B'>> Bin R* we also put 7*(B’,B) =
7*(R*(B',B)) \ 7(B'), and we call 7* (B', B) the strict B-flower of B'.
Let R? be the set of all trees in R, where by a tree we mean a subset T of R such that T
contains an improper bud, and for any B'+# B in T with A(B')= \(B) we have (BN
7(B) = 0; note that then the prepartial order > induces a partial order on T, and hence in
particular T has a unique improper bud; we call this improper bud the root of T and
denote it by R (T); also note that for any B and B in T we have: B > B <> B'>> B. For
any tree T, we put A(T)= {A(B): B € T} and we call A(T) the level set of T; we define
the height A(T) of T by putting h(T) = o0 if A(T) is infinite, and h(T) = the cardinality
of A(T) minus 1 if A(T) is finite; moreover, in case h(T) is a nonnegative integer, i.e., in
case A(T) is a finite set, we let I(T)= Li(T) g<i<nr) e the strictly increasing sequence
Io(T) < -+ < Iy (T) such that {1o(T), - - Inry (T)i: A(T), and we call [(T) the level
| sequence of T. Note that a tree T is finite iff its level set A(T) is finite and 7 has at most a
1 finite number of generalized buds of any given level. We put

R! = the set of all finite trees in R.

For any generalized bud B in any tree T', we put 7(T,B)={B'€ T: B'> B} and we call
(T, B) the B-preroof of T, and we put p(T,B)= {B'€ n(T, B): there is no B" e w(T,B)
with B’ > B"} and we call p(T, B) the B-roof of T. For any generalized bud B in any tree
T, we also put 7(T, B)= 7(B)\ U{7(B): B' € p(T,B)} and we call 7(T', B) the B-flower
of T, and we put 7* (T, B) = 7*(B)\ U{(B"): B' € p(T, B)} and we call 7(T, B) the strict
T-flower of B; note that then 7(T,B) = 7(B)\U{r(B): B'€ 7(T,B)} and ™(T,B)=
7(B) \ U{r(B): B'€ n(T,B)} = 7(T, B)\ 7' (B).1°

A tree T is said to be strict if for every A€ A(T) we have 0(Roo(T)) = Upertno(B)
where T™ is the set of all B€ T with A(B)= A. Given any A€ QU {—o0}, by OTP) we

' see that f ~y f' gives an equivalence relation on R where f ~» f' means noc(f, f' 1> A It
/ follows that, given any & C R* and A C Q, there is a unique strict tree T(6, A) with
: A(T(6,A))={—oc}UA such that J(ROQA(T(&, A))=6 or {Y} according as & is

nonempty or empty; we call T(4,A) the A-tree of &; note that, if & is nonempty then,
for every A € A, the stems of the buds of T(6,A) of level X are the equivalence classes of
o) undpr ~y; likewise, if & is empty then, for every A € A, the stem of the unique bud of
T(5,A) of level X is {Y}. We put

R = the set of all finite strict trees in R

and we note that for any B € T € R¥ with \(B) = [; for some i < h(T) we have p(T,B)=
{B'e T:\B')=1l} and o(B)= Hsepr.n) o(B') which is a partition of o(B) into
pairwise disjoint nonempty subsets. For any F € R, with its monic irreducible factors

9 A set is prepartially ordered by > means: a > b and b > c implies a > c. It is partially ordered if
also: a > b and b > a implies a = b.

10 For printing convenience we may write u{r(B') : B' € p(T,B)} instead of Uprepr,p)T(B'), with
similar notation for N, % and [[.
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Fi,...,Fy) asin the previous section, we put
T(F)=T({F1,...,Fyr}, C(F))

and we call T(F) the tree of F, and we note that then T(F) € R,

A tree T is a subtree of a tree T if for every B’ € T’ there exists some (and hence a
unique) B € T such that o0(B') C o(B) and A(B') = A(B). Every tree is clearly a subtree of
the universal tree T(R?, Q), which is a strict tree of infinite height.!!

Remark (TR1). Basically we are interested in comparing the tree T(FG) of the product of
two members F and G of R with the tree T(J(F, G)) of their jacobian. In case of G =—X,
this reduces to comparing T(F) with T(Fy).

Remark (TR2). For the benefit of the readers (and ourselves) we shall now describe three
examples of the tree T(F) of various types of F € RY.

Example (TR3). First, here is an example of F & R! which is irreducible and has only
one characteristic exponent, i.e., with x(F) = 1 and A(m(F)) = 1. Namely, let

l1<neZand 0 # ec Z with GCD(n,e)= 1
and

F=f=fX0)=Y"+ 3 w(x)y

1<in
where w;(X) € k((X)) is such that
ordyw;(X) > ie/n for 1<i<n—1 and ordyw,(X)=e

and let £ be the coefficient of X* in w,(X), ie., let 0 # k€ k be such that ordy(w,(X)-
kX¢)> e. Then f is irreducible in R!, and we have the Newtonian factorization

)= 1 v -5
1<j2n

where z;(X) € k((X)) is such that

7(X)= w/K*X® + (terms of degree > e in X)
where w is a primitive n-th root of 1 in k, and &* is an n-th root of —x in k.

To see this, first note that f(X", X°Y) = X"g(X, ¥) where
gXY)=Y"+ > n(X)r!
1<i<n

and v;(X) = X~"w;(X") € k[[X]] is such that

v(0)=0for 1 <i<n-1and v,(0) = k.

11 . N - - .
This universal tree is like the Ashwattha Tree of the Bhagwad-Gita. The stem of its root contains
the embryos of all the past, present and future creatures in nascent form. Its trunks travel upwards

first comprising' of .Ia'rge tribes and then of smaller and smaller clans. Its “ultimate” shoots reaching
heaven are the individual souls eager to embrace their maker.

AR R
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Now g(0,Y)= Y"— «"", and hence we get the desired factorization by applying Hensel’s
Jemma. Since GCD(n, €)= 1, we see that f is irreducible in RY.
The above factorization of f yields h(m(f ))= 1 with '

mo(f)= qo(m(f))= so(@(m(f)))= ro(q(m(f)))=r and di (m(f))=n
and

my () = a1 (m(£)) = s1(g(m(f)))/n=r1(g(m(f))) = e and dr(m(f))= 1.
Therefore

C(F)=C(f)={a1 ()} with c1(f)=¢/n-
Hence h(T(f))= 1 with

b(T(f)) = —co and Li(T(f))=c1(f)=e/n
and upon letting

B.c R with o(B)= {f} and A(B;)=L(T(f)) for 0 < i<1
we have

T(F)=T(f)= {Bo,Bi}
with

D'(By)=0 and D'(Bi)=n—1.
Note that for F to be analytic, i.e., for it to belong to the ring k[[X]][¥], the condition e > 0
is necessary and sufficient. However, for F to be pure meromorphic, i.e., for it to belong
to the ring k[X~"][Y], i.e., for the existence of &(X, Y) €k[X, Y] with F(X, Y)=&X ", Y),
the condition e < 0 is necessary but not sufficient. As a specific illustration of the analytic
case we may take (n, €)=(4,5) and (w1(X); - .- Wit (X), wa(X))=(0, . - - 0,X5), giving
us F(X,Y)=Y*+X°. Similarly, as 2 specific illustration of the pure meromorphic case

we may take (n,e)=(4,—3) and (wl(X),...,wn_l(X),wn(X))z(O,...,0,X"3), giving
us F(X,Y)=Y*+X72 e, F(X,Y)= P(x~1,Y) with &(X,Y)= Y4+ X3,

Example (TR4). Next, here is an example of F € RY which is irreducible and has two
characteristic exponents, i.e., with x(F)=1 and h(m(F))= 2. Namely, let

F=f=fX7Y)= (Y- x2e+1)? — x3etb+2y with a € Z and 0 S bE Z.

Then f is irreducible in RY, and we have the Newtonian factorization

fxtv)= T ¥ -5

| 1<j<4
where z;(X) € k((X)) is such that
7(X)= (Ix)*t* 4+ 1 (%)% 1 (terms of degree > 4a+2b +3 in X)

where ¢ is a primitive 4-th root of 1in k (e.g., L = the usual i).
To see this, first note that f(X*, X4 2Y)= X16at85(X Y) where

g(X,¥)= (Y- 1)* - X**?Y.




134 Shreeram S Abhyankar and Abdallah Assi

Now for 7 =1 or —1, upon letting g,(X,Y)= g(X,Y + ;) we have
&(X,Y)= (294 Y)Y2— 4(1 + j¥)x*+2
and hence (say by the binomial theorem) we get

&(X,Y)= 25+ Y)Y - O(V)X**1][(2 + Y)Y + 5*0(¥)X?>*1]
where

o(Y)=1+(3v/2)— 21 X 3% - x (21— 3) x (=¥ /2)'/i!

and 7*= 2 or. according as 7= 1 or —1, and therefore (say by the Weierstrass preparation
theorem) we have

)= [ ¥ -»X)]

1<j<4

where y;(X) € k[[X]] is such that
yi(X)= (-1Y[1 +-1-(LjX)2b+1—|“ (terms of degree > 2b + 1 in X)].

Since f(X*,X**+?Y)= X'62+8¢(X, ¥), we get the above factorization of f(X*,¥). Since

the GCD of 4 with the support of z(X) is 1, we conclude that f is irreducible in &Y, i.e.,
x(F)=1.

