

ON COMPLETE RESIDUE SETS

By T. VIJAYARAGHAVAN (*Waltair*) and S. CHOWLA (*Ludhiana*)

[Received 8 February 1944; in revised form 12 December 1947]

1. THE following result is known:†

If q be an odd prime, r_1, r_2, \dots, r_q and s_1, s_2, \dots, s_q be two complete sets of residues $(\bmod q)$, then $r_1s_1, r_2s_2, \dots, r_qs_q$ cannot be a complete set of residues $(\bmod q)$.

To prove the result we follow Pólya in supposing the contrary. We can take $r_q \equiv 0 \pmod{q}$ and then it is easy to deduce that $s_q \equiv 0 \pmod{q}$. We have then (to modulus q)

$$\begin{aligned} 1 \cdot 2 \cdot 3 \dots (q-1) &\equiv r_1 r_2 \dots r_{q-1} \equiv s_1 s_2 \dots s_{q-1} \\ &\equiv r_1 s_1 \cdot r_2 s_2 \dots r_{q-1} s_{q-1} \equiv \{1 \cdot 2 \cdot 3 \dots (q-1)\}^2 \end{aligned}$$

which is impossible since (by Wilson's theorem)

$$1 \cdot 2 \cdot 3 \dots (q-1) \equiv -1 \pmod{q}.$$

We prove in this section that the above result is true not only for odd prime values of q but for all values of $q > 2$.

Suppose now that the result is not true for a composite value of q . It is shown below that there arises a contradiction. Let p be a prime divisor of q , and $q/p = N$. We see that $r_t s_t$ is a multiple of p for precisely N values of t and that $r_t s_t$ is prime to p for the remaining $q-N$ values of t . Since in each of the two sets r_1, r_2, \dots, r_q and s_1, s_2, \dots, s_q there are precisely $q-N$ numbers that are prime to p , we deduce at once that, whenever $r_t s_t$ is a multiple of a prime number p that divides q , then r_t and s_t are both multiples of p . If we now make the further assumption that q is a multiple of p^2 as well, then we see that either $r_t s_t$ is prime to p or is a multiple of p^2 and that therefore there is no value of t for which $r_t s_t \equiv p \pmod{q}$.

This contradiction proves the result when q is divisible by the square of a prime. It remains to prove the result when q is a product of two or more distinct primes. In this case we take an odd prime divisor p of q and consider the values of t for which $r_t s_t$ is a multiple of N ($= p/q$). There are precisely p such values of t ; let these values

† A. Hurwitz, *Nouv. Ann. Serie 3*, 1 (1882), 389. See also G. Pólya and G. Szegö, *Aufgaben und Lehrsätze aus der Analysis*, vol. ii, chap. 8, problem 245, p. 158 and p. 379.

of t be t_1, t_2, \dots, t_p . Now in each of the two sets r_1, r_2, \dots, r_q and s_1, s_2, \dots, s_q there are precisely p numbers that are multiples of N and precisely $q-p$ numbers that are not multiples of N . It follows that each of the numbers $r_{t_1}, r_{t_2}, \dots, r_{t_p}$ is a multiple of N . Moreover, these p numbers in some order or other are congruent to $N, 2N, \dots, pN \pmod{q}$ and are therefore incongruent \pmod{p} . The same remarks apply to $s_{t_1}, s_{t_2}, \dots, s_{t_p}$ and to $r_{t_1}s_{t_1}, r_{t_2}s_{t_2}, \dots, r_{t_p}s_{t_p}$. But according to the result of A. Hurwitz this is not possible. This completes the proof when q is a product of two or more distinct primes. Hence we have the result:

If r_1, r_2, \dots, r_q and s_1, s_2, \dots, s_q are two complete residue sets \pmod{q} , where $q > 2$, then $r_1s_1, r_2s_2, \dots, r_qs_q$ is not a complete residue set \pmod{q} .

