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Abstract. The influence of incident beam divergence on the length of the streak intercepted
by the Ewald sphere is considered, as a relp HK- L of a faulted hexagonal crystal, mounted
about its c-axis on the goniometer head attached to the ¢-circle, is brought into diffracting
condition for the bisecting setting of a 4-circle diffractometer. For the special crystal mounting
correction factors required to convert the measured intensities corresponding to a fixed length
of the streak are derived. A procedure for experimentally verifying the mathematical approach
employed in these derivations is also presented. '
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1. Introduction

A statistical distribution of planar defects such as stacking faults in close-packed
structures is known to give rise to characteristic diffuse streaks along certain reciprocal
lattice rows parallel to the stacking axis. The theory of diffraction from randomly as
well as non-randomly faulted close-packed structures is reasonably well understood
and from a comparison of the theoretically predicted diffraction effects with those
experimentally observed one can study not only the nature, distribution and
concentration of stacking faults (Pandey and Krishna 1977) but also the mechanism of
phase transformation occurring as a result of insertion of stacking faults (Pandey et al
1980; Lele and Pandey 1985). Such a study requires an analysis of the continuous
intensity distribution along the streaked-reciprocal lattice rows. Using single crystal
intensities, it is possible, in principle, to match the experimentally observed intensity
distribution along the streak with that calculated theoretically for a model postulatinga
certain random or non-random distribution of faults in the structure. An analysis of
this type can provide information about the defect structure much in the same way as
the analysis of Bragg intensities in the determination of regular structures. However,
there are special problems stemming from several factors, like incident beam
divergence, polychromaticity of the x-ray radiation, finite detector slit and instrumental
resolution function, in the measurement of the intensity of diffuse streaks using a single
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crystal diffractometer. A proper understanding of the influence of these factors on the
measured intensities and the application of the corresponding correction factors
requires specification of the diffraction geometry. In the present investigation, we
consider the influence of the incident beam divergence for a hexagonal crystal oriented
about its c* axis on the goniometer head. The divergence correction factor for c-axis

mounting is worked out for the bisecting geometry. An experimental verification of the

mathematical approach employed in deriving the divergence correction factor is also
presented.

2. Reference system and crystal orientation

Let us consider a Cartesian coordinate system XYZ attached to the diffractometer such
that the +ve X-axis is directed opposite the incident beam from the centre of the
goniometer, the Z-axis is directed upwards along the w-axis and the Y-axis completes a
right handed set of axes. This reference system is identical to that used in the cap4-
Nonius diffractometer. Consider a hexagonal crystal which has been oriented about its
c*-axis on the goniometer head attached to the ¢-circle of the diffractometer by means
of the goniometer arcs such that the reciprocal lattice vectors [HK-0]* [H'K'-0]* and
[00-L]*, where H = —H' —2K',K =2H'+ K ', form a right handed Cartesian system
and are coincident with the X, Yand Z-axes of the laboratory frame when all the
diffractometer angles are zero. The diffractometer angles y, ¢ and o required to bring a

reciprocal lattice point (relp). HK- L in diffracting condition for the bisecting geometry
(Y = 0) are given by:

2p =sin"({/d*) = cos™ 1 (¢/d¥); ¢ = 90°,
o = § =sin"'(1d*/2), where
{=Lc* = (H*+ HK + K%)'%g* and d* = (24212 1)

3. Measurement of the intensity distribution along the streak

In terms of the continuous variables hy, hy and h; (= {/c*) along a*, b* and c*

reciprocal axes, the diffracted intensity from a faulted close-packed crystal with a repeat
period of n-layers is given by (Wilson 1942).