The above factorization of f yields h(m(f))= 2 with
mo(£)= go(m(f)) = so(a(m(f))) = ro(q(m(f)))=4 and dy (m(f))=4

and

m (f)=a1(m(f)) =s1(q(m(f))) /4=ri(q(m(f))) =4a+2 and da(m(f)) =
and

my(f)=4a+2b +3 and go(m(f))=2b+ 1
and

52(q(m(f)))= 16a+4b+10 and ry(g(m(f)))=8a+2b+5 and ds(m(f))=1.
Therefore

CF)=C(f)={e1(f) c2()}
with _ '
al(f)= (2a+1)/2 and ea(f) = (4a +2b + 3)/4.
Hence h(T(f))= 2 with Io(T(f))= —oc and

WT(F) = er(F)= (2a+1)/2 and L(T(f)) = co(f) = (4a + 2b + 3) /4
and upon letting

B; € B with o(B;)= {f} and A(B;)= L(T(f)) for 0 <i < 2
e have

T(F)=T(f)= {Bo,By,B,}.
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with D'(Bo)= 0 and

D’(B1) =1 and D’(Bz) = 2.
As a specific illustration of the analytic case we may take (a,\b):(l,O), giving us
FX,Y)=(Y*~ x%)?— X3Y. Similarly, as a specific illustration of the pure meromorphic
case we may take (a,b)= (—1,1), giving us F(X,Y)=(Y* - X127, ie, F(X,Y)=
B(x~1,Y) with ®(X, Y)= (Y*— X)*— Y. Note that this ® is a variable in the sense that
kX, Y]= k[®, ¥] for some ¥ in k[X, Y]; in our situation we can take T (X,Y)=Y*—X.

Example (TR5). Finally, here is an example of F & R7 which has two factors, i.e., with
x(F)= 2. Namely, let
0<n€Zanda€Zand0§_b€Z

and

F=FX,7)=7"+ > w@y™
2<i<n+2

where 1;(X) € k((X)) is such that
ordyu;(X) > i(a+ Nfor3<i<n+1
and
ordyu(X)=2a+ 1 and ordgtpa(X)= (n+2)(@a+1) +b

and let 0 5 &' € k and 0 # & € k be the coefficients of X2e+1 and X(F2E+DFP in 1y (X)
and w42 (X) respectively. Then

F(X,Y)=F(X,Y)f (X, ¥) with f(X, V) # (X, )

where
FE =Y+ D wiX)Y" e R and w;i(X) € k(X))
1<i<n
with
{ordxwi(X)> ie/nfor 1 <i<n— 1 and ordyw,(X)=e+b
for the integer ¢ = na +n+ 1 for which GCD(n,e)=1
and
FE=P+ > WY e R and w)(X) € k(X))
1<i<2 _
with

ordxw! (X) > ¢ /2 and ordywy(X) = ¢
for the integer ¢ = 2a + 1 for which GCD(2,¢)=1

and 0 # &€ k and 0 # /' € k are the coefficients of X¢ and X¢*? in wh(X) and wy(X)
respectively. Moreover, if b = 0 then we also have f(X, Y)e Rh.
To see this, first note that F(X,X*Y)= Xnat2ag(X,Y) where

g(X, Y)Z Yn+2+ Z ,Ui(X)Y}H—Z——i

2<i<n4+2
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and v (X) = X~iy,(¥) k[[X]] is such that
ordy v;(X) > i for 3 < ; <n+1
and

ordy v2(X)= 1 and ordy Un2(X)=n+2+p

and 0 # k'€ k and 0 + k€ & are the coefficients of X and X**2+% in ¢, (X) and v, (X)
respectively. Now the initial form 8(X,Y) is K’XY™ which factors into the coprime factors
'X and Y”, and hence by the tangent lemma incarnation of Hensel’s lemma (cf. pp. 140-
141 of Abhyankar’s 1990 AMS book “Algebraic geometry for scientists and engineers’)
we can find ¢(X, ¥) and ¢/(X, Y) in k[[X, Y]] such that g(X, ¥)=¢(X, Y) ¢'(X,Y) and

SXY)=Y"+ ¢1 (X, ¥) + (terms of degree > 14 1 in X and ¥)
and )

(X, Y)=r'X + $,(X,Y)+(terms of degree > 2 in X and ¥)

where ¢..1(X,Y) € k[X, Y] is homogeneous of degree 5 + 1 and P3(X,Y) € k[X, Y] is
omogeneous of degree 2 (with the understanding that the zero polynomial is homoge-
neous of any degree), Comparing terms of degree -+ 2 in the equation g(X, ¥) = ¢(X, ¥)
¢'(X,Y) we get
KXbns1 (X, Y)+ Y} (X, ¥) = 77+ 4 > kxyr-

2<i<n+2

where ) € k is the coefficient of X2 ip »(X)— £'X, and &; € k is the coefficient of X in
vu(X)for3<i<n4n Successively putting X = 0 and Y= 0 in the above equation we
see that ¢/ (0, ¥) = ¥2 and Pnt1(X,0) = K, , X"+, Therefore, in view of the Weierstrass
preparation theorem, we can find 0(X,Y) and ¢'(X,¥) in k([X, Y]] with 6(0,0) + 0

#(0,0) such that upon letting f(X, ¥) = 4(X, ¥)g(x, Y) and f/(X,¥)= ¢/(X, ¥)¢/(X, Y)
we have g(X, Y)=f(X,7)f(x, Y) and

TED =74 3 (X7 and my(x) K[[x]]

1<i<n
with
ordy Wi(X) > i(n+1)/n for 1 < ; Sn—1andordy w,(X)=n+1+b
and ‘
Fx Y=y 4 Y #WX) ¥ and W(X) € k[[x]]
1<i<2
with

ordy W} (X)> 1/2 and ordy Wy (X) = 1

and 0 # '€ kand 0 %/ € k are the coefficients of X and X"+1+b i w‘T)Q(X) and w, (X)
respectively. Now upon letting f(X, Y):X"“f(X,X‘“"Y) and f'(X, ¥) = X% (X, X~1Y),
We get the desired factorization of F(X,Y). Since (n,e + b)#(2,¢'), we also get f  f'.
By (TR3) it follows that f' is irreducible in &%, ang if b =0 then so is f.

Now assuming b=0and n > | in view of (TR3

s

), the factorization of F tells us that
h(T(F)):: 2 with ZO(T(F))z —0o0 and

WT(F)=a+(1/2) and b(T(F))= 4 1 1 4 (1/n)

67 57 R
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and upon letting
Bo€ R with o(Bo)= {f, f'} and \(Bo) = lo(T(F)),
and B; € R with o(By) = {f, f'} and A\(B1) = L(T(F)),
and B, € R’ with o(By) = {f} and \(By) = L(T(F)),
and B} € R’ with o(B}) = {f'} and \(B}) = L(T(F)),
we have
T(F)= {Bo,B1,B2,B5}
with D'(Bg) = 0 and
D'(B))=2 and D/(By)=n— 1 and D'(B})=0.

As a specific illustration of the pure meromorphic case, taking a = —1 and (ua(X),
Unp2 (X)) = (KX, k) with &' # 0 % k ink and u;(X)=r; € kfor 3 < i< n+1, we get
F(X,Y)=®(X"',Y) where

X, V)=V 24 KXY + K+ Y mY"PEkX,Y]
3<i<n+1

with
0#£Kk€kand0#rkekand ki€kfor3<i<n+1.

7. Slices
Given any H = H(X,Y) € R of Y-degree O, we can write

H= [[ H where Ho=Ho(X)€ k(X)) (SP1)
0L j<x(H)
and
Hy=H(X,Y)€R' with degyH;=0;for 1 <j<x(H) (SP2)
and x(H) is a nonnegative integer such that: x(H)= 0« H € k((X)). Now
H=HH, with He= [[ H (SP3)
1<j<x(H)

where we note that H, € R, and we call Hy, the monic part of H.
We put '

Qp(H)= II H foralBeR (SP4)
1<j<x(H) with HjeT(B)

and we call Q(H) the B-slice of H, and we note that then Qp(H) € R, and we recall that

for all B€ R’ we have
{ T we A% (SPS)

7(B)= {f€ R': noc(f, f') > A\(B) for all f' € o(B)}.
We also put | '
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Qurp)(H)= II H; forallBeTeR (SP6)
1< j<x(H) with H;€r(T.B)

and we call Qr 5)(H) the (T, B)-slice of 4, and we note that then Q7 g)(H) € R?, and we
recall that

forall Be T € R* we have
7(T,B)= T(B)\ Ugep(r5)T(B) = T(B)\ Upen(r,8)7(B')

SP7
where 7(T,B)= {B'e T : B> B} (SP7)
and p(T,B)= {B'€ n(T,B): there is no B"e n(T,B) with B'> B"}.
Clearly we have the slice properties which say that
Ho,= Qp(H) forall BE R, (SP8)
and
Qp(H)=QupH) [ Q) forall BeTe R (SP9)
B'ep(T,B) ‘
and hence'?
Hyo= [[ Qra)(H) forall TE R (SP10)
BeT
where
for all B € T R* we have .
Q = degy Qs (H)— degy Qp (H (SP11)
degy QU gy (H) = degyQp(H)— Y degyQp(H).
B'ep(T,B)
By (BP4) we also see that
for all BE R’ and (z, V, W) € €(B) and f € 7(B) we have sp2)
deg, f= D(B)degy incox f(X",2(X) + X"Y) € D(B)Z