2. The main result of this note is given in this section.

We consider the following problem. Suppose that n is a positive integer, $\phi(n) = h$, and r_1, r_2, \dots, r_h are all prime to n and incongruent \pmod{n} . Such a set may be called a complete primitive residue set \pmod{n} . Suppose now that r_1, r_2, \dots, r_h and s_1, s_2, \dots, s_h are two such sets. Can it happen that the product set $r_1s_1, r_2s_2, \dots, r_hs_h$ is also a complete primitive residue set? It is easy to see from the proof of the result of A. Hurwitz that the product set cannot be a complete primitive residue set if n is a prime number > 2 ; it is easy to verify that the same is the case if $n = 4, 6, 9$, etc. But we see from the following table that for some other values of n the product set can be a complete primitive residue set provided that the first two sets are suitably ordered.

	$n = 2$	$n = 8$	$n = 12$	$n = 15$
r_t	1	1, 3, 5, 7	1, 5, 7, 11	1, 2, 4, 7, 8, 11, 13, 14
s_t	1	1, 5, 7, 3	1, 7, 11, 5	1, 4, 14, 2, 11, 7, 13, 8
$r_t s_t$ reduced (\pmod{n})	1	1, 7, 3, 5	1, 11, 5, 7	1, 8, 11, 14, 13, 2, 4, 7

It turns out that there is a neat answer to the query: 'Which numbers have the property considered above?' The answer is given by the following

THEOREM. *If $n = 2$ or has no primitive root, then there exist suitable complete primitive residue sets r_1, r_2, \dots, r_h and s_1, s_2, \dots, s_h such that $r_1s_1, r_2s_2, \dots, r_hs_h$ too is a complete primitive residue set.*

Remark. If $n > 2$ and has a primitive root g , then it is easy to show that n has not the property under consideration. For otherwise we should have to modulus n

$$g \cdot g^2 \cdots g^h \equiv r_1 r_2 \cdots r_h \equiv s_1 s_2 \cdots s_h \equiv r_1 s_1 r_2 s_2 \cdots r_h s_h \equiv (g \cdot g^2 \cdots g^h)^2,$$

which is a contradiction since $n > 2$ and

$$g \cdot g^2 \cdots g^h \equiv g^{wh+h} \equiv g^{th} \equiv -1 \pmod{n},$$

where $w = \frac{1}{2}h$ is an integer.

LEMMA. *If m and n are prime to each other and the conclusion of the theorem is true for m and n , then it is true for mn .*

Let $\phi(m) = h$, $\phi(n) = k$, and $r_1, r_2, \dots, r_h, s_1, s_2, \dots, s_h$ and $r_1 s_1, r_2 s_2, \dots, r_h s_h$ be three complete primitive residue sets (\pmod{m}) , and let $\rho_1, \rho_2, \dots, \rho_k, \sigma_1, \sigma_2, \dots, \sigma_k$, and $\rho_1 \sigma_1, \rho_2 \sigma_2, \dots, \rho_k \sigma_k$ be three such sets (\pmod{n}) . Let $\{\alpha, \beta\}$ denote the residue class $x (\pmod{mn})$, where x is such that $x \equiv \alpha (\pmod{m})$, $x \equiv \beta (\pmod{n})$, and let R_1, R_2, \dots, R_{hk} be a complete primitive residue set (\pmod{mn}) . If $R_a = \{r_b, \rho_c\}$, then we take $S_a = \{s_b, \sigma_c\}$ ($a = 1, 2, 3, \dots, hk$). It is easy to verify that S_1, S_2, \dots, S_{hk} and $R_1 S_1, R_2 S_2, \dots, R_{hk} S_{hk}$ are two complete primitive residue sets (\pmod{mn}) , and this proves the lemma.

The theorem is first proved for values of n that belong to a set S , where S consists precisely of the five following forms:

- (1) $n = 2^\lambda$, where $\lambda \neq 2$;
- (2) $n = 2^\lambda m$, where $\lambda \geq 2$ and m is a power of any odd prime;
- (3) $n = p^\lambda q^\mu$, where p and q are any pair of distinct odd primes;
- (4) $n = 4M$, where M is any member of the form (3) mentioned just above;
- (5) $n = p^\lambda q^\mu r^\nu$, where p, q, r are any three distinct odd primes.

