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Abstract. The characteristics of the most unstable fundamental mode
and the first harmonic excited in the convection zone of a variety of solar
envelope models are shown to be in reasonable agreement with the
observed features of granulation and supergranulation.
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1. Introduction
 
The existence of preferred length-scales in the solar atmosphere is a well established
observational phenomenon which has a satisfactory explanation based on convective
motions in the sub-photospheric layers of the Sun (Beckers and Canfield 1976). A
considerable amount of effort has been invested in the investigation of polytropic
atmospheres (Skumanich 1955; Böhm and Richter 1959). The fluid mechanical
equations for an ideal gas with constant coefficients of viscosity and heat conductivity
were set up by Spiegel (1965) for studying the convective instability. He found that
for a layer of sufficiently small vertical extent the problem of compressible convection
was essentially similar to the Boussinesq approximation. In order to understand
the length scales and lifetimes observed on the solar surface Böhm (1963) calculated
the linear growth rates of convective modes by perturbing the equilibrium solar con-
vection zone model of Böhm-Vitense (1958). In this study the growth rates were
found to increase monotonically with the wave number well past the observed cut-off
and the size-distribution of the observed cells on the solar surface could not be satis-
factorily explained by Böhm’s calculations. Later Böhm (1976) attempted to include
the effects of turbulent conductivity and viscosity on the convective modes. This
investigation which was restricted to the problem of the onset of instability indicated
that the fundamental mode with a wavelength of ∼ 1500 km could be identified with
the granulation by choosing the parameter α occurring in the expression for turbulent
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viscosity to be of order unity; for a larger value of α the first harmonic with a wave-
length of ∼ 30,000 km was identified with supergranulation.

Any reasonable theoretical model must account for the distinct peaks exhibited
by the cellular structures observed on the solar surface. The work of Antia, Chitre
and Pandey (1980; hereinafter referred to as Paper I) was an attempt to explain the
observed motions on the solar surface in terms of linear convective modes excited in a
realistic solar envelope model (Spruit 1977) by incorporating the mechanical and
thermal effects of turbulence through the eddy transport coefficients (Unno 1967).

In the absence of a satisfactory theory of time-dependent compressible convection
the effects of turbulence on the mean flow were parametrized through turbulent tran-
sport coefficients calculated in the framework of the mixing-length formalism of
Böhm-Vitense (1958). Since in the convection zone the turbulent heat conductivity
is orders of magnitude larger than the radiative conductivity, the turbulence is ex-
pected to have a significant influence on the growth rates both through the modula-
tion of the heat flux and through the Reynolds stresses. This was indeed borne out
by the detailed computations of Paper I and it was demonstrated that the most rapid-
ly growing fundamental mode and the first harmonic are in reasonable accord with
the scales of motion corresponding to granulation and supergranulation.

The stability analysis in the earlier calculation of Antia, Chitre and Pandey (1980)
was performed under certain approximations. In order to make the problem tract-
able certain simplifying assumptions were introduced, like the neglect of the per-
turbation of the urbulent thermal conductivity in the expression for the convective
flux and of the perturbation in the adiabatic term occurring in the superadiabatic
temperature gradient. Moreover, the effect of variation of the degree of ionization
in the convective elements was not taken into consideration. This situation is
remedied in the present work to find that all these effects in combination lead to a
damping of the convective growth rates. The turbulent Prandtl number which is a
measure of the relative importance of turbulent viscosity over the turbulent heat
conductivity is treated as a free parameter in the investigation. Thus, in order to
bring the scales of the most unstable modes in accord with granulation and super-
granulation it is necessary to lower the value of the Prandtl number compared to the
value found appropriate in the earlier calculation reported in Paper I.
 

2. Governing equations
 
We adopt the usual hydrodynamical equations for the conservation of mass, momen-
tum and energy as being applicable to a thermally conducting viscous fluid layer.
In the notation of Paper I these equations take the following form:
 

 



Convective instability in the solar envelope 167
 
where Φ is the rate of viscous dissipation given by
 

 
We treat the medium as a perfect gas undergoing ionization and we include the con-
tribution to the pressure due to radiation. In the foregoing equations µ is the co-
efficient of dynamic viscosity, CP the specific heat at constant pressure,  ∇ad is the
logarithmic adiabatic gradient (∂ In T/∂ In P)ad and F is the total heat flux which is
the sum of the radiative flux, FR and the convective flux, FC.For the computation of
the radiative flux we use the Eddington approximation (Ando and Osaki 1975) and
write
 

 
where
 

 
is the intensity of radiation and κ the mean Rosseland opacity. The convective flux
is computed in the usual mixing length formalism by writing
 

 
where the coefficient of turbulent heat conductivity is taken to be of the form
 

 
Here α is the efficiency factor which is of order unity, L is the mixing length and the
mean convective velocity W is given by
 

 
HP is the pressure scale-height, β represents the effect of viscous braking on the con-
vective elements and the factor 
 

 
takes into account the variation of the degree of ionization in the moving element.
The turbulent dynamic viscosity is chosen to have the expression,
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where the turbulent Prandtl number Pt is treated as a free parameter in the present
investigation. 