121y the innocent looking formula (SP10), there is more than meets the eye. Indeed it is the central
theme of the paper. It says that any finite tree T gives rise to a factorization of the monic part He
of any meromorphic curve H into the pairwise coprime monic factors Q7,5 (H) with B varying in
T. Formula (SP20) gives a further factorization of Q(r,5) into the two coprime monic factors Q3(H)
and Q’(‘T 5 (H). When the finite tree T is strict, formula (SP30) gives a still further factorization
of Qfr 2 ()H) into the pairwise coprime monic factors Qfp (H). Item (SP50) gives a condition
for the factorization of H to consist only of the factors Qjp (Hﬁ, and item (SP80) gives a companion
to this condition. The remaining items (SP1)-(SP9), (SP11)-(SP19), (SP21)~(SP29), (SP31)-
(SP49), and (SP51)—(SP79), give us details about these factors, such as their Y-degrees, and hence
in particular the information as to which of these factors are trivial (i.e., are reduced to 1) and which
are not. Out of these items, the most noteworthy are labelled as (SP40), (SP60), and (SP70). Now
roughly speaking, (z(H) collects together those irreducible monic factors of H whose normalized
contact with members of o(B) is at least A(B), and out of these only those are kept in Q5 (H) whose
normalized contact with members of o(B) is exactly A(B'), while the remaining are put in QO (H).
A similar description prevails for Qr gy (H), Q{7 p) (H), and Oy gy (H). As we shall see in the next
two sections, more details about these factorizations can be given when T and H are somehow
related.
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and hence by (BP5) we see that

(for all B€ R” and (z,V, W) € €(B), upon letting Hz = Qp(H),
we have that 0 £ incoxHp(X",z(X) + X" Y) € k[Y]

¢ with degyQz(H) =D(B) degy incoxHz(X",z(X)+X"Y)eD(B)Z (SP13)
and incoxH(X",z(X)+ X"¥) = pincoxHp(X",z(X) + X"'Y)

(Where p € k is such that: p=0< H =0.

The factorization (SP10) can be refined further. To see this we first put

Qp(H) = I H; forall Be R’ (SP14)
1< j<x(H) with Hjer'(B)

and we call Qy(H) the primitive B-slice of H, and we note that then Q(H) € RY, and we
recall that '

‘for all B€ R’ we have (SP15)
7 (B)= {f € 7(B): noc(f, )= A(B) for all f'€ ¢(B)}.
Next we put
QL (H)= I1 H; forall Be R’ (SP16)

1< j<x(H) with H;er(B)

and we call Q}(H) the strict B-slice of H, and we note that then Q}(H) € R!, and we
recall that

for all B€ R* we have
7™(B)= 7(B) \ 7'(B) (SP17)
= {f€ 7(B): noc(f, f')> A(B) for some f'€ o(B)}.
We also put

Oy gy (H) = 11 H; forall B€ Te R} (SP18)
1<j<x(H) with Hye*(T,B)

and we call Q77 ) (H) the strict (T, B)-slice of H, and we note that then 7. ) (H) € RS,
and we recall that

for all B€ T € R* we have
™(T,B)= 7(T,B)\ 7'(B) (SP19)
= 7*(B)\ Upepr,5)7(B') = 7" (B)\ UpenrzT(B)-
Now clearly
Qrp) (H) = Y (H)Qp 5y (H) for all B Te R! (SP20)
"where

{for all B€ R’ we have (SP21)

degy Y (H) = degyQp(H) — degyQp (H).
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for all B€ T € R' we have

degy U7 5y (H) = degyQp(H) - Z deg,Qp (H). (SP22)
B'ep(T,B)

To describe the above Y-degrees more precisely, given any z= z(X) € k((X)), 0< V€ Z,
and We Z, we define the modified X-initial-coefficient of H relative to [z, V, W], to be
denoted by mincoy|z, V, W|(H), by putting

mincoy|z, V, W](H) = incoy H(X", z(X) + X" Y)

and, given any & C R, we define the strict X-initial-coefficient of (H,&) relative to
[z, V, W], to be denoted by sincox[z, V, W|(H, &), and the primitive X-initial-coefficient of
(H, &) relative to [z,V, W], to be denoted by pincox[z, V, W|(H, &), by saying that

whereas

Recall that

{ﬁH:Omm

we have sincoy[z, V, W|(H, &)= 1 = pincoy[z, V, W|(H, &)

~(if H # 0 then, upon letting

mincog[z, V, W(H) = po [ (¥ — ) with 0% o € k and ;€ k

1<i<y
and ©¢(Y) = mincox|z, V, W](f) for all f€ &
and 0" = {i€{1,...,v} : ©7(u;)= 0 for some f €5}
and o' = {ie{l,...,v} : ©y(w;) # O for all fe &},
we have sincox[z, V, W|(H, §) = H(Y — i)
iea*

and pincoy [z, V, W(H, &)= [ [ (¥ — ).

\ ieo’

(for all B€ R’ we have 0 A(B) < k,

4 and for all B€ R™* we have (SP23)

|E(B,Y)=y?'®/PE) _ E\(B) with Ey(B) € k.

Now by (MBP2) we see that

for any B€ R we have:
Ey(B)=0 < B € R*(t(B), B) |
= D*(B)=D(B) and r*(B) = 1(B)
~ and A(B) # ¢;(B) for 1 < i < p*(B)

(SP24)

and by (MBP1) we see that

for any B’ and B” in R with 7(B')= 7(B") and A(B')= A(B")

 we have: 7*(B') N 7*(B")= 0 « E(B,Y) and E(B",Y) haveno (SP25)

common root in k
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and ‘by (SBP4) we see that
for all B€ R™* with (z,V, W) €e(B) and f € 7"(B) with degyf=n
{we have mincox(z, V, W](f) = A(B)E(B, y)"/P"®),
By (SP25) and (SP26) we conclude that
(for all BE R* and (z,V, W) € €(B) we have
that sincox|z, V, W](H, o(B)) € k[Y] is monic in ¥
ﬁ with deg, 0 (H)= D(B) degy sincox[z, V, W|(H,o(B)) € D(B)Z (SP27)
and pincoy(z, V, W|(H,o(B)) € k[Y] is monic in ¥ )
_with degy Q2 (H)= D(B) degy pincoy[z, V, W](H, o(B))€ D(B)Z.

(SP26)

The factorization (SP20) can be refined still further when the finite tree T is strict. To see
this we put

Qg gy (H) = 1T H; forall B> Bin R’ (SP28)
1<j<x(H) with H;eT(B',B)

and we call {0  (H) the strict (B', B)-slice of H, and we note that then 2y 5 (H )e R,
and we recall that :

for all B> B in R’ we have

*(B',B)=7*(R*(B',B)) \ 7(B') where (SP29)

R*(B',B)€R’ is given by o(R*(B',B))=c(B') and A\(R*(B', B)) =A(B).
Now clearly

vaE= [[ QpgH) foral BeTER" (SP30)
B'€p(T,B) :

where
for all Be T R! and B' € p(T,B) we have B> Bin R,
and in turn for all B> B in R’ we have (SP31)
degy Uy 5y (H) = degyQpe(p 5y (H) — degy{ly (H) '
and
(for all BE T€ R with A(B)= l(r) we have p(T,B)= 0, |
whereas for all B€ T€ R with \(B)= I; for some i < h(T) we have

j o(T,B)={BeT: \B)=Nn} ando(B)= [] o(B) ~ (SP32)
B'ep(T,B)

| which is a partition of o(B) into pairwise disjoint nonempty subsets.
To get more information about (g (H), first we recall that
(for any f € R and B€ R,

R*(f,B) is the unique member of R™UR’,

with o(R*(f,B))={f}
such that A(R*(f, B))= min{noc(f, f') : f'€ 7(B)}

(SP33)
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and we put

ordxHo(X)+ > O;S(R*(H;,B)) incase BE R
1<j<x(H)
S(H,B)= (SP34)
ordyHo(X) + Y ordxH(X,Y) in case B R,
1<j<x(H)

(with the understanding that if H=0 then S(H,B)= 00), and we call S(H,B) the
B-strength of H, and by (BP4) and (BP5) we see that

for any B€ R* and (z, V, W) € ¢(B) we have
ordxH (X", z(X)+X"Y)= VS(H,B),

(SP35)
and for any B€ R’ we have
ordyH(X,Y)= S(H, B).
We also put
A™(H,B)= 1T A(R*(H;,B)) for all B R (SP36)

1<j<x(H) with Hyer*(B)
and we call A**(H, B) the doubly strict B-constant of H, and we put
D**(H,B)= (degyQ5(H))/D*(B) for all B R* (SP37)

and we call D**(H,B) the doubly strict B-degree of H, and we note that, in view of
(SBP4),
for any B€ R™ we have
0% A™(H,B)€ k and 0 < D**(H, B) € Z (SP38)
with: D**(H,B) > 0 < Q3(H) # 1

and

for any B€ R™ and (z, V, W) € ¢(B) we have
{ y ( )€ €(B) (sP39)

mincox|z, V, W](2(H)) = A**(H, B)E(B, )" #5),
To collect together information about the Y-degrees of Qp(H), QO (H), Q5 (H), in view

of (SP13) and (SP27), we see that :
(for any B€ R* we have
degy(2p(H) = degyQp(H) + degy 0 (H)
and for any (z, V, W) € ¢(B) we have
degyz(H)= D(B) degy pincoy[z, V, W|(H, o(B))
§ and degyQ3(H) = D(B) degy sincox(z, V, W|(H, o(B)) (SP40)

and if H# 0 then we also have |

deg, mincoy [z, V, W](H) = degy pincoy[z, V, W|(H,o(B))

+ degy sincox(z, V, W]|(H, o(B))

\and deg,Qp(H)= D(B)degy mincox[z, V, W|(H).