It may be remarked here that, if a number n has no primitive root, then either it is a member of S or can be represented as a product of two or more mutually prime members of S . In view of the lemma already proved it follows immediately that the theorem of this note is completely proved when it has been proved for all values of n that belong to S .

(I) $n = p^\lambda q^\mu$. Let g be a primitive root of p^λ , $\phi(p^\lambda) = 2M$, g' a primitive root of q^μ and $\phi(q^\mu) = 2N$. We denote by $\{\alpha, \beta\}$ the residue class x which is such that

$$x \equiv g^\alpha \pmod{p^\lambda}, \quad x \equiv g'^\beta \pmod{q^\mu}.$$

It should be noticed that by giving to α the values $0, 1, 2, \dots, 2M-1$ and to β the values $0, 1, 2, \dots, 2N-1$ we get all the $4MN$ primitive residue classes $(\bmod p^\lambda q^\mu)$. Also

$$\{\alpha, \beta\} = \{\alpha+2M, \beta\} = \{\alpha, \beta+2N\}$$

for every pair of values α, β ; the converse is also true, i.e. if

$$\{\alpha, \beta\} = \{\alpha', \beta'\},$$

then $\alpha \equiv \alpha' \pmod{2M}$ and $\beta \equiv \beta' \pmod{2N}$. Finally, if $x = \{\alpha, \beta\}$ and $y = \{\alpha', \beta'\}$, then $xy = \{\alpha+\alpha', \beta+\beta'\}$ for all $\alpha, \beta, \alpha', \beta'$. These properties enable us to solve the problem under consideration. Let r_1, r_2, \dots, r_h (where $h = 4MN$) be a complete set of primitive residues $(\bmod n)$. We show below how a complete set of primitive residue classes s_1, s_2, \dots, s_h can be chosen in such a way that $r_1 s_1, r_2 s_2, \dots, r_h s_h$ is also a complete primitive residue set.

If $r_t = \{\alpha, \beta\}$ ($1 \leq \alpha \leq M; 1 \leq \beta \leq N$),
then s_t is to be taken equal to $\{\alpha, \beta\}$;
if $r_t = \{\alpha, \beta\}$ ($M < \alpha \leq 2M; 1 \leq \beta \leq N$),
then s_t is to be taken equal to $\{\alpha, \beta-1\}$;
if $r_t = \{\alpha, \beta\}$ ($M \leq \alpha < 2M; N < \beta \leq 2N$),
then s_t is to be taken equal to $\{\alpha+1, \beta-1\}$;
if $r_t = \{\alpha, \beta\}$ ($0 \leq \alpha < M; N < \beta \leq 2N$),
then s_t is to be taken equal to $\{\alpha+1, \beta\}$.

It is easy to verify that, if r_1, r_2, \dots, r_h be a complete primitive residue set, the same is true of s_1, s_2, \dots, s_h and also of $r_1 s_1, r_2 s_2, \dots, r_h s_h$.

The proofs are as follows:

(i) *for the numbers r_t .* From the first two lines of the above scheme we see that α takes $2M$ incongruent values $(\bmod 2M)$ when

$$1 \leq \beta \leq N;$$

from the third and fourth lines we see that α takes $2M$ incongruent values $(\bmod 2M)$ when $N < \beta \leq 2N$;

(ii) *for the numbers s_t .* From the first and fourth lines of the scheme we see that $s_t = \{\alpha, \beta\}$, where $1 \leq \alpha \leq M$ and β takes $2N$ incongruent values $(\bmod 2N)$; from the second and third lines of the scheme we see that $s_t = \{\alpha, \beta\}$, where $M < \alpha \leq 2M$ and β takes $2N$ incongruent values $(\bmod 2N)$;

(iii) for the numbers $r_t s_t$. Here we have $r_t s_t = \{\alpha, \beta\}$, where
 in the first line, α takes all even values $(\bmod 2M)$,
 β takes all even values $(\bmod 2N)$;
 in the second line, α takes all even values $(\bmod 2M)$,
 β takes all odd values $(\bmod 2N)$;
 in the third line, α takes all odd values $(\bmod 2M)$,
 β takes all odd values $(\bmod 2N)$;
 in the fourth line, α takes all odd values $(\bmod 2M)$,
 β takes all even values $(\bmod 2N)$.

