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1. In this paper we consider the problem: when is a given rational integer equal to
the square of the absolute value of an integer a in a cyclotomic field ? As an example
let us ask for what g is

\<x\2=p [<xeR(e2"'l9)],

where p is a given rational prime? It is almost trivial (from the theory of the
Gaussian sum or otherwise) that a solution exists with g =p; it is less trivial that a
solution also exists when g = p2+p+l; but it is not asserted that solutions do not
exist for other values of g. While we are unable to give anything like a complete
answer to the problem proposed, we can prove something in this direction, namely

THEOREM I. The equation

\«\2=P

is impossible for integers a. belonging to the cyclotomic field R(e2nil9), where g is a prime
and

g>Pp2-

THEOREM II. Under the conditions of Theorem I, the equation

\*\2=P2

has no solutions apart from the obvious ones, namely

a = ±pdw, a = ±p.

where w is prime to g, and
6 = e2nilg.

Theorem II has an application to the theory of difference sets as developed by
Marshall Hall [1] and Marshall Hall and Ryser [2]. To use the notation of the latter
paper, we call the set of integers

dlt ...,dk

a difference set (mod v) if the congruence

di—dj = n(modv)

has the same number X of solutions for every n ̂  0 (mod v). It is easy to see that

Further Hall and Ryser define a " multiplier" of a difference set as follows.
If du ...,dk are a difference set (mody) we say that t is a multiplier of the set if for
some s the residues tdu ..., idk (mody) SLTedl + s, ..., dk+s (mody), apart from order.
They prove the following:

THEOREM. Let p be a prime divisor of k—X such that p > X and v ^ 0 (mod/?).

Then p is a multiplier of the difference set du ...,dk (mody).
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They raise the interesting question whether the restriction p>X is essential here.
This conjecture appears difficult, but in many special cases our Theorem II establishes
the existence of multipliers p with p < X. Details will form the subject of another
paper.

2. In this section we shall prove Theorem II. We denote by 6 any root # 1 of
0 9 = 1 . Write

Suppose that
<xa=p2. (1)

If we write

i = 0

for an arbitrary integer m, it is clear that

We shall choose m so that
S\l)=p2. (2)

Clearly

i = 0

»=o

t= ±p + mg,

I at = ±p,
i = 0

= ±/7.

Hence (2) is established.
We have from (1)

2 % (3)

where the curly bracket denotes an ideal. From (3) and the Hilbert theory [3] it
follows since p ^ g that

(4)

where e(0) is a unit of the field R(9). From (1) and (4)

£ (0 )e ( r 1 ) = l. (5)
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From (5) it follows (see Landau [4]) that

s(9) = ±0", (6)

S{9P) = ±0W S(0). (7)

If possible, let
S(0p) =-9W S(0); (8)

then

29Zfl|. = 0(modg), (9)
i = 0

which is false for g is an odd prime, and

i
2 a,= ±/>, and
o

p

by the hypotheses of Theorems I and II.
Hence

S(0p) = 0wS(0). (10)

Put
S(0) = 0cT(0), (11)

where c is yet to be determined. Then

S(9P) &*_ T(9P)
S(9) ~ 9C T{9) '

Choose c so that
{p— \)c = w (mod^)k

Then
T(6P) = T(9). (12)

Write

where by (11), the c's here are a cyclic permutation of the a's in the definition of S(9).
Define / by

/ i s thejeast positive integer such tha t / /= 1 (modg). (13)

From (12) and (13) we get

+ Cj(9j+9Jp+9Jp2 + ...) + .» , (14)

where i # //,./ # //, (y//) # / (mod^), etc.
Again, as before, we assume the c's chosen so that |T2(0)|= T2(\) = p2. Then

*£ T(9") T(9-")+ T\\) = g9Y. ch
2,

h 0 / 0
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From (14) and (15),
2 + ci

2 + cj
2 + ...)=p2, (16)

where cit cJy etc., were defined below (14). From (13),

(17)
ivgp

From (16) and (17)

log/'2 (18>

unless ct = 0 (1 ̂  t ^ g — 1); (18) contradicts our hypothesis. Thus

and so c0 = ±p from (15). So

S(0) = co0
cT(0)=±p9c.

This completes the proof of Theorem II. The deduction of Theorem I from Theorem II
is left to the reader.
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