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Role of stacking faults in solid state transformations
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Abstract, This article illustrates the two different roles played by stacking faults in solid
state transformations viz. (i) in accommodating part of the transformation strains as
observed in the noble metal-based alloys undergoing martensitic transformations, and
(i) in providing a mechanism for changing the stacking sequence of layers in a variety of
matarials like SiC, ZnS, Co and its alloys, and certainsteels. Diffraction paiterns taken from
the martensitic phases of noble-metal-based alloys as well as from SiC and ZnS crystals
undergoing transformation from one close-packed modification to another reveal the
presence of characteristic diffuse streaks. It is shown that from a theoretical analysis of the
observed intensity distribution along streaked reciprocal lattice rows in terms of physically
plausible models for the geometry and distribution of faults, one can make a choice between
various possible routes for transformation. From simple computer simulation studies, it is
shown that the observed arrest of transformations in SiC is essentially due to the insertion
of stacking faults in a random space and time sequence leading to an irregular distribution
of solitons.
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1. Introduction

Stacking faults are known to play two different roles during solid state structural
transformations in two distinct class of materials. The noble-metal-based alloys,
where martensitic transformation from the high temperature f/f; phase with a
disordered/ordered becc structure to f'/f; phase with close-packed structure has
been extensively studied, belong to one such class of materials. The usual pheno-
menological crystallographic theories of martensitic transformation in these
materials are based on the observation that the habit plane i.e. the matrix-martensite
interface, remains undistorted in the average sense during the transformation. The
transformation strains introduced by the ‘lattice deformation shear’ have therefore to
be partly relieved by another kind of shear which should leave the lattice invariant
but restore the undistorted character to the habit plane (Nishiyama 1978). The mode
of ‘lattice invariant shear’ in the noble-metal-based alloys is experimentally found to
be twinning or faulting on the close-packed planes. With the observation of shape
memory effect in such internally faulted martensites, a phenomenon which was
hitherto believed to be restricted only to internally twinned martensites, there has
been an increased interest in the understanding of the nature of stacking faults
involved in these transformations. In contrast to the noble-metal-based alloys where
stacking faults provide a mechanism for strain accommodation, in materials like SiC,
ZnS, Co and its alloys and certain steels, whose structure can be described by
stacking of layers of atoms in the close-packed manner, stacking faults are known to
bring about transformation from one stacking sequence of layers to another.

_ Diffraction patterns taken from noble-metal-based martensites frequently display
the presence of characteristic diffuse streaks along c*-direction revealing the presence
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of stacking faults in these martensites. In the case of materials like SiC and ZnS,
structural transformations are known to commence with the appearance of charac-
teristic diffuse streaks joining the main reflections of the parent phase. As the trans-
formation proceeds further, new reflections, which are considerably broadened and
shifted from the regular Bragg positions, start appearing on the streaks indicating the
development of a new stacking order in a statistical sense. From a theoretical
analysis of the observed intensity distribution along streaked reciprocal lattice rows
in terms of physically plausible models for the statistical insertion of stacking faults,
it is possible to determine the crystallographic nature, distribution (random vs non-
random) and the average concentration of stacking faults. Since the crystallographic
nature and the type of distribution of faults are generally characteristic of the
mechanism of transformation involved, it is possible to make a choice between
various routes of transformation by making use of such a diffraction approach. This
approach was originally developed in relation to the 2H to 6H transformation in SiC
(Pandey et al 1980} and has since been applied to a variety of transformations in
metallic and non-metallic systems (Pandey and Lele 1986a; Pandey et al 1986; Kabra
et al 1986, 1988). One of the main purpose of the present article is to illustrate the
application of the diffraction approach in elucidating the role of stacking faults in the
two categories of transformations mentioned earlier.