+ oo

) =1(hy, b)) 3 J, exp@mim{/nc¥) @)
Here I (hy, h,) is a function of h; and h, which vanishes except when hy = H, h, = K,
where H and X are the hexagonal indices with integral values. J,, is the average of the

square of the structure factor of a pair of layers separated by m layer-spacings.
Asisevident from (2), one should ideally measure intensities at equalintervalsalonga
fault affected reciprocal lattice row integrated over the width of the reflection in the a*
and b* directions in reciprocal space. This cannot be achieved by either of the
conventional w—6 and w —26 scans except at L ={ =0 using w —20 scan for
idealized conditions of perfectly parallel and monochromatic x-rays incident on a point
crystal. One therefore employs the stationary crystal-stationary counter method to

. |




Intensity of diffuse streaks 501

measure the point intensities at equal intervals along the HK" L row. In this method a
slight divergence has to be introduced in the incident beam to cover the mosaic spread
of the crystal. This causes the surface of the Ewald sphere to have a finite thickness and
the length of the HK - L row intercepted by it will depend on the inclination of the row
with respect to the Ewald sphere; the latter changing with {. The counts recorded for a
particular setting give a value | I({) d{ where the integration is over the length A{ of the
streak intercepted by the Ewald sphere. Thus the recorded intensities at various points

along the streak correspond to variable portions of the streak. However, if we divide the-

measured intensities at each point by the length of the streak intercepted at that point,
we shall obtain intensities corresponding to a fixed length of the streak. The necessity
for such a correction factor was first realised by Pandey and Krishna (1977) while
measuring the intensity distribution along streaked rows of a disordered 2H-SiC
crystal. It should be noted that due to the inherent beam divergence, this problem will
also be encountered in the scan-methods, although the correction factors would be
different.

4. Derivation of the divergence-correction factor

In this section expressions for the length of the streak (AQ), intercepted by the two
extremes of the continuous range of Ewald spheres, will be derived for two cases. In
case I, the streak intersects both the inner and the outer extremes of the Ewald sphere
while in case II the streak is considered to be tangential to the inner extreme of the
Ewald sphere. In the latter case, the effective divergence becomes less than the actual
divergence.

Casel: Letx, y; z be the cartesian coordinates of a relp. HK - Llying in a vertical plane
of a hexagonal crystal in its ‘standard-orientation’ orn the diffractometer. If the crystal is
oriented about its c-axis on the goniometer head with the help of the goniometer arcs
then x; = &, y; = 0 and z; = (. These initial coordinates ¢, 0, { transform to xy, yy, 25
when the relp HK- L is brought into a diffracting condition, through the following
transformation matrix (R) ‘

(cos ¢, COS Wy — (coswy sin ¢+ sin w,, sin g5
sing ;, sin @ €OS X 5) sinwy cos ¢ 5 COs X 5)
R =| —(sinwycos¢y+ (—sing,sinwy + cosmg siny
cos @z sin ¢y €08 ¥ 5) COS ¢ 5 COS W COS X )
sin ¢ sin yp —cos g Sinyg . COSYXp €))

Thus the final coordinates x ;, y;, z; will be given by

x; = E(cosdp COSwp —sin ¢y sin @, €os xz) + {sin wy sin xp

yy = —E(cos ¢y sinwy +sin ¢y COSwy cOS )p)+LCOS W sin ¥y

z; = Esin¢p sin x+{ 08 Xp 4)
Let 1 and v be the horizontal and vertical divergences in the incident beam, then the

coordinates of the centers C and C; (the middle and one extremity of the continuous
range of Ewald spheres) can be written as 1/4,0,0and 1/4, u/4, v/ respectively. The
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equations of the Ewald spheres with centres at C and C 1 €an be written as

1)\? 2, 2 |1
7 +yi+z =/1—2 &)

1)\2 42 vz 1
(=3) +( )3 -5 ©

If the relp HK - L has been set to be in diffracting condition for the sphere centered at C
then from (4) and (5), we have on simplification:

