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1. In this paper we consider the problem: when is a given rational integer equal to
the square of the absolute value of an integer o in a cyclotomic field? As an example
let us ask for what g is

> =p  [xeR(e*¥)),
where p is a given rational prime? It is almost trivial (from the theory of the
Gaussian sum or otherwise) that a solution exists with g = p; it is less trivial that a
solution also exists when g = p?+p+1; but it is not asserted that solutions do not
exist for other values of g. While we are unable to give anything like a complete
answer to the problem proposed, we can prove something in this direction, namely

THEOREM 1. The equation
2
o] =p
is impossible for integers o belonging to the cyclotomic field R(e*"'), where g is a prime
and
g>p".
THEOREM II. Under the conditions of Theorem I, the equation
lef? = p?
has no solutions apart from the obvious ones, namely
o= +pf*, a=+p..
where w is prime to g, and
0 = e*"ike,

Theorem II has an application to the theory of difference sets as developed by
Marshall Hall [1] and Marshall Hall and Ryser [2]. To use the notation of the latter

paper, we call the set of integers
dl g sesy dk

a difference set (mod v) if the congruence
d;—d; = n(mod v)
has the same number A of solutions for every n # 0 (modv). It is easy to see that
k(k—1)
-1 °
Further Hall and Ryser define a “ multiplier” of a difference set as follows.
Ifd,, ..., d, are a difference set (modv) we say that ¢ is a multiplier of the set if for

some s the residues td,, ..., td, (modv) ared, +s, ..., d,+s (modv), apart from order.
They prove the following:

THEOREM. Let p be a prime divisor of k— 2 such that p > A and v % 0 (mod p).
Then p is a multiplier of the difference setd,, ..., d, (modv).

A=
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They raise the interesting question whether the restriction p> 4 is essential here.
This conjecture appears difficult, but in many special cases our Theorem II establishes
the existence of multipliers p with p < 4. Details will form the subject of another

paper.

2. In this section we shall prove Theorem II. We denote by 8 any root # 1 of
67 =1. Write
«=S0)=ao+a,0+...+a,_,0°"".

Suppose that
ad = pZ. n

If we write
g1 .og-1 .
S.(0) = 2:0 (g, +m)6' = ;) b;6'
for an arbitrary integer m, it is clear that
S(6) = S,(8).

We shall choose m so that
S¥(1) = p. V)]

Clearly
o

1 g-1
 Si0)S,07)+S () =8 2 b2

g=1
(g-1p*+S8.2() = gr b2,
g—1
S,(D) = ‘;0 b;= +p (modg),

g—1
2 b= tp+mg,
i=0

gil ai = ip’
i=0
S(1) = xp.
Hence (2) is established.
We have from (1)
{P*} = {SO)} {50 ")}, (3

where the curly bracket denotes an ideal. From (3) and the Hilbert theory [3] it
follows since p # g that

{56} = {S(0)}

S(67) = (0) S(6), @
where £(6) is a unit of the field R(6). From (1) and (4)

e(@)e(0") = 1. )
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From (5) it follows (see Landau [4]) that

&(0) = £6", ©)
S(6°) = £6%S(6). ™
If possible, let
5(8°) = —0" S(6); @®)
then
2”;2; a;=0 (modg), ©)

which is false for g is an odd prime, and
g-1 2
%: a,= +p, and g>p?

by the hypotheses of Theorems I and II.

Hence
S(67) = 0" S(6). (10)
Put
5(0)=6°T(), (11)
where c is yet to be determined. Then
S@?) 6 T(6"

s@ 6 T@O °

Choose ¢ so that
(p=1Dc=w (modg).

Then
T(6%) = T(0). (12)

Write
T(G) = CO+016+--.+CQ_199_1,

where by (11), the ¢’s here are a cyclic permutation of the a@’s in the definition of S(6).
Define f by

/is the'least positive integer such that p/ =1 (modg). (13)
From (12) and (13) we get
T(0) = co+cy(0+67+...+07 ) +¢,(0'+07+0'7* 4 ..)
+¢; (0 +0P 40P+ L)+, (14)
where i # p°, j# p®, (jli) # p? (modg), etc.
Again, as before, we assume the ¢’s chosen so that |T2(8)|= T?(1)=p2®. Then

g—1 g—1
ZO TOE) TO "+ T*(1) = g,ZO o
h= =
2, .2 ot ,
(e-Dp°+p” =g 2 &,

g—1
p’= T ol (1)
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From (14) and (15),

C02+f(clz+ci2+cj'2+...)=p2, (16)
where ¢;, ¢;, etc., were defined below (14).. From (13),

logg

> —.
fogp W)

From (16) and (17)
logg _ .,
—=g

Togp < P (18)

unless ¢, =0 (1 <t < g—1); (18) contradicts our hypothesis. Thus
=0(l<t<g-1)
and so ¢, = +p from (15). So
S(0) = ¢y 0° T(0)= % pb°.

This completes the proof of Theorem II. The deduction of Theorem I from Theorem IT
is left to the reader.
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