In all the diffuse scattering studies due to stacking faults, the model employed for
the analytical calculation of the intensity distribution along the diffuse streak is
based on the assumption that the faults are inserted sequentially in a stack of layers
from one end of the stack as in a typical random walk problem. Such a sequential
model is realistic when the faults are introduced during the layer-by-layer growth of
a crystal (Wilson 1942). However, faults responsible for solid state transformations
are introduced in a pre-existing stack of layers in a random space and time sequence.
In materials like SiC where the transformation mechanism prohibits the occurrence
of faults below a certain minimum separation, there would be an upper limit,
imposed by the offset between any two adjacently transformed regions, on the
number of faults which can be inserted in the crystal in a random space and time
sequence. The domain walls or the solitons formed by the impingement of the
adjacently transformed regions may lead to an arrest of the transformation, a
situation not predicted by the sequential model. In order to determine the upper
limit to the number of faults and also to study the kinetics of these transformations,
we have performed detailed computer simulation study of various transformations
observed in SiC and ZnS. It is found that although the sequential model is not
realistic for studying the evolution of these transformations, the theoretically pre-
dicted observable diffraction effects are not at variance with those obtained by
simulation studies. We shall briefly describe the results of such a study in relation to
the 2H to 6H transformation in SiC. Finally, it is suggested that the transformations
observed in SiC and ZnS should be mapped into model one-dimensional competing
interaction 3 state Potts/Ising systems to get a better insight into their kinetics.

2. Martensitic transformation in noble-metal-based alloys

In the copper-, silver- and gold-based alloys with a 3:2 electron-to-atom ratio, the f
phase, which is bec, is stable over a wide range of concentrations at high tempera-
tures. At lower temperatures, the stability of the S-phase decreases leading to a
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narrowing of the range of solid solution. In many of these alloys the f-phase finally
undergoes a eutectoid decomposition into the equilibrium phases. However, rapid
cooling suppresses the diffusion of atoms for the eutectoid reaction to take place and
leads to a martensitic transformation. The structure of martensites can be described
in terms of stacking of layers of atoms in the close-packed manner but the final
symmetry depends on factors such as relative atomic radii of the constituent atoms
and the formation of superlattices (Delaey et al 1982). The superlattices of the close-
packed martensites are believed to result from the ordered parent phases which are
distinguished from the disordered f phases by labelling them as 3, or 8, depending
on whether the parent phase possessed DO, (Fe;Al) or B2 (CsCl) type superlattice,
respectively. The martensitic phases resulting from f, 8, and f8, phases are labelled as
B', By and B respectively (Nishiyama 1978). In ternary systems such as Cu-Zn-Al, the
parent phase may possess Heusler-type superlattice as well (Kajiwara 1976). Figure
1 depicts the phase diagram for the Cu-Al system. Table 1 gives the martensite
phases formed in this system upon quenching. Here the primed layers are shifted
with respect to the unprimed layers through b/2 along the [010] direction of the
ortho-hexagonal unit-cell (Nishiyama 1978). This shift is inherited from the DO;
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Figure 1. Phase diagram for Cu-Al system (after Nishiyama 1978).

Table 1. Martensite phases formed in the Cu-Al system.

Composition Ramsdell and

range Martensite Zhdanov Layer stacking

(wt.%) produced notations Symmetry sequence

<11% B 9R (12), Trigonal A,B_A_.C,A C_B.C_B_
11-13% B 18R (12)¢ Orthorhombic A.B_A_CLA_C_B,CL

' B_A.B_A"C,A_C_B.C_B_
> 13% 7, 2H (11) Orthorhombic A,B.
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superlattice of the f;-phase and causes the doubling of the number of layers in the
[001] direction. In this section we shall:concentrate on the two different mechanisyg
for bee (B) to 9R () transformation and the role of stacking faults in accommodating
the transformation strains. From the experimentally observed orientatioy
relationships between the parent and the product phases, it has been confirmed thyy
the basal plane (001) of the martensite originates from the {110} planes of the
parent.

