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1. Tae ,folléwing resultf is known‘:‘l'

If q be an odd prime, 1y, 1,,..., 7, and 8, 85,..., 8, be two complete sets
of residues (mod q), then r,8,, 7,8,,..., 7,8, cannot be a complete set of
residues (mod q). )

To prove the result we follow Pélya in supposing the contrary.
We can take r, = 0 (modg) and then.it is easy to deduce that
8, = 0 (modg). We have then (to modulus g)

1.2.8..(g— ) =rirp.ryy = 8,8,...8,,
} = 71817385 Tq1 g1 = {1.2.3...(¢—1)}2
which is impossible since (by Wilson’s theorem)
1.2.3...(¢g—1) = —1 (modg).

We prove in this section that the above result is true not only for
odd prime values of g but for all values of ¢ > 2.

Suppose now that the result is not true for a composite value of gq.
It is shown below that there arises a contradiction. Let p be a prime
divisor of ¢, and g/p = N. We see that r,s, is a multiple of p for
precisely N values of ¢ and that 7,s, is prime to p for the remaining
g¢—N values of ¢. Since in each of the two sets 7, 7,,...,. 7, and
8;, 8,..., 8, there are precisely ¢—N numbers that are prime to p,
we deduce at once that, whenever 7,5, is a multiple of a prime
number p that divides ¢, then 7, and s, are both multiples of p.
If we now make the further assumption that ¢ is a multiple of p2 as
well, then we see that either 7,8, is prime to p or is a multiple of p?
~ and that therefore there is no value of ¢ for which 7,8, = p (mod q).

This’ contradiction proves the result when-gq is divisible by. the
square of a prime. It remains to prove the result when g is a product
of two or more distinct primes. In this case we take an odd prime
divisor p of ¢ and consider the values of ¢ for which 7,5, is a multiple
of N (= p/q). There are precisely p such values of ¢; let these values
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of t be ¢, t,,..., t,. Now in each of the two sets r,, 7y,..., 7, and
81 85,..., 8, there are precisely » numbers that are multiples of N and
precisely ¢—p numbers that are not multiples of N¥. It follows that
each of the numbers r,, 7,,..., 7, is a multiple of N. Moreover, these
p numbers in some order or other are congruent to N, 2N,..., pN
(modgq) and are therefore incongruent (modp). The same remarks
apply to s, 8,,..., &, and to 7, 8, 7,8;,,..., 7,8, . But according to the
result of A. Hurwitz this is not possible. This completes the proof
when ¢ is a product of two or more distinct primes. Hence we have
the result:

If 1y, 795y 7, and 8y, 8,,..., 8, are two complete residue sets (mod gq),
where q > 2, thenr,8,,7,8,,..., 7,8, 18 not a complete residue set (mod g).

2. The main result of this note is given in this section.

We consider the following problem. Suppose that n is a positive
integer, ¢(n) = h, and ry, r,,..., 7, are all prime to » and incongruent
(modn). Such a set may be called a complete primitive residue set
(modn). Suppose now that r,, ry,..., 7, and &,, 8,,..., 8, are two such
sets. Can it happen that the product set r,8,, 7,8,,..., 7,8, is also a
complete primitive residue set? It is easy to see from the proof of
the result of A. Hurwitz that the product set cannot be a complete
primitive residue set if n is a prime number > 2; it is easy to verify
that the same is the case if n = 4, 6, 9, etc. But we see from the
following table that for some other values of n the product set can
be a complete primitive residue set provided that the first two sets
are suitably ordered.

n = n==_§ n= 12 n=15
7 1 1,357 1,517,111 | 1,2,4,7,8,11, 13, 14
84 1 1,5 7,3 [ 1,7,11,5 | 1,4,14,2,11,7,13,8
r8; reduced 1 1,7,3,511,11,5,7 { 1,8, 11, 14, 13, 2, 4, 7
(mod n)

It turns out that there is a neat answer to the query: ‘Which
numbers have the property considered above?’ The answer is given
by the following

"THEOREM. If n = 2 or has no primitive root, then there exist suitable
complete primilive resvdue sels ry, 1,,..., 7, and 8, 8,,..., 8, such that

4

7181, T2 85,..., 74 8, L00 28 @ complete primitive residue set.
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Remark. If n > 2 and has a primitive root g, then it is easy to
show that n has not the property under consideration. For otherwise
we should have to modulus

g.g2.gh = 7175 Ty = 8,858, = 118,738,574, 8, = (9.9%..9")2,
which is a contradi'ction since ».,> 2 and
g.g2. g = guhtih = gih = _] (modn),
where w = }A is an integer.

Lemma. If m and n are prime to each other and the conclusion of the
theorem 1s true for m and n, then it is true for mn.