AL* ~2{ sin wy sin x5 —2¢ (cos ¢, cos Wg ~Sin ¢y sin W, COs xp) + AE2 =0

M

“ Along with the relp HK -L, another relp HK L, will be lying on the Ewald sphere

centered at C; for the same setting of the crystal. Hence from (4) and (6) we have on
simplification:
A% -2¢, (sin W SN x5 + UCOS Wy Sin ¥, + v COS x8) —2¢ [cos ¢, cos Wy
—$in ¢, sin w, cos x5 — u(sin wy cos $p+sing, coswy cos y,

+vsin ggsin y; ]+ A2+ p2/A+v2 /1 =0 (8)

The length of the streak, intercepted by the Ewald sphere when the relp HK-L is in

diffracting condition will be given by A{ = ({, —{) which can be determined using (7)
and (8) as under

AL +ADAL-2Asinw, sin g, —2({+AL) (4 cos wy sin
+veos x5) + 28 [ u(cos ¢pgsinw, +sin ¢ COS Wy COS ¥ )
—vsing, siny, |+ p2/A+v2/A=0 9)

Substituting for ¢, and w s from (1) in (9) and ignoring second order terms, we have

¢ (vsin y, — ucos  cos X5) = (pcos 6 sin y; + vcos xs)
Al = — . (10)
: (Al —sin @ sin y,)

Equation (10) can be further simplified by making substitutions from (1) and the
simplified expression for A{ is as under '

Al = ud"‘co;tB-cosec;(,B = p{cot B-cosec® x, (11)

Equations (10) and (11) are thus the desired expressions for the correction factor for
crystal mounting under consideration. It is interesting to note here that the vertical

divergence has almost no influence on A{. Equation (11) can also be written in the
following form:

p=A0 umv

since, from Bragg’s equation, we know that
A0 = (AZ/{)tan 0 sin? 1, | o (13)

Case II: The intersection points HK-L" and HK- L~ of the streak with the inner
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Ewald sphere centered at C can be determined by solving (7) and are given below:
1. . . .
(= I[sm wp sinyp + {sin® wp s;n2 xp +2AE(coS P COS Wy

—sin ¢ sin wy cos xp) —A2E2}?] (14)
For the streak‘to be tangential to the inner sphere { t—{" =0ie,
sin? wp sin? x5 + 24£ (Cos ¢ COS Wy —Sin ¢ Sin wp COS x5) — 282 =0 (15)
On making substitutions from (1), (15) simplifies to ‘
sin? @ sin* x5 =0
ie. xp =0,since 0 # 0 (16)

This implies that the streak is tangential to the inner sphere for x5 = 0, i.. for any
HK -0 (H — K # 3N; N any integer) reflection. The length of the streak intercepted by
the continuous range of Ewald spheres when the relp HK - 0is brought into diffracting
condition can be evaluated by finding out the roots  }, and {7, of (8) in conjunction with
the condition given by (16). Substituting x5 = 0 and ¢ = —90° in (8) we get

2 2 .
).C%—Zw:l—2§(sinw3+ucosw3)+2§2+%ﬁ+Yl-= 0 (17)
The roots {{ and {;, of this equation are
' 1
(f= —i[v + (2usin 20, — p*)'2], (18)

where 6, is the Bragg angle for an HK - 0 reflection.
Thus the correction factor A{, = {{ —{j, for the relp HK -0 will be given by

AL =2 apsin20,— ) (19)

It is evident from the foregoing that for all HK- L relps with { lying in the range
4 I', <{<{3,the streak will no longer intersect the Ewald sphere centered at C. This
implies that the effective divergence is now less than the actual divergence. Hence it is
not possible to use (10) or (19) as the correction factor for HK - L relps with { = Lc*
lying in the range {{, < { < {7, or corresponding x 5 lying in the range X1, < xp < X1
even if one uses slits wide enough to record the entire streak intercepted by the Ewald
sphere. It is interesting to note that the vertical as well as horizontal divergence i.e. vand
u fix the limits {{ and {7y, of the bad region for data collection.