In the phenomenological crystallographic theories of the formation of § /8

martensites from the /f, parent phase, the transformation is visualized to occur by
the operation of a lattice deformation shear followed by a lattice invariant shea;
(Nishiyama 1978). While the original WLR theory of martensitic transformation wag
aimed at providing a rationale for the crystallographic observables such as the
orientation relationships, the habit plane and the transformation shape strain,
Nishiyama and Kajiwara (1963), and Chakravorty and Wayman (1977) have pro-
posed a mechanism for the f/f, to the /f; transformation in the same framework,
According to Nishiyama and Kajiwara (1963), the first step in the lattice deformation
shear is the formation of the (001), 5 close-packed basal plane from a, say,
(101);4, plane through expansions along [101],, and [IOIJW and a contraction
along [010] gp. This step is followed by a homogeneous shear in the [170] direction
of the /B, phase giving rise to a close-packed structure with ABC, .. stacking,
Homogeneous shear in directions other than + [110] is not permitted on the basis
of geometrical considerations. For the perfect ' (9R) or f] (18R) martensite to result,
a reverse shear, called shuffling, has to occur on every third (IIO)W planes. This,
according to Chakravorty and Wayman (1977), should require passage of Shockley
partials on every third layer of the intermediate fcc phase. All the aforesaid steps
including shufflings constitute the so-called ‘lattice deformation shear’ of the
phenomenological theory. As a result, the habit plane, which is experimentally
observed to be undistorted, gets distorted. To restore the undistorted character of the
habit plane, inhomogeneous shear, which leaves the lattice invariant, is envisaged in
the phenomenological theory. In the ' and f} martensites, the mode of lattice
invariant shear is experimentally observed to be faulting. According to Chakravorty
and Wayman (1977), deformation faults bordered by %1 [100] type Shockley
partials are involved in the lattice invariant mode of shear. There are three possible
deformation fault configurations in the 9R structure. In the notation described
elsewhere (Pandey 1984), these faults can be written as

I:...ABACACBCBA, :C,BABACACB...
I, ...ABACACBCBAB, :C,BCBABACA...
Li¢s . ..ABACACBCBABA, B,CBABACAC...

Here the dotted vertical line indicates the location of the shear plane. Of the three
fault configurations, I, , and I, , are crystallographically equivalent and need not
be distinguished from each other. The theoretically calculated lattice invariant shear
involving deformation faults is in excellent agreement with the experimentally
observed values (Kajiwara 1976). Thus, according to this mechanism, a preformed
B'/B; phase is inhomogeneously faulted through the passage of Shockley partials
bordering deformation faults. Chakravorty and Wayman (1977) performed a detailed
transmission electron microscopic investigation of ) martensites and found no
evidence for the periodically-spaced Shockley partials required for the shufflings but
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they have claimed to have observed inhomogeneously distributed Shockley partials
at the B,/p] interface which might be responsible for the lattice invariant shear.
Figure 2 illustrates this mechanism schematically.

The alternative mechanism for the /B, to f'/f; transformation is due to Ahlers
(1974) and has been neatly summarized by Andrade et al (1984). According to this
model, a homogeneous shear on the (011)4/4, planes in the [0T1],, direction trans-
forms the (101), planes into close-packed layers as shown in figures 3a,b. After this
homogeneous shear, atoms on these close-packed layers are not in a stable position
with respect to those on planes just above and below as depicted in figure 3¢ by a
position like D’. The stable positions, such as those indicated by D” and D'”, can be
achieved by shufflings in the D' D" or D' D" directions. If the shear occurs in the
same direction for the successive close-packed layers of atoms, a face-centred cubic
structure (ABC, . . . ) will result while the movement of two consecutive layers in the
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Figure 2. Lattice deformation and lattice invariant shears during f to ' martensitic
transformation. (i) Stacking of (101), phase layers prior to transformation, (ii) ABC ...
stacking is generated by expansions along [101], and [101], and a contraction along [010],
followed by a homogeneous shear on (001) [100], (iii) If the structure in (ii) is shuffled on
(001) [100]; on every third close-packed layer, the 9R(f') structure is formed. (iv) y is the
net shear required to produce the ' phase from f. In order to maintain the invariant habit
plane, extra lattice invariant shear is required leaving a net shear of A(<7y) only (after
Chakravorty and Wayman 1977).
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Figure 3. (a) Stacking of (011); planes. (b) The first shear through 1/18 [0T1], transforms
the plane LMN in (a) into the close-packed plane LM'N’, (¢) Stacking positions of the
LM'N’ close-packed planes. The displacement during the second shear are in the d,
direction on this plane (after Andrade et al 1984).
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D' D" direction followed by the third layer moving in the opposite D' D’” direction
will lead to a 9R/18R martensite. Since 2D’ D"+ D'D'"=0, the contribution of
shuffling to the lattice deformation shear is zero. However, due to the constraints
imposed by the coexistence of the f/§; and p'/B) phases, the habit plane will not
remain invariant. In order that the exact invariant habit plane is created, it is
essential that some of the close-packed planes formed after the first shear undergo
wrong shuffles such as three successive layers, rather than just two moving in the
D’ D" direction followed by a layer shuffling in the D’ D’” direction. Such wrong
shuffles will give rise to stacking faults which have been termed as sequence faults by
Andrade et al (1984). A single violation of the shuffling rule will lead to the following
three types of sequence faults:

d
Io.oi-...ATBTATC*A"C™B*C B A;: i CJA"C"B*C"B"A'B™A...
I A*B"A‘CJ“A‘C’B*C“B‘A*Bl“l - C{B"TA*B"A"CTAC™B...
I,;:....ATBTATC*A C™B*C™B"A"B"A; ! BBA"C*A"C"B'C B"A. ..

