NOTE ON THE NONVANISHING OF $L(1)$

S. CHOWLA AND L. J. MORDELL

It is well known that if $\chi(m)$ is a real nonprincipal character $(\bmod k)$, then

$$
L(1)=\sum_{1}^{\infty} \frac{\chi(m)}{m} \neq 0,
$$

and many proofs have been found. We give a very simple proof when $k=p$ an odd prime, in which case $\chi(m)=(m / p)$, the Legendre symbol. This makes it possible to simplify the proof that if $p \nmid a$, then there are infinitely many primes congruent to a modulo p. Write

$$
\zeta=e^{2 \pi i / p}, \quad P=\frac{\prod_{n}\left(1-\zeta^{n}\right)}{\prod_{r}\left(1-\zeta^{r}\right)},
$$

where n runs through the quadratic nonresidues of p and r runs
Received by the editors May 2, 1960.
through the quadratic residues. We prove first that $L(1) \neq 0$ if $P \neq 1$. Since

$$
\frac{1}{1-Z}=\exp \left\{\sum_{m=1}^{\infty} \frac{Z^{m}}{m}\right\} \quad(|Z| \leqq 1, Z \neq 1)
$$

we have

$$
\begin{aligned}
P & =\exp \left\{\sum_{m=1}^{\infty} \frac{1}{m}\left(\sum_{r} \zeta^{r m}-\sum_{n} \zeta^{n m}\right)\right\} \\
& =\exp \left\{S \sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{m}{p}\right)\right\}=\exp \{S L(1)\}
\end{aligned}
$$

where

$$
S=\sum_{r} \zeta^{r}-\sum_{n} \zeta^{n}=\sum_{m=1}^{p-1}\left(\frac{m}{p}\right) \zeta^{m}
$$

Hence $L(1) \neq 0$ if $P \neq 1$. Let c be any fixed positive integer which is a quadratic nonresidue of p, e.g., $c=p-1$ if $p \equiv 3(\bmod 4)$. Then since $n \equiv c r(\bmod p)$, the equation $P=1$ can be written as

$$
\prod_{r}\left(\frac{1-\zeta^{c r}}{1-\zeta^{r}}\right)=1
$$

Then the polynomial

$$
\prod_{r}\left(\frac{1-Z^{c r}}{1-Z^{r}}\right)-1
$$

has a zero ζ which satisfies the irreducible equation $1+Z+Z^{2}+\cdots$ $+Z^{p-1}=0$. Hence if Z is any variable,

$$
\prod_{r}\left(\frac{1-Z^{c r}}{1-Z^{r}}\right)-1=f(Z)\left(1+Z+Z^{2}+\cdots+Z^{p-1}\right)
$$

where $f(Z)$ is a polynomial in Z with integral coefficients. Put $Z=1$. Then $c^{(p-1) / 2}-1 \equiv 0(\bmod p)$, which is a contradiction, in view of Euler's criterion for quadratic residuacity. This finishes the proof.

University of Colorado