. w:?

&

. w,,,}f



Yy

Jacobian of meromorphic curves 143

Next we recall that

(for any B€ R® we have

R*(B)={B € R*UR : \(B')= \(B) and o(B")=7"(B')N o(B)}

ﬁ and o(B)= [] o(B) (SP41)

B'ER*(B)

| which is a partition of o(B) into pairwise disjoint nonempty subsets
and we put
R*(H,B)= {B'€ R*(B): Qp(H) # 1} forall Be R (SP42)
where we note that R*(H,B) is a finite set whose members may be called the strict
B-friends of H. We also put
~-D(B)+ Y D*(B) forall Be R
B'€R*(B)
~1+ > 1 forall BER,
B'eR*(B)
(with the understanding that if R*(B) is an infinite set then D'(B)= o), and we call D'(B)
the primitive degree of B.!> Moreover we put
~D(B)+ 5 degyf forall BER’
fea(B)
-1+ Z degy f ‘forallBeR‘;o
fea(B)
(with the understanding that if o(B) is an infinite set then D" (B)= c0), and we call D"(B)
the doubly primitive degree of B,'* and we note that!®
if Be R is such that R*(H, B)= R*(B)
| and Qp(H) is devoid of multiple factors in R,

D'(B)= (SP43)

D'(B)= (SP44)

D(B) +D"(B) in case Be R (SP45)
then deg,Qp(H)=
1+D"(B) in case B€ R’..
Now clearly
for all Be R’
— O *
we have. Q(H) = () (H) (SP46)

and QH)= [[ %@
B'cR*(H,B)

13 Observe that if R*(B) is a finite set then I/ (B) is a nonnegative integer; in particular, ifBER),
then card(R*(B))= 1, where card denotes cardinality, and hence D/(B)= 0. We shall use D'(B)
mainly when R*(H, B) = R*(B); in that situation, R*(B) is obviously a finite set and hence D/ (B) is
a nonnegative integer. For the use of D'(B) in such a situation, see (SP60) and (SP70).

14 Observe that if o(B) is a finite set then D”(B) is a nonnegative integer. Also observe that definitions
(SP43) and (SP44) would look more natural if for every B€ R’ we put D(B)= D*(B)= 1.

15 Ap element & in R is devoid of multiple factors in R means that ® # 0 and the ideal ©R is its own
radical in R. ’
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and, in view of (SP23) to (SP26),
for all B'€ R*(B) with B€ R* we know that
E(B',Y)€-k[Y] is monic in Y having no multiple root in & (SP47)
and deg,E(B',Y)= D*(B')/D(B')= D*(B')/D(B) > 0

and

{for all B's B" in R*(B) with B R® we know that (sP48)

E(B'.Y) and E(B",Y) have no common root in k
and

for all B€ R’ with (z,V, W)€ €(B) we know that
mincox|z, V, W](Qz(H)) is a nonzero member of k[Y] (SP49)
which has no common root with E(B',Y) in k for any B € R*(B).

By (SP10) and (SP20) we see that

for any T € R* we have:

Ho= [] Q@) edegyHo= 3 deg,Q(H). . (SPSO)
Roo(T)#BET Roo(T)#BET

In the next section we shall show that (SP50) is applicable when H= Fy where F € R is
devoid of multiple factors. In the section after that we shall apply (SP30) to the case when
H is the jacobian J(F,G) of F and G in R. To prepare for all this, until further notice,
given any B€ R’ with (z, V, W) € ¢(B), for every &= ®(X, Y)€ R let us put

o= d(X,¥)=d(X" z(X) +X"Y) and
I(®) = mincox[z, V, W](®) = incox®.
Then by (SP13) we see that ’
degy(2p(H) = D(B)degy!(Qp(H))
and I(H)= pl(Qp(H)) (SP52)
where € k is such that : u=0< H =0

(SP51)

and by the chain rule for partial derivatives we see that

if IH)& k
{then I(Hy)= (I(H)y. (SPs3)
Also clearly
{for any U(Y) € k[Y]\ k we have (spsa)

0 5 Uy (Y) € k[Y] with degy Uy (Y)=—1+ deg, ¥(¥)
and '
for any (YY) € k[Y] and € k and 0< v € Z we have:
U(Y)= (Y — )" ¥'(Y) where ¥'(Y) € k[Y] with W) #0 (SP55)
= Uy(¥)= (Y — )"~ U"(¥) where U"(Y) € k[¥] with T" (i) # 0.
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By (SP46) we see that
1Qp() = 1) [ 1) (SP56)

B'eR*(H,B)
Moreover, by (SP38), (SP39) and (SP47),
(for all B'€ R*(H,B) we know that
19 (H)) = A™ (H,B)E(B, Y)”" )
where 0 £ A™(H,B')€ k,0 < D**(H,B') € Z, (SP57)
E(B,Y)€ k[Y] is monic in ¥ having no multiple roots in ,
L and degyE(B',Y)= D*(B)/D(B) > 0.
Likewise, by (SP48) and (SP49),
(for all B'# B" in R*(H,B) we know that
E(B',Y) and E(B",Y) have no common root in ,
and we also know that 1(Q(H)) is a nonzero member of k[Y] (SP58)

which has no common root with H E(B',Y) in k.
L B'€R*(H,B)

e o

By (SP51) to (SP58), we conclude that
(if QB(H) # 1
then degyI(Qp(Hy))=—1 + degy/(Qp(H))
and I(Qp(Hy))=L(Y) [] E®, y)P " HE)-
B'eR*(H,B)
where 0 L(Y) € k[Y] has no common root with
I E®.Y)ink

B'cR*(H B) :

and degyL(Y)=—1 + degyI(Q(H))+ Z degyE(B',Y)
B'eR*(H,B)

| with degyE(B, ¥) = D*(B')/D(B) for all B'€ R*(H,B).

Now if R*(H,B)= R*(B) then clearly Qp(H)# 1= Q(H) and hence in particular
degyI(€;(H))= 0 and therefore in the situation of (SP59) we get

degyL(Y)=—1+ »  [D*(B")/D(B)]=D'(B)/D(B)
B'cR*(B)

(SP59)

and in view of (SP26) we have pincoy[z, V, W](Hy, o(B))= puL(Y) with 0 # p€ k, and
hence

degypincoy(z, V, W|(Hy, o(B)) = degyL(Y) = D'(B)/D(B).
Thus ‘
if R*(H,B)= R*(B),
then Qp(H) # 1 (SP60)
and degy pincoy [z, V, W|(Hy, o(B))= D'(B)/D(B).
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In view of (SP40) and (SP51), by {(SP59) we see that
if Qp(H)# 1
then degy mincoy[z, V, W](Hy)=~1 + degy mincoy[z, V, W] (H) (SP61)
and degyQp(Hy)=—D(B) + deg,Qz(H).
In view of (SP51), by (SP56) to (SP59) we also see that
D™ (Hy,B')= —1+D*(H,B') forall B'c R*(H,B). (SP62)
By (SP62) it follows that
{if Be R and D*™*(H,B)> 0
then D**(Hy,B)=—1 + D** (H,B).
In view of (SP40), by (SP60) and (SP61) we see that
if R*(H,B)= R*(B),
then degy sincox[z, V, W|(Hy,o(B))=—1 (SP64)
— [D'(B)/D(B)] + degy mincox|z, V, W|(H).
In view of (SP40), by (SP60) and (SP64) we see that
if R*(H,B)= R*(B),
then degyQg(Hy) = —D(B) + deg, Qs (H)
and deg, % (Hy) = D/(B)
and degy€)y(Hy) = —~D(B) — D'(B) + deg, Qs (H).
Turning to the jacobian, upon letting
A=J(H,G) and A=J(H,G) with GER

by the chain rule for jacobians we get

AX,y)=vx"*V-1A(x, v)

(SP63)

(SP65)

and now, assuming that Qp(H)# 1= Qp(G) and G# 0 # S(G, B), we have

H(X,Y)=I(H)X"SHB) (terms of degree > VS(H, B) in X)
with I(H) € k[Y] \ k, and

G(X,Y)=I(G)X"® L (terms of degree > VS(G,B) in X)
with 0 # I(G) € k and VS(G, B) # 0, and hence we get

A(X,Y) = — VS(G, B)I(G)(I(H)) , X SHB)+VS(G.5)-1

+ (terms of degree > [VS(H, B)+ VS(G, B)] in X)
and therefore by (SP52) we have
| I(J(H,G))= pl(Hy) with 0 pek

and hence by (SP51) we get

mincox[z, V, W|(J(H, G)) = u mincoy[z, V, W|(Hy) with 0 # puek.
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Thus
if Qp(H)# 1 and 0 # G€ R is such that Q5(G)= 1 and S(G,B) # 0
then mincox(z, V, W](J(H, G)) = p mincox[z, V, W|(Hy) with 0 5 p€ k
and hence pincoyz, V, W](J(H, G), o(B)) = pincoglz, V, W](Hy, o(B))
and sincox[z, V, W|(J(H,G), o(B)) = sincox[z, V, W](Hy, o(B)). ~ (SP66)
In view of (SP40), by (SP66) we see that '
(if Qp(H) # 1 and 0 # G€ R is such that Qp(G)= 1 and S(G,B)# 0
then degy mincoxlz, V, W](J(H, G)) = degy mincox|z, V, W](Hy)
and degy pincoy[z, V, W](J(H, G), o(B)) = degy pincoy|z, V, W] (Hy, o(B))
and degy sincox(z, V, W](J(H, G), o(B))
= degy sincox(z, V, W|(Hy, o(B))
and degyQp(J(H, G))= degyQp(Hy)
and degy Q5 (J(H, G)) = degyQy(Hy)
| and degyQ3(J(H,G))= deg, Q0 (Hy).
To consider another similar case, just for a moment let j(H, G) stand for (HG)y; then
upon letting
§=j(H,G) and 6=j(H,G) with GER
by the product rule for derivatives we get
5(X,Y)=X"5(X,Y)
and now, assuming that Qp(H)# 1= Q5(G) and G # 0, we have
HX,Y)= I(H)X"S#B) 1 (terms of degree > VS(H, B) in X)
with I(H) € k[Y] \ k, and
G(X,Y)=I(G)X"*©®) + (terms of degree > VS(G,B) in X)
‘with 0 # I(G) € k, and hence we get
S(X, Y) =I(G) (I(H))YXVS(H,B)+VS(G,B)
+ (terms of degree > [VS(H,B) + VS(G,B)] in X)
and therefore by (SP52) we have
I((HG)y)= pI(Hy) with O0# pek
and hence by (SP51) we get
mincoyz, V, W]((HG)y) = p mincox[z, V, W](Hy) with 0 # pe k.