The dotted vertical line indicates the position of the fault plane with respect to the
9R sequence on its left hand side. The symbols + and — correspond to shufflings in
the D'D" and D’D" directions, respectively, while the arrow marks the single
violation of the shuffling rule. Note that after the violation, the direction of shuffling
is adjusted to restore the normal + — — sequence.

Thus, in this picture, faults are formed not after the formation of a sizeable region
of the /8] phase but during the layer-by-layer shufflings of the close-packed layers,
obtained after the homogeneous shear deformation, to maintain an undistorted habit
plane in an average sense. This model conforms well to the definition of martensitic
transformation proposed by Olson et al (1979). That the atomic movements during
the /B, to f'/B; transformation are correctly described by the Ahlers model is
supported by the following two observations: (i) softening of the elastic constants
corresponding to (011> {011} shear system on approaching M, and (i1) a lowering
in the phonon dispersion curves of § phase at 9= % Grax{ €0} (Guenin and Gobin
1978; Guenin et al 1979). .

There are essentially three energy terms involved in the B/By to B'/B| trans-
formation: the change in the chemical-free energy (A Ghem), the strain energy and the
stacking fault energy. In the first mechanism, the strain energy at the habit plane is
relieved by the nucleation of Shockley partials bordering deformation faults in the
already formed sizeable region of the B'/B7 martensite phase. In the second
mechanism, the shuffling direction for each layer of the martensitic phase is decided
by the minimization of the total energy comprising the three terms. If the total
energy is lowered by wrong shuffles, stacking faults will be incorporated in the layer-
stacking sequence. It is not possible to distinguish between the two mechanisms for
the lattice invariant shear on the basis of the habit plane and the total transfor-
mation shear calculation since both will yield the same values for the following
reasons. The three sequence faults can be visualized as the consequence of wrong
shuffles through 1/3 [100] type vectors during an intermediate hypothetical fce to
B'/B transformation occurring at one-, two- and four-layer separations. Thus the
lattice-invariant shear by both sequence as well as-deformation faults can geometri-
cally be visualized to involve the same partial slip vectors although mechanistically,
the two processes are distinct.
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For the ‘normal’ 9R and 18R modifications (for details of ‘normal’ and ‘modified’
p’/B; martensites, reference is made to Delaey er al (1982) observed in the Cu-Al
system, it has been shown by Andrade et al (1984) that the conventional transmission
electron microscopic technique using §.R criterion cannot be employed to
distinguish between ‘sequence’ and ‘deformation’ type faults since both are simul-
taneously visible or invisible for all the permissible reflections of 9R/18R. Recently
we have shown that a distinction between the sequence and deformation faults can
be made even in the normal 9R and 18R martensites by analysing the intensity
distributions along diffuse streaks (Kabra et al 1987). We have developed the
relevant theory of diffraction for 9R crystals containing a random distribution of
sequence and deformation faults. It is found that the theoretically predicted
observable diffraction effects, such as sense of the shifts from the normal Bragg
positions and the broadening of the otherwise sharp reflections, are markedly
different for the sequence and deformation faults. Indeed it is also possible to
distinguish amongst the various sequence faults themselves on the one hand and the
various deformation faults on the other. Figures 4 to 6 depict the calculated intensity
distribution for these faults with fault probabilities =01, «=0-3 and «=0-5. It is
evident from these figures that the peak shifts for the sequence faults are in the
positive or negative directions for different reflections in one period of 9R. For
deformation faults, all the reflections are shifted either in the positive or in the
negative directions. The peak shifts reported in the literature by Nishiyama et al
(1965) and Kajiwara (1976) for the faulted " and ] martensites are of mixed type
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Figure 4. Intensity distribution along diffuse streak for a 9R crystal containing randomly
distributed Iy o, Iy 4, I3, 4, 1oy and I, , faults: fault probability = 0-1.
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Figure 6. Intensity distribution along diffuse streak for a 9R crystal containing randomly
distributed Iy, ¢, I1, 12 12,1, To,1 and Iy, , faults: fault probability =05.

