DIOPHANTINE EQUATIONS IN CYCLOMOTIC FIELDS

Dedicated to Professor L. J. Mordell on his 80th birthday

N. C. ANKENY AND S. CHOWLA

1. In this paper we consider the problem: when is a given rational integer equal to the square of the absolute value of an integer \(\alpha \) in a cyclotomic field? As an example let us ask for what \(g \) is

\[
|\alpha|^2 = p \quad [\alpha \in R(e^{2\pi i /g})],
\]

where \(p \) is a given rational prime? It is almost trivial (from the theory of the Gaussian sum or otherwise) that a solution exists with \(g = p \); it is less trivial that a solution also exists when \(g = p^2 + p + 1 \); but it is not asserted that solutions do not exist for other values of \(g \). While we are unable to give anything like a complete answer to the problem proposed, we can prove something in this direction, namely

Theorem I. The equation

\[
|\alpha|^2 = p
\]

is impossible for integers \(\alpha \) belonging to the cyclotomic field \(R(e^{2\pi i /g}) \), where \(g \) is a prime and

\[g > p^2. \]

Theorem II. Under the conditions of Theorem I, the equation

\[
|\alpha|^2 = p^2
\]

has no solutions apart from the obvious ones, namely

\[
\alpha = \pm p \theta^w, \quad \alpha = \pm p,
\]

where \(w \) is prime to \(g \), and

\[
\theta = e^{2\pi i /g}.
\]

Theorem II has an application to the theory of difference sets as developed by Marshall Hall [1] and Marshall Hall and Ryser [2]. To use the notation of the latter paper, we call the set of integers

\[d_1, \ldots, d_k \]

a difference set (mod \(v \)) if the congruence

\[
d_i - d_j \equiv n \pmod{v}
\]

has the same number \(\lambda \) of solutions for every \(n \not\equiv 0 \pmod{v} \). It is easy to see that

\[
\lambda = \frac{k(k-1)}{(v-1)}.
\]

Further Hall and Ryser define a "multiplier" of a difference set as follows. If \(d_1, \ldots, d_k \) are a difference set (mod \(v \)) we say that \(t \) is a multiplier of the set if for some \(s \) the residues \(td_1, \ldots, td_k \pmod{v} \) are \(d_1 + s, \ldots, d_k + s \pmod{v} \), apart from order. They prove the following:

Theorem. Let \(p \) be a prime divisor of \(k - \lambda \) such that \(p > \lambda \) and \(v \not\equiv 0 \pmod{p} \). Then \(p \) is a multiplier of the difference set \(d_1, \ldots, d_k \pmod{v} \).

Received 19 December, 1967.

[J. LONDON MATH. SOC., 43 (1968), 67-70]
They raise the interesting question whether the restriction \(p > \lambda \) is essential here. This conjecture appears difficult, but in many special cases our Theorem II establishes the existence of multipliers \(p \) with \(p < \lambda \). Details will form the subject of another paper.

2. In this section we shall prove Theorem II. We denote by \(\theta \) any root \(\not= 1 \) of \(\theta^g = 1 \). Write

\[
\alpha = S(\theta) = a_0 + a_1 \theta + \ldots + a_{g-1} \theta^{g-1}.
\]

Suppose that

\[
\alpha \bar{\alpha} = p^2. \tag{1}
\]

If we write

\[
S_1(\theta) = \sum_{i=0}^{g-1} (a_i + m) \theta^i = \sum_{i=0}^{g-1} b_i \theta^i
\]

for an arbitrary integer \(m \), it is clear that

\[
S(\theta) = S_1(\theta).
\]

We shall choose \(m \) so that

\[
S^2(1) = p^2. \tag{2}
\]

Clearly

\[
\sum_{n=1}^{g-1} S_1(\theta^n) S_1(\theta^{-n}) + S_1^2(1) = g \sum_{i=0}^{g-1} b_i^2,
\]

\[
(g-1)p^2 + S_1^2(1) = g \sum_{i=0}^{g-1} b_i^2,
\]

\[
S_1(1) = \sum_{i=0}^{g-1} b_i \equiv \pm p \quad (\text{mod } g),
\]

\[
\sum_{i=0}^{g-1} b_i = \pm p + mg,
\]

\[
\sum_{i=0}^{g-1} a_i = \pm p,
\]

\[
S(1) = \pm p.
\]

Hence (2) is established.