In all the cases (i), (ii), (iii) we get $4MN$ numbers $\{\alpha, \beta\}$, where α runs through $2M$ incongruent values $(\bmod 2M)$ and β runs through $2N$ incongruent values $(\bmod 2N)$. Thus we have proved that the three sets r_t, s_t , and $r_t s_t$ ($1 \leq t \leq h$) are complete primitive residue sets.

We can present the choices in the above scheme more briefly in a tabular form. [In the table given below the 'type' to which $r_t s_t$ belongs is indicated; if α is even and β is odd we shall say that $r_t s_t$ belongs to the type $+-$. The three other types $++$, $-+ -$, $--$ are similarly defined.]

$$n = p^\lambda q^\mu; \quad r_t = \{\alpha, \beta\}$$

α	β	s_t	$r_t s_t$
$1 \leq \alpha \leq M$	$1 \leq \beta \leq N$	$\{\alpha, \beta\}$	$++$
$M < \alpha \leq 2M$	$1 \leq \beta \leq N$	$\{\alpha, \beta-1\}$	$+-$
$M \leq \alpha < 2M$	$N+1 \leq \beta \leq 2N$	$\{\alpha+1, \beta-1\}$	$--$
$0 \leq \alpha < M$	$N < \beta \leq 2N$	$\{\alpha+1, \beta\}$	$-+$

An even more brief representation of the table would be.

r_t	11	21	2'2	1.2
s_t	11	21'	22'	12
$r_t s_t$	$++$	$+-$	$--$	$-+$

(II) $n = 4q^\mu$. This case is disposed of in exactly the same way as $n = p^\lambda q^\mu$ since the number 4 has the primitive root 3. The case $2^\lambda q^\mu$, where $\lambda > 2$, is discussed a little farther down.

(III) $n = 2^\lambda$ ($\lambda > 2$). This case is disposed of in exactly the same way as $p^\lambda q^\mu$ for the following reason. Any primitive residue class $(\bmod 2^\lambda)$ can be represented as $\{\alpha, \beta\}$, where $\{\alpha, \beta\}$ represents the residue class x , if and only if $x \equiv 5^\alpha (-1)^\beta (\bmod n)$.

We get all the residue classes by giving to α the values 0, 1, 2, ...,

$2^{\lambda-2} - 1$, and to β the values 0 and 1. This representation has all the properties mentioned earlier in connexion with the case $n = p^\lambda q^\mu$. We give below the details of the choice of s_1, s_2, \dots, s_h , where

$$h = 2^{\lambda-1} = 4M.$$

r_t	$-5, -5^2, \dots, -5^M$	$-5^{M+1}, \dots, -5^{2M}$	$5^M, 5^{M+1}, \dots, 5^{2M-1}$	$1, 5, 5^2, \dots, 5^{M-1}$
s_t	$-5, -5^2, \dots, -5^M$	$5^{M+1}, \dots, 5^{2M}$	$-5^{M+1}, -5^{M+2}, \dots, -5^{2M}$	$5, 5^2, 5^3, \dots, 5^M$
$r_t s_t$	$5^{2\alpha}$	$-5^{2\alpha}$	$-5^{2\alpha+1}$	$5^{2\alpha+1}$
	$(1 \leq \alpha \leq M)$	$(M < \alpha \leq 2M)$	$(M \leq \alpha < 2M)$	$(0 \leq \alpha < M)$

(IV) $n = p^\lambda q^\mu r^\nu$. Let g, g', g'' be respectively primitive roots of p^λ, q^μ, r^ν . We denote by $\{\alpha, \beta, \gamma\}$ the residue class $x \pmod{n}$, where $x \equiv g^\alpha \pmod{p^\lambda}, x \equiv g'^\beta \pmod{q^\mu}, x \equiv g''^\gamma \pmod{r^\nu}$.