(SP67)

Thus

(if Qp(H)# 1 and 0 % G€E R is such that Qp(G)=1

then mincox|z, V, W]((HG)y) = p mincox|[z, V, W|(Hy) with 0 # p€ k

and hence pincoy[z, V, W]((HG)y, o(B)) _ (SP68)
= pincoy[z, V, W](Hy, o(B))

| and sincox[z, V, W]((HG)y, o(B)) = sincox[z, V, W](Hy, o(B)).

.
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In view of (SP40), by (SP68) we see that
(if Qp(H)# 1 and 0 # G€ R is such that Q5(G)=1 . _
then degy mincox[z, V, W|((HG)y) = degy mincox|z, V, W] (Hy)
and degy pincoy|z, V, W|((HG)y, o(B)) = degy pincoy[z, V, W](Hy, o(B))
and degy sincox[z, V, W|((HG)y, o(B))
= degy sincoy [z, V, W|(Hy, o(B))
and degyQp((HG)y)= degyQp(Hy)
and deg, y((HG) ) = degy Uy (Hy)
(and degyQ3((HG)y)= degyQp(Hy).

(SP69)

~ Abandoning notation (SP51), let us summarize results (SP60) to (SP69) as lemmas
(SP70) to_(SP75) stated below.

Lemma (SP70). If BE R’ and F € R are such that R*(F, B) = R*(B), then Qp(F)+# 1 and
we have

JdngQB(Fy) =—D(B) + deg,Qp(F)
and deg, Qs (Fy)= D'(B)

(and degyQy(Fy)=—D(B) — D'(B) + deg,Qp(F)

and for every (z,V,W) € ¢(B) we have

(degy mincox(z, V, W](Fy)= —1 + deg, mincoy|z, V, W|(F)
and degy pincoy|z, V, W|(Fy,o(B))= D'(B)/D(B)

and degy sincoy [z, V, W|(Fy, o(B))

(  =-1-[D'(B)/D(B)] + degy mincox|z, V, W](F).

. Lemma (SP71). If BE R’ and F € R are such that Qp(F)# 1, then we have
degyQp(Fy)= —D(B) + deg,Q3(F)
and for every (z,V,W) € ¢(B) we have
degy mincoy [z, V, W](Fy) =—1 + degy mincox |z, V, W](F).

Lemma (SP72). Given any BE R’ and F € R, for every B'€ R*(F, B) we have
D*(Fy,B)= —1+ D" (F, B).

Lemma (SP73). If BE€ R”* and F € R are such that D** (F,B)> 0, then we have
D*(Fy,B)= —1 + D**(F,B).

Lemma (SP74). If B€ R’ and F € R are such that Qp(F) # 1, and 0 # G € R is such that
Qp(G)=1 and S(G,B)+# 0, then we have

degyQ(J(F, G)) = degyQp(Fy)

and degyQp(J(F, G)) = degy Y, (Fy)

and degy Q3 (J(F, G)) = degy 23 (Fy)
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and for every (z,V,W) € €(B) we have
deg, mincox[z, V, W|(J(F, G), o(B)) = degy mincox [z, V,W|(Fy,o(B))
and degy pincoy [z, V, W|(J(F, G), o(B)) = degy pincoy [z, V, W](Fy,o(B))
and degy sincox[z, V, W|(J(F, G),o(B)) = degy sincox(z, V, W](Fy, o(B))
and actually we have
mincoy |z, V, W](J(F, G)) = u mincox|z, V, W)(Fy) with 0 # p€ k,
and pincoy [z, V, W|(J(F, G), o(B)) = pincoxlz, V., W)(Fy, o(B)),
and sincox|z, V, W](J(F,G), o(B)) = sincox[z, V, W|(Fy,o(B)).

Lemma (SP75). If BE R’ and F € R are such that Qp(F)# 1, and 0 # G€ R is such that
Qp(G)=1, then we have
degyQs((FG)y)= degys(Fy)
{ and degyQUy((FG)y) = degyQp(Fy)
and degyQ((FG)y)= degy(p (Fy)

and for every (z,V,W) € €(B) we have

degy mincox(z, V, W]((FG)y) = degy mincox(z, V, W](Fy)
and degy pincoy [z, V, W]((FG)y,o(B)) = degy pincog [z, V, W|(Fy,o(B))
and degy sincox[z, V, W]|((FG)y, o(B)) = degy sincox [z, V, W|{Fy,o(B))

and actually we have

mincogz, V, W]((FG)y) = p mincox|z, V, W]|(Fy) with 0 # p€ k,
and pincox[z, V, W|((FG)y, o(B)) = pincox [z, V, W](Fr, o(B)),
and sincox[z, V, W]((FG)y, o(B)) = sincoxz, V, W\(Fy,o(B)).

Now, as a consequence of (SP45) and (SP70) we shall prove the following lemma:

Lemma (SP76). If BE€ R’ and F € R are such that R (F,B)= R*(B) and F is devoid of
multiple factors in R, then Qp(F)#1 and degyQp(Fy)=D"(B) and degyQy(Fy)=D'(B).

Namely, if BE R’ and F € R are such that R*(F,B)= R* (B) then by (SP70) we get
Qp(F)+# 1 and degyQp(Fy)= —D(B) + degyQp(F) and degyQp(Fy)= D/(B); if F is
also devoid of multiple factors in R, then by (SP45) we know that degyQp(F)=
D(B)~+ D"(B) and hence we get degy{s (Fy)= D"(B). Likewise, if B € R’ and FER
are such that Qp(F) # 1 then clearly degy$2s(Fy)= -1+ degyQp(F); if F is also devoid
of multiple factors in R, then by (SP45) we know that degyQp(F)= 1+ D"(B) and hence
we get degyQp(Fy) = D" (B). This completes the proof of (SP76).1¢

Next, as a consequence of (SP74) and (SP75) we shall prove the following lemma:

Lemma (SP77). Given any F € R\ k((X)) and 0 # G€ R, upon letting T=T(FG), we
have the following. ‘ :

16 We may tacitly use the obvious facts that: (1) if B& R’ and F € R are such that R*(F,B) = R*(B)
then Qp(F) # 1; (2) for every B€ R’_ we have Y(B) = 0; (3) for every B€ R and every GE R we
have 5(G)= 1 and hence degy€23(G)=0.



150 Shreeram S Abhyankar and Abdallah Assi

(SP77.1) If BE T is such that Q5(G)= 1 and S(G,B)+ 0 then
Qp(F) # 1
and
degyQp(J(F, G))= degyQs(Fy) and deg,Qu(J(F,G))= degy Q5 (Fy)
and for every B' € ©(T,B) we have
Qp(F) #1=0p(G) and S(G,B)+#0
and
degyQp (J(F, G)) = degyQu(Fy) and degyQy(J(F,G))= deg, S, (Fy).
(SP77.2) If BE T is such that Qp(G)= 1 then
Qp(F)# 1
and
degyQ25((FG)y)= degyQp(Fy) and degyQp((FG)y)= degy(y(Fy)
~ and for every B'€ n(T,B) we have
Qp (F)# 1= Qp(G)
and
degyQp ((FG)y)= degyQp(Fy) and degyQ ((FG)y)= degyQ (Fy).

Namely, if B€ T is such that Qp(G)=1 then obviously QB(F)# 1 and for every
B'e n(T, B) we have Qp (F) # 1 = Qp, and by (BP5) we also see that if B € T is such
that €23(G) = 1 then for every B’ € (T, B) we have S(G, B’ )= S(G, B). Therefore, in case
of BE T\{Rw(T)}, our assertions follow from (SP74) and (SP75). Moreover, if B=
Roo(T) and Qp(G) = 1 and S(G, B) # 0, then by the equation J(F,G) = FxGy — FyGyx
we see that J(F, G) = —FyGx with 0 # Gx € k((X)) and hence degyQp(J(F, G)) = deg,
Q5(Fy) and degy Q3 (J(F, G)) =0 = deg, Y, (Fy). Likewise, if B= Ry (T)and Qp(G)=1,
then by the equation (FG), = FGy + FyG we see that (FG)y= FyG with 0 # G € k((X))
and hence degyQz((FG)y) = degyQp(Fy) and degy(Q3((FG)y) = 0 = degyQ(Fy). This
completes the proof of (SP77).