We have adopted a number of equilibrium solar envelope models in order to study
the instability of convective modes. The requirement for the models is that the phy-
sical run of variables should match with the interior solutions and they should also
be consistent with the solar evolution generating the present radius and luminosity
of the sun. In the solar envelope model due to Spruit (1977) the mixing length para-
meters take the form:
 

 
z measured downwards from the top of the convection zone. We have also generated
a model with the above set of parameters for Q ≠ 1. Moreover, we have computed
the solar convection zone models with the following sets of mixing-length para-
meters:
 

 
For the atmosphere we have adopted the empirical temperature-optical depth

(T—Ƭ) relationship given by Vernazza, Avrett and Loceser (1976), with the upper
boundary chosen a little below the temperature minimum where Ƭ =7×10–4. The
lower boundary for the layer is fixed at a depth of 3·3 × 105 km. There is a pene-
tration of convective elements into these overlying stable layers. Clearly the velocity
does not drop abruptly to zero at the boundary of the convection zone (Ƭ  1), and
there is an overshoot of convective motion into the bounding regions. The height
variation of the convective velocity field given by Canfield (1976) suggests that the
amplitude of granular velocities is an exponentially decreasing function with a scale
height ∼150 km. In order to estimate the coefficient of dynamic viscosity in the
atmosphere we assume a Kolmogoroff spectrum with turbulent velocities propor-
tional to one-third power of the scale-length. We ensure the continuity of the vis-
cosity coefficient across the interface between the convection zone and the atom-
sphere. After taking into account the almost exponential decrease of density with
height, we find the viscosity coefficient drops exponentially with a scale height of
approximately 25 km.

We adopt the spherical geometry and assume that any physical quantity can be
expressed as
 

 

where the subscripts 0 and 1 respectively refer to the equilibrium and perturbed
quantities, (r, q, φ) are the spherical polar coordinates with the radial coordinate r
measured from the centre of the Sun, Ym

l (θ, φ) are the spherical harmonics and ω
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is the growth rate. We linearize the governing equations in the usual manner to
get the following system of equations:
 

 
where
 

 
Here
 

 
is the radiative flux in the steady state and the velocity v is assumed to have the form,
 

 
In deriving these equations we have incorporated the perturbation in the turbulent
heat conductivity Kt including the variation in the specific heat at constant pressure,
CP, the perturbation in the adiabatic term (∇ad T/P) occurring in the superadiabatic
temperature gradient and also included the factor Q in the expression for the convec-
tive velocity arising from the variation of the degree of ionization. We have, however,
neglected the effect due to viscous dissipation in the energy equation which is liable
to influence to certain extent the length scales of most unstable modes, especially the
higher harmonics.
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The total system of equations governing the perturbations is of the sixth order and
we therefore require three boundary conditions at each interface. We have empha-
sized in Paper I that the exact conditions are not very important for convective growth
rates since the boundary conditions are applied a little beyond the convection zone
where in any case the amplitude of the modes falls off very rapidly. Consequently
the convective growth rates turn out to be insensitive to the particular choice of the
boundary conditions. For the purpose of the present analysis we have selected free
boundary conditions, that is, the Lagrangian perturbation in the pressure and the
tangential components of the viscous stress tensor vanish at the surface to give 
 

 
Furthermore, we impose the thermal boundary condition which demands that the
radiation does not come in from infinity, and this gives
 

 
The boundary conditions at the lower interface are found to have no effect whatso-

ever on the convective growth rates since the eigenfunctions decay exponentially
with depth in these regions. We therefore adopt the rigid conditions with no
momentum flux and with the temperature maintained constant at the interface;
that is, we take
 
vr = 0, vh = 0 and T1 = 0. 

The numerical scheme for solving this generalised eigenvalue problem is the same as
that adopted in Paper I. 