i.e. both positive and negative, for various reflections in one period. This fact thus
rules out the presence of deformation faults in these martensites. Our conclusion is
also in agreement with the electron microscopic studies of Cook et al (1983) and
Delaey et al (1984) for the modified f'/f; martensites.
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3. Solid state transformations in SiC

o-Silicon carbide crystals are grown above 2000°C from the vapour phase and
contain numerous polytypic modifications whose structure can be described in terms
of different possible stacking sequence of Si-C double layers in the close-packed
manner. 6H with a layer stacking ABCACB, . . . is the most common modification
amongst these crystals. The long period polytypes are believed to result by accidents
during spiral growth round screw dislocations created in a perfect or faulted basic
matrices (for details see Pandey and Krishna 1982, 1983). The 3C (4ABC, .. .) or §-
SiC crystals usually grow at temperatures below 2000°C. The 2H (A4B,...)
modification has never been found to occur in a-SiC crystals and has been synthe-
sized around 1400°C by special methods in the presence of impurities. Structural
transformations in single crystals of 2H and 3C modifications of SiC have been
investigated by several workers (Krishna et al 1971; Krishna and Marshall 1971a,b;
Jagodzinski 1971; Tagai et al 1971; Powell and Will 1972). A common characteristic
of these transformations is that they commence with a statistical insertion of stacking
faults giving rise to characteristic diffuse streaks along certain reciprocal lattice rows.
As the transformation proceeds further, intensity modulations along the diffuse
streaks giving rise to the appearance of broad elongated spots, characteristic of the
product phase, are observed. The final structure is invariably observed to be highly
faulted indicating arrest of the transformation. It has been reported that the 2H
structure transforms to a disordered-twinned 3C structure, when the transformation -
commences at temperatures between 1400°C and 1600°C. The resulting 3C structure
on further annealing above 1600°C transforms to a disordered 6H structure. This
indicates that the cubic structure may be stable upto 1600°C, beyond which the 6H
modification is stable. 2H crystals in which transformation commences above
1600°C indeed transform to disordered 6H structure. The 3C crystals also transform
to 6H on annealing above 1600°C.

We have performed a detailed theoretical and experimental study of the 2H to 6H
and the 3C to 6H transformations in SiC to determine the nature of stacking faults
responsible for these transformations. Since the geometrical nature of stacking faults
is generally characteristic of the mechanism of transformation involved, we have
been able to choose between two alternative mechanisms of transformations in SiC
(Pandey et al 1980; Pandey et al 1986; Kabra et al 1986). In this section we shall
briefly describe the results of our investigation for the 2H to 6H transformation.

The structural transformations in SiC can result either by a layer displacement
mechanism or by a deformation mechanism. The 2H to 6H transformation by the
layer displacement mechanism would require the layer displacement faults to occur
preferentially on every third close-packed layers as depicted below.

Initial structure 2H): . .. A B{A|B A[B A‘BE\B A[B}. ..

Resulting structure (6H): . . . A B|C|B A|{C|A B|C|B A|C|...
The layer displacement faults may get nucleated at high temperatures by the aggre-
gation of vacancies in a small region of a close-packed layer in the AB . . . structure
followed by the diffusion of atoms into C sites within this region. If the size of the
nucleus is greater than a certain critical size, the region of the C layer will spread to
cover the entire plane provided this leads to a lowering of the energy (Pandey and
Krishna 1974). The same 2H to 6H structural transformation can also result by the

deformation faults occurring preferentially after every three close-packed layers as
depicted below:
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Initial structure 2H: ABABABABABAB....
CACACACACA....

B....

Resulting structure (6H): ABCACB ABCACB. ...

The deformation faults necessary for the transformation may either be present
already in the 2H crystal or may be nucleated by thermal stresses at high tempera-
tures.