Now we shall prove the following lemma:

Lemma (SP78). For any ® € R, upon letting T=T(®), we have the Jollowing.

(SP78.1) Given any Be T with (T, B) # 0, for every B'€ p(T,B) there is a unique
a(B') € R*(B) with o(a(B'))= o(B'), and B' —a(B') gives a bijection of p(T,B) onto
R*(B). Moreover, for every B'€ p(T, B) we have

* / . b
D(B)= {D (a(B')) in case BE R

1 in case B¢ Rgo
and hence we have
~DB)+ > D(B) incase BcR
B'ep(T,B)

-1+ Z D(B') in case BER’,
B'ep(T,B)

D'(B)=

where we note that if B € R’ | then card(p(T, B))= card(R*(B)) = 1.
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(SP78.2) Given any BE T with w(T,B)=0, for every f€ o(B) there is a unique
B(f) € R*(B) with f€ o(8(f)), and f—B(f) gives a bijection of o(B) onto R*(B).
Moreover, for every f € o(B) we have

{D*(ﬂ(f)) in case BE R’
1

degyf =
Y in case Be RZO

and hence we have
D(B)= D'(B).
(SP78.3) For every B€ T we have
D'(B)=D'(B)+ » 6 D(B).
B'en(T,B)

Namely, the proofs of (SP78.1) and (SP78.2) are straightforward. We shall prove
(SP78.3) by induction on card(n(T, B)). In case of card(w(T, B)) = 0 our assertion follows
from (SP78.2). So let card(w(T,B))> 0 and assume true for all smaller values of
card(n(T, B)). Then, by the induction hypothesis, for every B’ € p(T,B) we have

DH(B,>: D/(B,)+ Z D/(B//)
B'en(T B
and hence by the definition of D" (B') we get
DB)+ S D(B)=-DB)+ ) degyf.
B’en(T,B) fea(B")

Summing both sides of the above equation as B’ varies over p(T,B), we get

n
Z D{(Bl)z—{ Z D(B')J -}—{ Z degyfi\
B'ep(T,B) )

Ben(T,B) fea(B
and by (SP78.1) we have

~D(B)+ »_ D(B) incaseB€ R
B'ep(T,B)
~1+ Y D(B) in case BE R,,.
B'ep(T,B)

D'(B)=

By adding the above two equations we get

— D(B) + Z degyf in case BE R’

fea(B)
D'(B) + D'(B)=
B@%,B) -1+ Z degyf in case B€ Rboo
fea(B)

and hence by the definition of D”(B) we conclude that

D'(B)=D(B)+ Y DB
B'en(T,B)

This completes the proof of (SP78.3).
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i

As an immediate consequence of (SP78.3) we get the following lemma:

Lemma (SP79). Let BE T=T(®) with ®c R be such that: degyQp(H)= D"(B),
degyQp(H) = D'(B), and degy {2y (H) = D'(B') for all B' € 7(T, B). Then

degyp(H) = degy QO (H) + Z degy Q2 (H).
B'en(T,B)
For any Be T=T(®) with ®€ R, it is clear that s (H) [1penir,s) ¥ (H) divides
Q(H) in R and hence, as a companion to (SP50), and as a principle applicable in the
situation of (SP79), we get the following lemma:

Thus Lemma (SP80). For any B€ T=T(®) with ®€ R we have:
WH)=0H) [ @)

B'en(T,B)

& degyQp(H) = deg, O (H) + Z degy )y (H).
B'en(T,B)

8. Factorization of the derivative

If T=T(F) where Fe R\ k((X)), then for every B T we clearly have R*(F, B) =R*(B).
Therefore by (SP76), (SP79) and (SP80) we get the following derivative factorization
theorem.

Theorem (DF1). Let T= T(F) where Fc R \k((X)) is devoid of multiple factors in R.
Then we have the Jollowing.

(DFL.1) For any B€ T we have
degy5(Fy)=D"(B) and deg,,(Fy)=D/(B)
and
Qs(Fr)=Q(Fy) [ Q).
B'en(T,B)
where for every B' € =(T, B) we have
degyQp (Fy)=D'(B) and deg, (Fy)=D/(B).
(DF1.2) By taking B = Roo(T) in (DF1.1), for the monic part (Fy) ., of Fy we get

CONC | Y

BET\{R(T)} !

Remark (DF2). In the factorization (DF 1.2), the factor Qp(Fy) really occurs, i.e., its
Y-degree D'(B) is nonzero, if and only if either: (*) card(R* (B))=1 and for the unique
B’ < R*(B) we have D* (B')> D(B), or: (**) card(R*(B)) > 1. Note that in the irreducible
case, i.e., when F= fe RY, (*) is always satisfied. Moreover, in the nontrivial irreducible
case, i.e., when F=f € R' with degyf = > 1, let us put

; {h(C(f)) if e1(f)¢ Z

Trel) -1 it a(f) ez
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and for 1 <i < h let us put

s alf) ifa(f)gZ
Y lan(f) ifa(flez

and
__[nlam(e))  iEn()gZ
Y ria(gm(f) ifn(flez
andforl_<_i§ﬁ+1letusput

5 di(m(f)) ifalf)gZ
Yl dia(m(f)) if a(f)e Z.

Then & is a positive integer, 1< cz< - < & are in @\ Z, and n= d1 > d2>
dj,., = 1 are integers with d; = O(modd,+1) for 1 < i < h. Let By= (o(Bo), (Bo))e Rb
with o(Bo)={f} and A(Bg)= —oc. For 1<i<h let Bi=(0(B;),\(B))ER with
a(B,—) {f} and \(B:)=¢. Then T=T(f)={Bo,Bi,...,B;} with R o(T)= By <
Bi<---<Bj,and for 1 <i< < h we have

_;
S(B;) = (di#;)/n* and D(B;)= n/d;
and |
D*(B))= n/a,.ﬂ where {B)}=R*(B:).

Now

)= (/)= T ()

1<i<h

andforlgigﬁwehave

degy QY (fv)=D'(B:)= —D(B;)+ D*(B))= (n/ dip1)—(n/d;)> 0.

Let us factor fy into irreducible factors by writing

=n H @ with f9) e R

1<j<x
andfor1_<_i§f11etus put

= (e {1, x}: noe(f, £9) = &1}
Then

o= I17

1<i<h
is a partition into pairwise disjoint nonempty sets, and for1 <i< h we have

O, (fr)= [V with 0 < degyfV) € (n/d)Z forall j€i*

je
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and
int(f, U (fr)) = nS(B;) degyQy (fr) = [(di/dir1) — 117

where int denotes intersection multiplicity.!”

Example (DF3). Now, if we are in the nontrivial irreducible case of F=f¢& RY
with degyf=n > 1, and if A(c(f))=1 with ¢;(f) ¢ Z, then the conclusions of the
above Remark (DF2) say that Qp (fy)=(1/n)fy with 1nt(f fr)=m—1)m(f), and
noc(f, fU) = ¢1(f) =mi (f)/n for every irreducible factor fU) of fy. To verify this in a
particular situation, by taking (w1(X), ..., Wa—1(X),wn(X))=(0,...,0,X?) in Example
(TR3) of §6 we have

F(X,Y)=f(X,Y)=Y" +X° € R® where 0 # ¢ € Z with GCD(n,¢)= 1
and hence A(T(f))= h(f)= 1 with m;(f)= e and
Io(T(f))= —co and L(T(f))=c1(f)=¢/n

and upon letting

B;e R with o(B;)= {f} and \(B;)) = L(T(f)) for 0 < i < 1
we have

T(F)=T(f)={Bo,B1}
with

D'(By) =0and D'(B;)=n—1.

Now clearly fy = n¥™"!, and hence Resy(f, fy) = X" V¢ and f) =¥ for 1 <j < x=
n — 1, and therefore int(f, fy)= ordx Resy(f, fr)= (n — 1)e= (n — 1)m;(f) and noc(f,
fD)=(1/n)ordx f(X,0) = my(f)/n for 1< j< x=n— 1. This completes the verification.

Example (DF4). Next, if we are in the nontrivial irreducible case of F=f¢€ R with
degyf=n> 1, and if h{c(f))=2 with ¢;(f) ¢ Z, then the conclusions of the above
Remark (DF2) say that Q (fr)Qp, (fr)= (1/n)fr and for 1 <i < 2 we have that: degy
Q% (fy)= D (B) = (n/di1) — (n/d) > 0 and int(f, 2 ()= [(d/dec) 1Ty where
Q% (fr) is the product of all those irreducible factors f 7 of fy for which noc(f, f4))=

c,( f) and moreover for each of these f) we have 0 < degy f\) € (n/d;)Z. To verify this

in a particular situation, in Example (TR4) of §6 we have
FX,Y)=f(X,Y)= (Y>—x%+1)2_x3%+5+2y c R¥ with a€ Z and 0 < b€ Z
with
n=d;=4andd, =2and d3 =1, and
c1(f)=2a+1)/2 and ¢cp(f)=(4a +2b+3)/4, and
[(d1/dy) — 1]ry=4a+2 and [(dy/d3) — 1]ra=8a+2b+ 5

7 The intersection multiplicity int(f,g) of f€ R® with g€ R is defined by putting int(f,g)=
ordyResy(f, g), where Resy(f,g) denotes the Y-resultant of f and g; equivalently, for any z(X) €

k(X)) with f(X",2(X))= 0 where degyf = n, we have int(f, g) = ordxg(X™, z(X)); see pp. 286~
287 of [Ab]. By (GNP7) we see that, given any B€ R’ and He€ R, for every f € o(B) we have
int(f, Q(H)) = nS(B)degyQp(H) where degy f=n.
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and R(T(f)) = 2 with Io(T(f))= —oc and
LT(f) = c1(f)= (a+1)/2 and L(T(f))= 2 f) = (4a+ 26+ 3)/4
and upon letting ‘
B R’ with o(B;) = {f} and A(B;)=L(T(f)) for 0 <i <2
we have
T(f)=T(F)= {Bo,B1,B2}.
with D'(By)= 0 and
D'(B;)=1 and D'(B2) = 2.
Now
fy= 4Y(Y2 _ X2a+1)__ x3a+b+2
and hence by (TR5) of §6 we see that fy= 4yf(f@ where
(X, ¥)=Y—v(X) € R* and v(X) € k((X))

with
ordyv(X)=a+b+1
and ;
XY=+ (X)¥*" e R and v(X) € k(X))
1<i<2
with

ordyv/, (X) > (2a + 1)/2 and ordxvy(X) = 2a + 1.