We have from (1)

\[
\{p^2\} = \{S(\theta)\} \{S(\theta^{-1})\}, \tag{3}
\]

where the curly bracket denotes an ideal. From (3) and the Hilbert theory [3] it follows since \(p \not= g \) that

\[
\{S(\theta^p)\} = \{S(\theta)\},
\]

\[
S(\theta^p) = \varepsilon(\theta) S(\theta), \tag{4}
\]

where \(\varepsilon(\theta) \) is a unit of the field \(R(\theta) \). From (1) and (4)

\[
\varepsilon(\theta) \varepsilon(\theta^{-1}) = 1. \tag{5}
\]
From (5) it follows (see Landau [4]) that
\[\epsilon(\theta) = \pm \theta^w, \] (6)
\[S(\theta^p) = \pm \theta^w S(\theta). \] (7)

If possible, let
\[S(\theta^p) = -\theta^w S(\theta); \] (8)
then
\[2 \sum_{i=0}^{g-1} a_i \equiv 0 \pmod{g}, \] (9)
which is false for \(g \) is an odd prime, and
\[\sum_{i=0}^{g-1} a_i = \pm p, \text{ and } g > p^k \]
by the hypotheses of Theorems I and II.

Hence
\[S(\theta^p) = \theta^w S(\theta). \] (10)

Put
\[S(\theta) = \theta^c T(\theta), \] (11)
where \(c \) is yet to be determined. Then
\[\frac{S(\theta^p)}{S(\theta)} = \frac{\theta^p}{\theta^c} T(\theta^p) T(\theta). \]

Choose \(c \) so that
\[(p-1)c \equiv w \pmod{g}. \]
Then
\[T(\theta^p) = T(\theta). \] (12)

Write
\[T(\theta) = c_0 + c_1 \theta + \ldots + c_{g-1} \theta^{g-1}, \]
where by (11), the \(c \)'s here are a cyclic permutation of the \(a \)'s in the definition of \(S(\theta) \).

Define \(f \) by
\[f \text{ is the least positive integer such that } p^f \equiv 1 \pmod{g}. \] (13)

From (12) and (13) we get
\[T(\theta) = c_0 + c_1 (\theta + \theta^p + \ldots + \theta^{p^{f-1}}) + c_i (\theta^i + \theta^{ip} + \theta^{ip^2} + \ldots) \]
\[+ c_j (\theta^j + \theta^{jp} + \theta^{jp^2} + \ldots) + \ldots, \] (14)
where \(i \neq p^a, j \neq p^b, (j/i) \neq p^d \pmod{g} \), etc.

Again, as before, we assume the \(c \)'s chosen so that \(|T^2(\theta)| = T^2(1) = p^2 \). Then
\[\sum_{h=0}^{g-1} T(\theta^h) T(\theta^{-h}) + T^2(1) = g \sum_{h=0}^{g-1} c_h^2, \]
\[(g-1)p^2 + p^2 = g \sum_{h=0}^{g-1} c_h^2, \]
\[p^2 = \sum_{i=0}^{g-1} c_i^2. \] (15)
From (14) and (15),
\[e_0^2 + f(c_1^2 + c_i^2 + c_j^2 + \ldots) = p^2, \]
(16)
where \(c_i, c_j, \) etc., were defined below (14). From (13),
\[f \geq \frac{\log g}{\log p}. \]
(17)
From (16) and (17)
\[\frac{\log g}{\log p} \leq p^2 \]
(18)
unless \(c_t = 0 \) \((1 \leq t \leq g - 1)\); (18) contradicts our hypothesis. Thus
\[c_t = 0 \) \((1 \leq t \leq g - 1)\)
and so \(c_0 = \pm p \) from (15). So
\[S(\theta) = c_0 \theta^e \]
\[T(\theta) = \pm p \theta^e. \]
This completes the proof of Theorem II. The deduction of Theorem I from Theorem II is left to the reader.

References

Institute for Advanced Study,
Princeton, N.J.

University of Kansas.