5. Influence of azimuthal rotation on the intensity of diffuse reflections

During the collection of intensity data for diffuse 10 - L reflections of a faulted 2H-SiC
crystal, an anomalous continuous variation in the intensity was observed by Pandey
and Krishna (1977) on rotating the crystal through different azimuth angles (¥/) around
the scattering vector. The total number of counts changed by as much as a factor of 10
for the same 10- L reflection. Any change in the intensity of a reflection during



504 Dhananjai Pandey et al

azimuthal rotation of a normal crystal is usually attributed to change in absorption,
anisotropic extinctions and multiple scattering. However, none of these can account for
the large continuous variation in intensity. It was also reported that the fault-unaffected
sharp reflections like 11- L showed only a small variation in intensity which could be
attributed to differences in absorption and other usual factors. Photographic records of
a 10- L reflection taken for different  revealed that different amounts of streak were
recorded at different azimuth settings. This implied that the length of the streak along
the 10- L row intercepted by the Ewald sphere changes with y on account of the
incident beam divergence. The mathematical treatment given in the previous sections
can be used to calculate the length of the streak intercepted by the Ewald sphere on
azimuth rotation of a disordered crystal.

Let us consider a disordered hexagonal crystal mounted about its c-axis on the
goniometer head of the diffractometer such that the vectors a*, b and c* form a right
handed cartesian coordinate system. To simplify the mathematical treatment, we shall
calculate the length of the streak (A{) intercepted by the Ewald sphere for a 100
reflection as a function of the azimuth angle y. For the crystal orientation under
consideration, 10-0 reflection is an ‘equatorial reflection’ since s = 0.Foran equatorial
reflection the diffractometer angles in the general setting (Y # 0) are given by the
following equation

X=xV,¢=¢;F90and 0= +90+6

From (1), we know that ¢ 5 = —90°, and hence the diffractometer angles will be given
by (taking lower sign): ‘
r=—Y,¢=0and o= —(90—6) (20)

Substituting for x, ¢ and @ from the above equation in (9) we get after simplification

AL +ADAL—2A cos € siny —2 (L + AL)(~ psin 0 sin y + voos ¥
2 2
M v
=2 0+ —+—=
Eucos O + 7 + 7 0.
For the. 10-Oreflection, { = 0. Putting { = 0and ignoring the second order terms, we get
the desired expression for A{ which gives the length of the streak intercepted by the
Ewald sphere for the 100 reflection, as a function of the azimuth angle y

Al = pEcosecy ‘ (21)

The above equation is not valid for x(= —y) values lying in the range y{ <y <y
where y 3, and x correspond to ¢ 1, and (] given by (18). This is because the crystai
movements during azimuth rotation around the [10-0]* scattering vector and during
the data collection under bisecting geometry for various relps along the 10. L reciprocal
lattice row are identical for the crystal mounting under consideration and therefore the
effective divergence will be less than the actual divergence in the region y{ <y < x1. |
thereby invalidating the applicability of (21), ‘ '

5.1 Experimental verification

In order to verify the correctness of (21), which will in turn validate the mathematical
treatment employed for deriving the divergence correction factors, a 2H-SiC crystal
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was mounted on an Enraf Nonius 4-circle single crystal diffractometer. The crystal was
needle-shaped, approximately 0-5 mm thick at the base and about 1 mm in length. The
crystal was annealed for 16 hr at 2273 K in vacuum and had transformed partially
towards a 6H (ABCACB, . . ) structure. This transformation is known to commence
with a non-random insertion of layer displacement faults giving rise to sharp as well as
diffuse x-ray reflections superimposed on characteristic diffuse streaks on the x-ray
diffraction photographs (for details, see Pandey 1981). To collect the intensity data, the
crystal was oriented about its c-axis on the goniometer head attached to the ¢-circle
using the goniometer arcs. In the standard orientation of the crystal the a*, b and c*
vectors formed a right handed coordinate system coincident with the coordinate system
attached to the diffractometer. Sharp reflections with H —K =0 mod 3 were used to
define the orientation matrix and the following hexagonal cell parameters were
obtained after refinements:

= 30763 A; b = 30763 A; c = 50480 A.