Comparing coefficients of Y* and Y in the equation fy = 4ff?) we see that v} (X)—
»(X) = 0 and v (X) — v} (X)v(X) = —X?++1 and hence

FO(X, )= Y2+ u(X)Y — X + u(X)".

Applying the quadratic equation formula to the above equation we get the roots of
F@ (x4, Y) to be

¥ = (—1/2)0(X") & (1/2)/4X%% = 3u(x*)

= (=1/2)v(X*) :i:X4“+2\/1 _ (3/4)X-8a—4y(X4)?
= (—1/2) [uX a4+ 4 (terms of degree > 4a + 4b + 4 in X)]

2 34072, [~ (3/4)p2X3%+ + (tems of degree > 8+ 4 in X)
= (—1/2)[uXx*e***+* 4 (terms of degree > 4a + 4b +4 in X)]
+ X% 21 — (3/8)u2x®+* + (terms of degree > 8b+4 in X))
= (—1/2)[ux*+t*+4 4 (terms of degree > 4a-+4b +4 in X))
+ [X%et2 — (3/8)u2X " ¥ 1 (terms of degree > 4a+ 8b + 6 in X)]
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where for the third equality we are using the fact that ordyv(X)

U(X%) = x4 (

=a+ b+ 1 and hence

terms of degree > dq -+ 4b + 4 in X) with 0 #£ pueck

and for the fourth equality we are usin

& the binomial theorem for exponent 1 /2. 1t follows
that -

XY = Y-y (0)][y - Y2(X)] where y; € k(X)) and y,(X) € k((X))
are such that ‘

yi(X) = X2 (u/2)xar4bre | (terms of degree > 4a + 4b + 4 in X)
and

y2(X) = =X (/2 X4 (termg of degree > 4a+ 4b -+ 4 in X).
We also have

FOX*¥) = Y= v(X) where v(X) € k((X)) with ordy = 4a + 4b + 4.
Finally by (TR4) of §6 we have |
F& )= ] r-z(x)]
1<j<4
with
5(X)= (Jx)%2 4 3¢ X)4a+2b+3+(terms of degree > 4a +2b + 3 in X)

where ¢ is a primitive 4-th root of 1 in k.
U we get

By the above expressions for the roots of f and
int(f, f) = 4a + 2 and noc(y, M= (2a+1)/2.

Likewise, by the above expressions for the roots of £ and P we get
int (, f%)=8a+2b + 5 and noc(f, )= (4a+2b+3) /4.

It follows that
U, (fr) =Y with deg, fO) = D'(B)for1 <i<2

and this completes the verification.

Example (DF5). Finally,

that F= ff' with f € R®
pure meromorphic, i.e.,

let us turn to the case of Fe Rt having two factors, i.e., such
and f'€ R!. At the same time let us arrange matters so that F is

FX,Y)=9(X,Y) with ®(X,Y) e kX,Y].

To do this, in Example (TRS) of §6, let us take n > 1 with b=0and a= —1, and

(X, Y)= Y24 KXY "+ iY 4k 4 Y wYie kX, Y]
3<i<n
with
O#H’Ekandoaél%ekandO;énekand ki€kfor3<i<n.

R —
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As explained in (TR5) of §6, we then have .
F(X,Y)=f(X,Y)f (X, Y) with f(X,Y)# f (X, Y)

where
FE Y=Y+ Y wi(X)¥" e R and wi(X) € k(X))
1<i<n
with ‘
ordyw;(X) > ie/nfor 1 <i<n—1and ordgyw,(X)=e=1
and ‘
FX Y=Y+ > wiX)¥’"e R and wi(X) € k(X))
1<i<2
with

ordyw} (X) > ¢ /2 and ordxw(X) = d=-1

and 0 # &' € k and 0 # /K’ € k are the coefficients of X¢ and X in wh(X) and w,(X)
respectively. As explained in (TRS) of § 6, we also have k(T (F))=2 with lo(T(F)) =—00
and

L(T(F))=—1/2 and L(T(F))=1/n

" and upon letting

By R with o(Bo)={f, f'} and A(Bo) =1o(T(F)),
and B; € R with o(B)={f, f'} and A(B) = L(T(F)),
and B, € R with o(B)={f} and A(B2)= L(T(F)),
| and B, € R with o(B})={f"} and A(B3)= L(T(F)),
we have '
T(F) = {Bo,B1,B2, B3}
with D'(By)= 0 and

D/(By)=2 and D'(B;)=n—1 and D'(B;)=0.

Now

Fy= (n+2)Y"* " +ne/X7 'Y+ A + Z (n 42— i)y

3<i<n
and hence by (TR5) of §6 we see that Fy= (n+ 2)f £@ with fO 5 f@ where
AEY=r"+ 3wy R ad u(X)e k(X))

1<i<n—1
with |
ordyv;(X) > ie/nfor 1 <i<n-—2 and ordyv,—1 (X)=e=1

and

FOE =1+ 3 (X)¥*€ R and vj(X) € k(X))

1<i<2
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with 5
ordxvy (X) > €'/2 and ordyv)(X)= ¢ = —1

and 0 # nk'/(n+2) € k and 0 # E/(nm') € k are the coefficients of X¢ and X° in v/,(X) 3
and v,-1(X) respectively. In view of (TR3) of § 6 we see that

@ v)= 1] v - 5(x)]

1<j<n
where z;(X) € k((X)) is such that
z(X) = w/K*X + (terms of degree > 1 in X)
where w is a primitive n-th root of 1 in k, and x* is an n-th root of —k/K' in k, and

fEy=[] r-Zx)

1<j<2
where z/(X) € k((X)) is such that
Z4(X)= (=1Yx*X! + (terms of degree > —1 in X)
where «'* is a square root of —«' in k. In view of (TR3) of §6 we also see that

Axhn= J[ ¥-»x)

1<jSn-1
where y;(X) € k((X)) is such that
Yj(X) = &/A*X + (terms of degree > 1 in X)

where @ is a primitive (n — 1)-th root of 1 in k, and 4* is an (n — 1)-th root of —&/(nk')
in k, and

@y =TT v -y @)

1gj<2 |
where y}(X) € k((X)) is such that |
Yi(X)= (=1)/&"*X~! + (terms of degree > —1 in X)

" where &% is a square root of —ns«/' /(n+2) in k. By the above expressions of the roots of
£F5 0, fO we get

int (f, f) = —n and noc(f, f)= —~1/2, and
int (f', fV) = —2 and noc(f, )= —1/2, and
int (f, @)= (n— 1) and noc (f, f®) = 1/n, and
int (f', f®) = —(n — 1) and noc(f', f@) = —1/2,

and hence

U, (Fy) =19 with degy f®=D'(B;) for 1 <i <2

which verifies Theorem (DF1) in the present situation.
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) To get an example of F € R having three factors, we take F (X,Y)= ¢ X:lA, Y) with
d(x,7)=2(X,Y)— &(0,0) € k[X,Y]. Then by (TRS) of §6 we get F=fff" with

A

Fr4f £ ' f" where (X, Y)=Y€ R" and
o n=r+ S wmriTe R and wi(X) € k(X))

1<i<n—1
with
ordy W;(X) > ie/n for 1 <i<n—2and ordy w,_1(X)=e=1
and
FE Y=Y+ Y #X)Y* e R and #(X) € k(X))
1<i<2
with

ordy W, (X) > €' /2 and ordy W5 (X) = e=-1

and 0 5 x' € k and 0 # A/K' € k are the coefficients of X¢ and X¢ in w}(X) and W,1(X)
respectively. In view of (TR3) of §6 we see that

fartn= ] r-%X)]

1<j<n~1
where ;(X) € k((X)) is such that
%(X) = &’&"X + (terms of degree > 1 in X)

where & is a primitive (n — 1)-th root of 1in k, and £* is an (n — 1)-throot of -4/ ink,
and

= [ ¥ -z

1<j<2
where Z(X) € k((X)) is such that
Z(X)= (—1)/&"*X~" + (terms of degree > —1in X)

where &'* is a square root of —«' in k. By the above expressions of the roots of fandf' it
follows that k(T (F)) = 2 with Io(T(F))= —o© and
W (T(E)) = —1/2 and B(T(F))=1/(n 1)

and upon letting
Boe R with o(Bo) = {f, .f"} and M(Bo) = Io(T(F)),
and By € R with o(By) = {F, 7, 7'} and A(B1) = (T(F)),
and B, B with o(B,) = {F, 7'} and A(B:) = L(T(F)),
and B) e R’ with o(B}) = {#'} and A(By) = L(T(F)),
we have , '
T(F)= {Bo,B1,B2, B3}
with D'(Bg)= 0 and |
D'(B))=2 and D'(B;)=n—1 and D'(B,)=0.
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Now Fy=Fy=(n-+2)f0f®, and by the above expressions of the roots of f, f,
O, 2 we get :

(int (£, f)= ~(n~ 1) and noc(f, fM)= —1/2, and
F,f®)= —2 and noc (#, fM)= —1/2, and

int (", f1)= 1 and noc (7", fM)= —1/2, and

int (£, @)= (n— 1) and noc (f, @)= 1/(n - 1), and
int (7, f®) = —(n—1) and noc (f', @) = —1/2, and
int (7", f®) = 1 and noc (7", /@)= 1/(n — 1),

and hence
QO (Fy) =Y with degy f9= D/(B;) for 1 <i <2

which again verifies Theorem (DF1) in the present situation.