In both the mechanisms, the occurrence of the layer displacement or deformation
faults would be a statistical phenomenon but there would be a tendency for the faults
to occur in such a manner as to minimize the free energy and take the structure
towards the stable state. If the stable state happens to be one with a different
structure, such a structure will tend to result. Thus in both the cases, th
transformation will commence with the statistical insertion of faults giving rise to
continuous streaks joining the reciprocal lattice rows parallel to ¢* with H-K 6
mod 3. Pronounced intensity maxima will appear on these streaks at a later stage
and eventually form the regular diffraction spots characteristic of the stable
structure. ,

In order to make a choice between the layer displacement and deformation
mechanisms, we have developed (Pandey et al 1980; Pandey et al 1986) the theory of
X-ray diffraction from one-dimensionally disordered 2H crystals undergoing trins-
formation to the 6H structure by each mechanism. It should be noted that the
diffraction theory developed by Christian (1954) and Sato (1969), for a completely
random distribution of deformation and layer displacement faults in the 2H
structure, cannot be applied to 2H crystals undergoing transformation to the 6H
structure, because in this case the faults are not distributed entirely at random bhu

“prefer to occur in such a manner as to statistically create a 6H structure. To take this
into account in the theory, we have assumed that once the fault occurs on a part-
cular layer, it cannot occur on the next two layers in the structure. Accordingly we
define a fault probability «/f which is the probability of occurrence of a layer dis-
placement/deformation fault such that the next two layers cannot be faulted. For
/[ =0, the structure is perfect 2H while for «/f=1, the structure is perfect 6H. Thus
the faults can occur at a minimum separation of three layers. Using this model, we
have performed a detailed mathematical calculation of the diffracted intensity and
observable diffraction effects for different fault probabilities. Figures 7 and 8 depict
the theoretically calculated intensity distribution along the 10. L reciprocal lattice
row for the layer displacement and the deformation mechanisms respectively.

For a 2H crystal undergoing solid state transformation to the 6H structure by the
layer displacement mechanism, the following diffraction characteristics may be
predicted on the basis of figure 7: (i) the reflections L=0 mod 2 and L= =1 mod >
of the 2H structure remain sharp and unbroadened (ie. o-peaks) throughout the
transformation although their intensities change, (ii) in the beginning of the
transformation diffuse elongated reflections develop at positions approximately
midway of the 2H reflections with L=0 mod 2 and L= + [ mod 2, (iii) as the con-
centration of the layer displacement faults increases, each diffuse reflection splits into
two distinct reflections and these gradually approach the positions of the normal 6H
reflections at L= = { mod 2 and L= £$ mod 2. For « < 1, the diffuse 6H reflections
are shifted towards each other.



(IN ARBITRARY UNITS) —>»

INTENSITY

INTENSITY (IN ARBITRARY UNITS } —>

Stacking faults in solid state transformations 127
LAYER DISPLACEMENT MECHAN!SM
e e e o = 002
———————— € =04
e f =06
o =08
A A A
5 - &- peak—>
4+ peak «— &6-peak P -
3= -
2 -
N
!
i b
[
Ak JPER -
/'/// \\\ el
/ T .\\"/\\\\\
ke s o ST .- ~ s a4 ) zr"\“-"&:-_-i
e — [ 1 [l . 1 | i ] 1 —
(o} 1/6 I/IB /72 21/3 5/6 | 7/6 4/3 3/2 573 /6 2
L —>
Figure 7. Calculated intensity distribution along diffuse streak for crystals undergoing 2H
to 6H transformation by non-random insertion of layer displacement faults for fault
probabilities «=0-2, 0-4, 0-6 and (-8.
DEFORMATION MECHANISM
————— = O]
— e o ,3 =04
A A=
9

o] 176 /3 1/2 2/3. 5/6 I 7/6 4/3 3/2 5/3 1l/ve 2

Figure 8. Calculated intensity distribution along diffuse streak for crystals undergoing 2H
to 6H transformation by non-random insertion of deformation faults for favlt probabilities
£=01, 04, 0-6 and 0-8.




128 Dhananjai Pandey

On the other hand the main diffraction characteristics of a crystal undergoing the
2H to 6H transformation by the deformation mechanism, as deduced from figure 8,
are: (i) the transformation commences with the broadening of the 2H reflections,
(ii) new reflections characteristic of the 6H structure initially appear near positions
with L=+ L mod 2 and L==2 mod 2 and gradually move away from these
positions and finally approach the positions with L=+ { mod 2 and L=+3
mod 2. In this case the 6H reflection are shifted away from each other for f<1.