3. Numerical results and discussion
 

We attempt to account for the observed motions on the solar surface in terms of
linear convective modes excited in the subphotospheric convection zone. For this
purpose we shall first compute a variety of solar envelope models by integrating the
standard equations of stellar structure. The mixing-length theory first developed,
in the context of stellar structure, by Böhm-Vitense (1958) still remains the only
viable method for treating convective transport in the model calculations. In so far
as the choice of the mixing-length itself is concerned there is no compelling reason
why it should be a constant multiple of the pressure scale height or the density scale 
height, or should be proportional to the distance from the boundary of the convec- 
tion zone. We have therefore selected different sets of mixing-length parameters 
and the characteristic physical values for five models, I—V are summarised in Table 1. 
It is clear that at the base of the convection zone all the models essentially converge 
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Table 1. Physical parameters for various models, ρb, Tb denote the density and temperature at
the base of the convection zone measured from the level Ƭ = 1 and Vmax the maximum convective 
velocity km s–1. L is the mixing-length, Hp, the pressure scale height and Hρ the density scale
height. The parameter Q ≠ 1 except in Spruit’s model (IV).
 

 
 
Table 2. Approximate e-folding times and preferred horizontal wavelengths corresponding to the
most unstable fundamental mode (C1) and the first harmonic (C2) for a variety of models with
different mixing-length parameters over a range of turbulent Prandtl numbers Pt. 
 

 
to the same radiative interior solution. Having obtained the run of the equilibrium
physical quantities with depth, the system of linearized equations is solved with the
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boundary conditions described earlier. The real growth rate ω is then computed as
a function of the angular node number l which is related to the wavelength
 

 
kH being the horizontal wave number and R  the solar radius. For a given value of l
there exists a series of eigenvalues ω, which are classified according to the number of
velocity nodes in the radial direction. Thus the fundamental mode (C1) which has the
largest eigenvalue has no node in the radial velocity component, while the successive
harmonics, C2, C3,.. have one extra node in the radial direction. It is of interest
to enquire whether the resulting unstable convective modes for these models exhibit
preferred length scales and time scales which are in some reasonable accord with
the observed features on the solar surface.

In Table 2 we have summarised for various envelope models the time scales and
scales of motion corresponding to the most unstable fundamental mode (C1) and the
first harmonic (C2) for a number of turbulent Prandtl numbers, 0.1  Pt,  1.5. The
e-folding times and the horizontal wavelengths for the maximally growing funda-
mental mode lie in the range 5–19 min and 1,900–3,400 km respectively over the
range of the turbulent Prandtl numbers considered. The fundamental mode is
evidently not very sensitive to the variation in different parameters, but the first
harmonic is critically affected both by the choice of the mixing-length parameters
and the value of the turbulent Prandtl number. The effect of turbulent viscosity on
the convective growth rates of C1 and C2 modes is displayed in Fig. 1. Here we have
shown for a typical solar envelope model with the mixing-length parameters, α = ,
β = , L=l·5 HP, the growth rate ω (in s–1) as a function of the horizontal wave
number for four values of the turbulent Prandtl number Pt = 0, , 1, 1. It is
readily seen that for each value of the Prandtl number there is a maximal growth rate,
and the damping influence of turbulent viscosity is clearly seen from the trend of the
preferred length scales as well as the associated e-folding times to increase with Pt. 
For non-zero values of Pt, the maximum in the growth rates is found to shift to
lower l’s for successive harmonics, but for the inviscid case (Pt =0) all the modes peak
at about the same value of l(  3000). Thus, without the inclusion of viscosity in the
problem it would not be possible to produce different scales of motion observed on
the solar surface. An important effect brought about by viscosity is that the modes
are highly damped for higher values of the harmonic number and for a given value of
l only the first few harmonics turn out to be unstable.

An inspection of Table 2 immediately shows that for each of the models which we
have investigated there exists a value of the turbulent Prandtl number for which the
time scales and the associated wavelengths of the most unstable fundamental mode
and the first harmonic can be made to agree reasonably well with the observed life-
times and cell-sizes of granulation and supergranulation. Thus, for models I—III the
choice of Pt ~ 1 yields, for the most unstable C1 mode, time scale ~10 min and
length scale ~ 3000 km which are fairly close to the characteristic scales corresponding
to granulation. The time scale for the most rapidly growing C2 mode, ~30 hrs,
is in accordance with the typical observed lifetime of supergranules, but the related
wavelength tends to be on the lower side of the usually quoted diameters of super-
 

≲



Convective instability in the solar envelope 173
 

 

Figure 1. The growth rate ω (s–1) of the fundamental mode (C1), shown by the full curves and 
the first harmonics (C2) shown by the broken curves, is displayed against the horizontal harmonic 
number l for a range of turbulent Prandtl numbers Pt = 0,1/3,1, 4/3. 
 
granules ranging upwards of 10,000 km with a peak around 30,000 km. In models 
IV and V the value of Pt   produces satisfactory lifetimes for granulation and 
supergranulation. But, while the preferred wavelength for the fundamental mode 
comes close to the granular cell-size, the corresponding wavelength for the first 
harmonic is somewhat on the shorter side. 