9. Factorization of the jacobian

IfT=T(FG) where F€ R\ k((X)) and 0 G € R, then for every B € T with Q3(G)=1
we clearly have R*(F, B)= R*(B). Therefore by (SP76), (SP77), (SP79) and (SP80) we
get the following jacobian factorization theorem.”

Theorem (JF1). Let T= T(FG) where F€ R\ k(X)) is devoid of multiple factors in R,
and 0 # G € R. Then we have the Jollowing. :

(EL1) If BE T is such that Qp(G) = 1 and S(G, B) # 0 then we have
degyQp(J(F, G)) = degyQp((FG),) = deg,Qs(Fy)= D"(B)
and
degy Y (J(F,G)) = degyQp((FG)y) = degyQp(Fy)= D'(B)
and

BUF,G)=2%UF6) [ %UF )
B'er(T,B)

where for every B' € W(T,B) we have Qp(G)= 1 and S(G,B') # 0 and
degy 2 (J(F, G)) = degyQp ((FG)y) = degy Q2 (Fy) = D'(B')
and
degyQp (J(F, G)) = degy Qi ((FG)y) = degy Y (Fy) = D' (B).
(JF1.2) If BE T is such that Qp(G)= 1 then we have
degyQp((FG)y) = degyQp(Fy)= D" (B)
and :
degyQ((FG)y) = degyQy(Fy)= D' (B)
and

((FG)y)=((FG)y) [ (o))
B'en(T,B)
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where for every B' € m(T,B) we have Qp(G)=1 and
degyQp (FG)y) = degyQp (Fy)= D"(B)

and
degy Oy (FG)y)= degy QY (Fy)= D'(B).

Remark (JE2). The jacobian factorization (JF1.1) was based on (SP80), and it invoked
the jacobian estimates (JE1) to (JE3) of §5 only in the special case when degymincoy
[z, V, W](G) = 0. Elsewhere we shall discuss a more refined Jacobian factorization based
on (SP30) by invoking the general case of (JE1) to (JE3).

Example (JF3). Now let us illustrate Theorem (JF1.1) by the example

F=F(X,Y)=Y"+X°€ R" where 0 # ¢ € Z with GCD(n,e) =1
considered in (DF3) of §8. For G =X we have J (F,G)= Fy and we are reduced to
(DF3)

Example (JF4). Next let us illustrate Theorem (JF1.1) by the example
F=F(X,Y)= (Y- X% x**2ye R witha € Zand 0< b € Z

considered in (DF4) of §8. Again, for G = X we have J (F,G)= Fy and we are reduced
to (DF4). Moreover, for '

G=G6GX,Y)=Y R
we have
J(F,G)= Fx=—(4a + 2)X*F
with ‘
F=F(X, V)= Y+ (Ba+b+2)(da+2)7 X0+ - x2r,
By (TR3) and (TR4) of §86, it follows that h(T(F G)) = 2 with Ly(T(F G))= —co and
W(T(FG))= (2a+ 1)/2 and L(T(FG))= (4a +2b+3)/4
and upon letting .
Boe R with o(Bo)= {F, G} and \(Bo)= lh(T(FG)),
and By € R with o(B;)= {F,G} and A(B1)= L(T(FG)),
and B, € R with o(B,)= {F} and A\(B,) = L(T(FG)),
and B, € R’ with o(B)) = {G} and A(B}) = L(T(FG)),

we have

T(FG)= {Bo, B1, B2, By}
with D/(Bg)= 0 and
D'(B;)=2 and D'(B,) =2 and D'(B})=0.
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By (TR3) and (TR4) we also see that # € R! with

noc(G, F)= (2a + 1)/4 and noc(F,F)= (4a+2b +3)/4

and hence ‘
R F if B=5,

GUFG)={ 77 : N

1 if B=Byor B=B, or B=B,

in accordance with Theorem (JF1.1). Likewise, for
G=G(X,Y)=Y*- X%+l ¢ g
we have

y o 3 — (6a+2b+4)X%HHIE  if 34 h422£0
J(F,G)=J(—X%+*2y G) = ( 5 ) , *
— (2a+1)X*F if 3a+b+2=10

with

L Y+ (2a+ 1)(6a+2b+4)71X% 1 if 301 b2 £0
P B(X,7)= +(2a+ 1)(6a + 2b + 4) 1 a+b+2+#
1 if3a+b+2=0.

By (TR3) and (TR4) of § 6, it follows that h(T(FG)) = 2 with lo(T(FG)) = —oo and

L(T(FG))= (2a +1)/2 and L(T(FG))= (4a+2b + 3)/4

and upon letting

and B € R’ with o(By) = {F,&} and (B
and B, € R’ with o(B,) = {F,G} and \(B,
we have

T(FG)= {By, B, B,}

with D'(By)= 0 and
D'(By)=3 and D'(B,)= 4.

Thus the stem of every bud of T(FG) contains F as well as G, and hence Theorem (JF1.1)
does not predict any factors of J(F, G). This is quite satisfactory when 3a +bh+2 =0
because then J(F, G) = —(2a +1)X?**" and so J(F, G) has no factor involving Y. A parti-
cularly interesting case of 3a + 2b + 2= 0 is the pure meromorphic case when (a, b) =
(=1,1). In that case, as noted in (TR4) of §6, we have F(X,Y)=®(X",Y) where
®(X,Y) € k[X, ] is the variable $(X,Y) = (Y2 — X)2— Y; indeed, then k[X,Y]= k[®, U]
where U(X,Y)=Y?~ X with G(X,Y)= ¥(X"!,7)

Example (JF5). Finally let us illustrate Theorem (JF1.1) by the example
F=F(X,¥)=8(X",Y)
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where

B(X,Y)= V"4 KXY+ RY + 6+ Y mY"PT e kX, Y]

3<i<n

e

with n > 1 and
0#£k'ckand0#Ac€kandkckand sckfor3<i<n

considered in (DF5) of §8 (where we used the notation & and F for the special case of
& = 0). Once again, for G = —X we have J(F,G)= Fy and we are reduced to (DF5).
Note that the affine plane curve ® = 0 is nonsingular (at finite distance) for every k;
equivalently, ®x and ®y have no solution in the affine plane k x k. Moreover, ® is
irreducible for every & # 0, but reducible for £ = 0. In (DF5) we have shown that d has
two or three places at oo, i.e., F has two or three factors in R, according as x 5 0 or
x = 0. Further interest in this nice family of bivariate polynomials & lies in the fact that it
provides a convenient testing ground for the trivariate Jacobian conjecture. To elucidate
this, given any H; € k[Xy,...,X,] where r is any positive integer, let us say that H is a
variable in k[X, ..., X,] to mean that k[X1,...,X,] = k[H1, ..., H,] for some H, ..., H,
in k[X1,...,X,], and let us say that H; is a weak variable in k[Xi,...,X,] to mean that
# 0+ J(Hy,...,H,) € k for some Hy,...,H, in k[Xy,...,X,] where J(H; ..., H,) is the
' jacobian of Hj,...,H, with respect to Xi,...,X,. The reducibility of ® when k=0
shows that ® is not a variable in k[X, ¥]. The reducibility of ® when x = 0 also shows
that ® is not a variable in k[X,Y,Z]. It can be shown that ® is not a weak variable in
kX, Y], at least when n + 1 is a prime number. However, as was pointed out to us by
Ignacio Luengo, it is not known whether @ is or is not a weak variable in k[X, Y, Z], even
when n =2. To see that ® is not a weak variable in k[X,Y], first note that by the
automorphism (X, Y)—((X — Y?)/x/,Y) we can send ® to the polynomial

XY"+RY + 6+ > m¥™ € k[X,Y]

3<i<n

whose degree is n + 1 and whose degree form XY has two coprime factors. On the other
hand, it can easily be shown that if H € k[X, Y] is a weak variable in k[X, Y] of prime

f( degree then its degree form must be a power of a linear form.
’F
References ,
[Ab] Abhyankar S S, On the semigroup of a meromorphic curve, Part I, Proc. Int. Symp. Algebraic
Geom., Kyoto (1977) 240414
[De] Delgado de la Mata F, A factorization theorem for the polar of a curve with two branches
Comp. Math. 92 (1994) 327-375
[KL] Kuo T C and Lu Y C, On analytic function germs of two complex variables, Topology 16
(1977) 299-310 ,
[Me] Merle M, Invariants polaires des courbes planes, Invent. Math. 41 (1977) 299-310
N *f
J