‘From a comparison of the theoretically predicted diffraction effects with those
experimentally observed on single crystal X-ray diffraction patterns, we have shown
that the 2H to 6H transformation in SiC takes place by the layer displacement
mechanism. Figure 9a gives the 10-L reciprocal row of a 2H SiC crystal annealed
above 1600°C for several hours. The diffuse elongated spots midway of the 10:0 and
10-+ 1 reflections of 2H developed after the heat treatment and can be understood in
terms of the layer displacement mechanism only. Figure 9b gives the intensity distri-
bution as measured on a 4-circle single crystal diffractometer along the 10-L row of a
2H SiC crystal, partially transformed to 6H by annealing above 2000°C for 16 hours,
It is evident from this figure that the 6H reflections are shifted towards each other, as
predicted for the layer displacement mechanism. We have recently carried out a
similar investigation of the 3C to 6H transformation in SiC and have shown that this
transformation also takes place by the layer displacement mechanism (Kabra et al
1986). It should be noted that while a layer displacement fault in the 2H structure
requires displacement of single layer, in the 3C structure, this requires transposition
of a pair of layers. Layer displacement fauits in both the 2H and the 3C structures
are faults with zero displacement vector in the sense defined by Paidar (1985) and
cannot therefore be characterized by the usual §.R criterion of the conventional
electron microscopy since |R| is now zero.

4, Computer simulation studies

It was shown in the previous section that a choice between the deformation and layer
displacement mechanisms for the 2H to 6H transformation can be made from a
study of the intensity distributions along diffuse streaks. In all such studies the
method employed for the calculation of the diffracted intensities makes use of the
sequential (or unidirectional) insertion of faults in a stack of layers from one end of
the stack. The fault probability (c;/f) is defined as the probability of occurrence of a
fault such that the next two layers are not faulted, as one performs a random walk
from one end of the stack towards the other. Thus the faulted layer along with the
two succeeding unfaulted layers are the consequence of one step in the random walk.
Consider a stack of N close-packed layers in the 2H crystal. Let n be the number of
faulted layers introduced in this stack for the 2H to 6H transformation. Since after
each faulted layer we add two layers without fault, the number of random steps
available being (N-2n). Since the fault probability is the ratio of the number of faults
to the number of random steps available, we have

a=n/(N=2n=(n/N)/(1—2n/N)=f(1-2f),
or S=a/(1+2a), (1)

where f'is the fraction of faulted layers.
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Figure 9. (a) The 10-L reciprocal lattice row, as recorded on an oscillation photograph, of
a partially transformed 2H SiC crystal after annealing for several hours above 1600°C. The
development of elongated diffuse spots midway of 2H reflections 10-0 and 10- &+ 1 is notable
(CuK radiation, Camera radius 3 cm, x 3), (b) Observed intensity distribution along the 10-L
reciprocal lattice, as measured on a 4-circle diffractometer, of a 2H SiC crystal, after partial

transformation to 6H. Vertical lines indicate the positions of X-ray reflections for the perfect
6H structure.

The sequential model for the insertion of faults is physically realistic when faults
arise during the layer-by-layer growth of a crystal. However in crystals undergoing
structural transformations through faulting, faults are introduced in a random space
and time sequence rather than sequentially from one end of the crystal. Since the
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transformation mechanism usually prohibits the occurrence of faults below a certain
minimum separation (3 layers for the 2H to 6H case), there would be an upper limit
on the number of faults which can be inserted in a random space and time sequence
in the stack due to the off-set between adjacently transformed regions. Such an upper
limit to the number of faults, and hence the sequential fault probability, dictated by
the real situation is not implicit in our earlier calculations. Thus calculations for fault
probabilities higher than this upper limit, although permissible in the sequential
model, do not correspond to physical reality. One would also like to compare the
intensity distributions obtained for the sequential and the random space model for
the same value of the fraction of faulted layers. In order to achieve the twin
objectives, we have recently studied the random spatial insertion of layer displace-
ment faults in a stack of 1200 layers of 2H labelled from 1 to 1200. Layers for faulting
were selected using integer random variables [1, 1200]. Each time a fault was
inserted, say at the layer labelled n,, the layerslabelled n, —2, n; —1,n, +1 and n, +2 were
precluded for the occurrence of faults. The process of random site selection, faulting
and blocking of two layers on either side was performed until no more faults could
be inserted. Figure 10 depicts the evolution of the 2H to 6H transformation in a
small portion of the actual ensemble of 1200 layers, as the fraction of faulted layers
increases from 0-083 to 0-187 to 0-277 after which no more faults could be introdu-
ced. Ideally, in the sequential model with one fault in every three layers, one expected
a total of 400 faults in a stack of 1200 layers. Thus f=0-277 against the expected
value of 0-333 corresponds to the arrest of the transformation. We have also
numerically computed the diffracted intensities corresponding to the three stages of
evolution shown in figure 10 (Kabra and Pandey 1987). It is found that the
observable diffraction effects, such as the non-broadening of 2H reflections and
appearance of diffuse elongated spots midway of the 2H reflections predicted on the
basis of the sequential model, are borne out by the simulation studies. This implies
that corresponding to each simulated configuration, there exists a sequential
analogue with a characteristic fault probability « which is related to the fraction of
faulted layers in accordance with equation (1).