The choice of s_t is made according to the following table:

r_t	111	211	222	122	2'21	1'21	2'12	1'12
s_t	111	21'1	22'2'	122'	22'1'	121'	21'2	112
$r_t s_t$	+++	++-	---	++-	---	-+-	--+	-++

A more explicit version of this table would be

$$n = p^\lambda q^\mu r^\nu, \quad \phi(p^\lambda) = 2M, \quad \phi(q^\mu) = 2N,$$

$$\phi(r^\nu) = 2L, \quad r_t = \{\alpha, \beta, \gamma\}$$

α	β	γ	s_t	$r_t s_t$
$1 \leq \alpha \leq M$	$1 \leq \beta \leq N$	$1 \leq \gamma \leq L$	$\{\alpha, \beta, \gamma\}$	+++
$M < \alpha \leq 2M$	$1 \leq \beta \leq N$	$1 \leq \gamma \leq L$	$\{\alpha, \beta-1, \gamma\}$	++-
$M < \alpha \leq 2M$	$N < \beta \leq 2N$	$L < \gamma \leq 2L$	$\{\alpha, \beta-1, \gamma-1\}$	++-
$1 \leq \alpha \leq M$	$N < \beta \leq 2N$	$L < \gamma \leq 2L$	$\{\alpha, \beta, \gamma-1\}$	++-
$M \leq \alpha < 2M$	$N < \beta \leq 2N$	$1 \leq \gamma \leq L$	$\{\alpha+1, \beta-1, \gamma-1\}$	---
$0 \leq \alpha < M$	$N < \beta \leq 2N$	$1 \leq \gamma \leq L$	$\{\alpha+1, \beta, \gamma-1\}$	-+-
$M \leq \alpha < 2M$	$1 \leq \beta \leq N$	$L < \gamma \leq 2L$	$\{\alpha+1, \beta-1, \gamma\}$	---
$0 \leq \alpha < M$	$1 \leq \beta \leq N$	$L < \gamma \leq 2L$	$\{\alpha+1, \beta, \gamma\}$	-++

(V) $n = 4q^\mu r^\nu$. This case is disposed of like the previous case since the number 4 has the primitive root 3.

(VI) $n = 2^\lambda r^\nu$ ($\lambda > 2$). This case also is covered by the discussion in the case $n = p^\lambda q^\mu r^\nu$, for the residue class $x \pmod{2^\lambda r^\nu}$ can be represented by $\{\alpha, \beta, \gamma\}$, where α, β, γ are such that

$$x \equiv 5^\alpha (-1)^\beta \pmod{2^\lambda}, \quad x \equiv g^\gamma \pmod{r^\nu},$$

g being a primitive root of r^ν . This completes all the cases included in the set S , and, as pointed out already, the proof of the theorem is now plain.

SUMMARY

It is known that, if $q > 2$ and q is prime, then there do not exist two complete residue sets r_1, r_2, \dots, r_q and s_1, s_2, \dots, s_q such that $r_1s_1, r_2s_2, \dots, r_qs_q$ also is a complete residue set $(\bmod q)$. It is pointed out in this note that the same conclusion holds not only for prime values of q but also for all numbers $q > 2$. The main result of the note is the theorem

THEOREM. *If $n > 2$ and $\phi(n) = h$, then there exist complete primitive residue sets r_1, r_2, \dots, r_h and s_1, s_2, \dots, s_h such that $r_1s_1, r_2s_2, \dots, r_hs_h$ too is a complete primitive residue set if and only if n has no primitive root.*