In the earlier work of Antia, Chitre and Pandey (1980), with the choice of the 
turbulent Prandtl number Pt~1·5 the e-folding time and the associated wavelength 
for the most unstable fundamental mode and the first harmonic turned out to be not 
too far from the observed features of granulation and supergranulation respectively. 
The computation was based on Spruit’s solar envelope model and there were some 
approximations introduced to make the calculation tractable. This situation has 
been remedied and the present investigation incorporates the additional terms arising 
from the perturbation of the turbulent heat conductivity, Kt and the adiabatic gra- 
dient, (∇ad T/P). We have also taken account of the Q-factor in the mean convective 
velocity which was taken to be unity in the previous calculation. With the change in 
the degree of ionization in the moving convective elements, the value of Q varies
between 1 and 2 and this leads to a damping of the convective modes because of the
effective increase in the magnitude of turbulent heat conductivity. There is another
difference in the way the viscosity is treated in the overlying atmosphere. In the
present study we have taken a Kolmogoroff spectrum for the penetrative motion with
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turbulent velocities being proportional to one-third power of the scale length and
also assumed a velocity profile from the observations of the motion at various
heights. With the near-exponential decrease of the density in the atmospheric
layers, the effective viscosity scale height in the regions above the convection zone
turns out to be ~25 km, while in the earlier work we had assumed the viscosity
scale height to be 10 km. The larger viscosity scale height has a more pronounced
stabilizing effect on the convective modes, as in this case the effect of viscous
damping in the overlying layers persists to a larger extent. All these effects
combine to lower the resulting convective growth rates.

The influence of the new terms incorporated in the present investigation is shown
(α = , β = , L = 2 HP, Pt = .) Case (a) corresponds to the earlier calculation of
Antia, Chitre and Pandey (1980) where the perturbation in the turbulent conductivity,
Kt and the perturbation of (∇ad T/P) in the superadiabatic temperature gradient term
are neglected. The dimensionless convective growth rates for C1 and C2 modes
are displayed for the horizontal harmonic number l = 100, 500, 1000, 1500, 2000
and 3000 with the Q-factor taken to be unity. In case (b) the perturbations in Kt and 
(∇ad T/P) are fully included, but the Q-factor is again set to unity, to find that the 
growth rates are lowered over those in case (a). In case (c) the perturbations in Kt 

and (∇ad T/P)  as well as the variation of the Q-factor are taken into account. The 
resulting growth rates are seen to be drastically reduced and in order to bring the 
time scales of the most unstable modes close to the observed solar motions it 
becomes necessary to lower the value of the turbulent Prandtl number over the 
corresponding value (Pt ~l·5) found suitable in Paper 1. 

We cannot show an overwhelming preference for any particular solar envelope
model from the computed eigenvalue spectrum of the convective modes. In fact, it
turns out that for a given set of parameters α and β, it is always possible to construct
an envelope model which, for a selected value of the mixing-length L and the
turbulent Prandtl number gives convective modes in reasonable accord with the 
characteristic features associated with the observed solar velocity fields. However,
 
Table 3. Convective growth rates in units of (3263 s)–1 corresponding to the fundamental mode
and the first harmonic for the solar envelope model with the mixing-length parameters: α =1/2.
ß = l/4, L/Hp=2·0 are listed for various values of the horizontal harmonic number.
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any consistent solar envelope model should yield, for the same choice of the turbulent
Prandtl number, not only the spectrum of most unstable convective modes corres-
ponding to granulation and supergranulation, but should also reproduce the acoustic
modes with the characteristics of five minute oscillations. We hope to discuss this 
problem in a separate communication. 

It should be stressed that we have examined the instability of convective modes in
the framework of the linearized theory. The linear stability analysis yields the
growth rate indicating the manner in which a perturbation begins to grow from an
equilibrium state, while the non-linear effects can alone limit the growing ampli-
tudes of these instabilities. The e-folding time given by the inverse of the growth rate
can only suggest the approximate time scale over which the instability grows until
the effects neglected in the linear formulation become important. The lifetime of a
granule must necessarily be determined by incorporating the nonlinear effects.

In conclusion, it may be stated that considering the uncertainties in observations
as well as in the mixing-length formalism, our numerical results provide a reasonable
explanation for granulation and supergranulation in terms of the unstable funda-
mental mode and the first harmonic excited in the solar convection zone. It should,
however, be stressed that we have ignored potentially significant effects in our cal-
culation like the contribution of the turbulent pressure and the presence of the turbu-
lent energy and its dissipation into heat in the equation for conservation of energy.
The neglect of these effects is liable to influence the growth rates at larger values of l
especially for the higher harmonics. This, along with the extension into the non-
linear regime will, hopefully, improve the agreement of the unstable convective modes
with observed velocity fields on the solar surface.
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