The off-set between the adjacently transformed 6H regions will lead to solitons. In

a 6H structure, random impingement of 6H regions can in principle lead to 14
unique soliton configurations enumerated elsewhere by the author (Pandey 1984) but
due to the restriction imposed on the minimum separation between two layer dis-
placement faults only two of the fourteen possible soliton configurations are
observed. These are marked as I, 5 and I, ; in the notation described by Pandey
(1984). The arrested configuration with f=0277 («=0-62) thus corresponds to a 6H
phase with a large number of irregularly distributed solitons of the two kinds. It is
interesting to note that the two soliton configurations do not broaden the 6H
reflections common with 2H (Kabra et al 1986) in perfect agreement with the
prediction for the 2H to 6H transformation by a sequential insertion of layer
displacement faults.

The fact that the end-product of the 2H to 6H transformation is experimentally
found to be invariably a disordered 6H structure suggests that the irregularly
distributed solitons are strongly pinned to the lattice and that they cannot be
completely removed without melting. There is no evidence for these solitons to give
rise to a higher order commensurate phase based on the 6H structure. This transfor-
mation thus provides an example of global chaos along the stacking axis of the close-

i
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SIMULATION OF 2i+611 TRANSFORMATION THROUGH
NON-RANDOM INSERTION OF LAYER DISPLACEMENT FAULTS

Fault probability Fraction of faulted layers
«= 0.1 . £ = 0.083
ABABABABABACABABABABABCBABABABABABA
BABABABCBACABABABABABABABCRBABABABASB
ACABABABACABABABABCBABCBABABACABCIBA
CABADBDABABABABABABABCBABABABABABABAGC
ABABABABABABABCBABABABABABABABABAGBA
BABABCBACABCBABABABABABCBABABCBABARB
ABABABCBABABABACABABABABABABACABATBA
o= 0.3 f = 0.187
ABABABABABACABABCBABABCBABCBABABCIBA
BABABABCBACABABABCBABACABCBABABABTCHB
ACABABABACABCBACABCBABCBABABACABCIBA
CABABCBACABACABCBABCBABCBABCBABABAC
ABABABCBABABABCBABCBABACABABACABCEBA
BABABCBACABCBABCBABABABCBABABCBADBARB
CBACABCBABACABACABABACABABABACABRABA
o= 0.62 f = 0.277
IZS-——-—-—;

ABACABACABACABABCBACABCBIABCBACABCGBA
CABACABCBACABCBABCBABACA‘BCBABACABCB
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ABCBABCBABCBABCBABCBABACABCBACABCEBA
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Figure 10. Computer simulation results of the evolution of 2H to 6H transformation by
layer displacement mechanism with various fractions of faulted layers. The transformation
gets arrested at /= 0-277.

packed layers. A better insight into the kinetics of such transformations and the time
scales involved in the transformation from chaotic to a regular 6H crystal can be
provided by mapping the transformation mechanisms in terms of magnetic spin flips
either for an Ising system or a three-state Potts system. One can then perform Monte
Carlo spin flips using a suitable Hamiltonian incorporating competing interactions

in a direction perpendicular to the close-packed layers. Such a study is presently
~ underway and the preliminary results are very encouraging.
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