Filtered MoK, radiation was used to record the intensity diffracted by the crystal. The
incident beam divergence was fixed by a collimator hole of 0-4 mm and collimator-
crystal distance of 47 mm. A wide slit with horizontal and vertical openings of 9 and
2 mm respectively was used in front of the detector at a distance of 173 mm from the
crystal.

The relp 10:0 can be brought into diffracting condition by adjusting the 6 and
values corresponding to y, = 0and ¢ = —90° in the bisecting geometry. When the
crystal was rotated about the scattering vector [10-0]*, the c*-direction was always
contained in the plane of the -circle with diffractometer angles given by (20). Figure 1
depicts the observed variation in intensity of the 10-0 reflection for azimuthal rotations
at steps of Ay = + 5° y values beyond £ 60° where inaccessible on the diffractometer.
Figure 2 depicts the variation in intensity of a 11-0 reflection, which is not affected by
faulting for a similar azimuthal rotation. It is evident from figures 1 and 2 that the large
anomalous variation in intensity is confined only to fault-affected reflections. The
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Figure 1. Variation of intensity of the 100 reflection of a disordered 2H-SiC crystal as a
function of the azimuth angle ¥ on rotating the crystal about the scattering vector. Filled
circles correspond to the observed anomalous variation while open circles correspond to the
variation after the application of the divergence correction factor,
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Figure 2. Variation of intensity of the 11-0 reflection of a disordered 2H-SiC crystal as a
function of the azimuth angle  on rotating the crystal about the scattering vector.

difference in intensities for positive and negative values of ¥ must be attributed to
difference in absorption. The variation in intensity of the 10-0 reflection after dividing
the observed intensities by cosecy is also given in figure 1. A comparison of the
observed and corrected intensities given in figure 1 shows that except for the region
—10° <y < +15°, the correction factor given by (21) works remarkably well. The
region —10° < ¢ < +15° actually corresponds to the situation for which the effective
divergence is less than the actual divergence discussed earlier. The exact limits ‘of this
bad region can be calculated from (18) on substituting the following constants:

8o =765 p=y= 94—; = 00085 rad; A = 0-71069 A.

This gives us the limits for bad regionas —0-0817 < { < 0:1056. This can be expressed
in terms of the y-angle for the crystal orientation under consideration using (1). The
limits so obtained are —12-27° < y < 15:71° which is in very good agreement with the

limits of the region for which the correction factor given by equation (21) does not
work. :

6. Discussion

It is evident from the foregoing that the extremely large observed variation in the
intensity of the 10-0 reflection on rotating the crystal about the scattering vector, is due
to variations in the length of the streak intercepted by the Ewald sphere for different
values of ¥. On dividing the observed intensity by the length (A() of the streak
intercepted at that azimuthal angle, one obtains very small remnant variations in the
intensity of the 10-0 reflection which can be attributed to change in absorption due to
the irregular shape of the crystal. However, the application of the proposed correction
factor A{, in converting the observed intensities corresponding to variable values of Al
to intensities corresponding to a fixed length of the streak, is based on an implicit
assumption that the intensity does not vary significantly along the length of the streak
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intercepted ie.,

I Id{=1-A¢

AL
For the crystal under consideration, the 10-O reflection is not broadened by the presence
of layer displacement faults (for details, see Pandey 1981) and hence the above
approximation is valid. However, for measured intensities at other points along the
streak, one must take into account the dependence of I on {. This requires consideration
of another correction factor, which can be treated as a parameter to get the best fit
between the observed intensity distribution and those calculated for a proposed model
of disorder. "
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