Let ¢(m) = h, ¢(n) =k, and ry, r,,..., 7, 8y, Sp,..., 5, and 7,8,
7983,..., 71,8, be three complete primitive residue sets (mod m), and
let py, Poseees Pr> O1s Oase--» Of, AN py 04, py 0a,..., p, 0 be three such sets
(modn). Let {«, 8} denote the residue class z (modmn), where z is
such that z = « (modm), x = B (modn), and let R, R,,..., R, be
a complete primitive residue set (modmn). If R, = {r,, p,}, then we
take S, = {s;, o} (@ =1, 2, 3,..., kk). It is easy to verify that
Sy, 8,y Sy and R, S;, R,8,,..., B, Sy, are two complete primitive
residue sets (modmn), and this proves the lemma.

The theorem is first proved for values of n that belong to a set S,
where 8 consists precisely of the five following forms:

(1) »n = 2%, where X 3 2;

(2) n = 2Mm, where A > 2 and m is a power of any odd prime;

(3) n = pg#, where p and g are any pair of distinct odd primes;

(4) n = 4M, where M is any member of the form (3) mentioned

just above;

(5) n = p’gtrv, where p, q, r are any three distinct odd primes.

It may be remarked here that, if a number 7 has no primitive root,
then either it is & member of S or can be represented as a product
of two or more mutually prime members of S. In view of the lemma
- already proved it follows immediately. that the theorem of this note
is completely proved when it has been proved for all values of n that
belong to S.

(I) n = p’q#. Let g be a primitive root of p*, ¢(p*) = 2M, ¢’ a
primitive root of g* and ¢(¢*) = 2N. We denote by {«, B} the residue
class z which is such that

z = g* (mod p*), z = g'B (mod ¢#).
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It should be noticed that by giving to « the values 0, 1, 2,..., 2 —1
and to B the values 0, 1, 2,..., 2N —1 we get all the 4M N primitive
residue classes (mod pig#). Also

{o, B} = {a+2M, B} = {w, B+2N}

for every pair of walues «, 8; the converse is also true, i.e. if

{o B} = {o', B},

then o = o’ (mod2M) and B = B’ (mod 2N). Finally, if z = {a, 8}
and y = {o', B}, then 2y = {a+a’, B+B} for all «, B, o', B’. These
properties enable us to solve the problem under consideration. Let
71 Taseers T (Where b = 4MN) be a complete set of primitive residues
(modn). We show below how a complete set of primitive residue
classes 8,, 8,,..., 8, can be chosen in such a way that r, 8,, 738,,..., 73,83
is also a complete primitive residue set.

Ifrn={0,f} A<a<M;1<B<N),
theh 8, is to be taken equal to {«, B}
if- n={,p (M<a<<2M;1<B<N),
then s, is to be taken equal to {a, —1};
if rn={,p M<a<2M;N<B<K2N),
then g, is to be taken equal to {a+l B—1};
if r={p8 O<a<M; N<B<K2N),
then s, is to be taken equal to {1, B}.
It is easy to verify that, if 7, 7,,..., 7, be a complete primitive residue
set, the same is true of 8,, 8,,..., 8, and also of r,8,, 75 8,,..., 7, 8;.
The proofs are as follows:
(i) for the numbers r, From the first two lines of the above scheme
we see.that o takes 2 incongruent values (mod 2) when

I1<Bs DN

from the third and fourth lines we see that « takes 2 incongruent
values (mod 2M) when N < 8 < 2N;

(ii) for the numbers s. From the first and fourth lines of the
scheme we see that g, = {«, B}, where 1 < a < M and B takes 2N
incongruent values (mod 2N); from the second and third lines of the
scheme we see that s = {«, B}, where M < « < 2M and B takes 2N
incongruent values (mod 2N);
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(iii) for the numbers r,5. Here we have r,8 = {a, B}, where

in the first line, a takes all even values (mod 2.M),
\ B takes all even values (mod 2N);

in the second line, o takes all even values (mod 2M),
_ B takes all odd values (mod 2N);

in the third line, « takes all odd values (mod 221),
' B takes all odd values (mod 2N);

in the fourth line, « takes all odd values (mod 2)/),

B takes all even values (mod 2N).

In all the cases (i), (ii), (iii) we get 4M N numbers {«, B}, where «
runs through 2 incongruent values (mod 2}/) and g8 runs through
2N incongruent values {mod 2N).: Thus we have proved that the
‘three sets 7, s, and 7,8, (1 < ¢ < k) are complete primitive residue sets.

We can present the choices in the above scheme more briefly in
a tabular form. [In the table given below the ‘type’ to which r,s,
belongs is indicated; if « is even and B is odd we shall say that 7,8
belongs to the type + —. The three other types ++,-—4-, —— are

similarly deﬁped:]
. 'nzplql‘; le{a’ﬁ} )
d | B 8¢ T8¢
l<a<M 1<B<VN | {«p) ++
M<a<2M 1<B<N | {op-1} | +—
M<a<?2M [ N+1<B<2N|{a+1,8—=1}| ——
0gca< M N <B < 2N|{«+1,8} —+

An even more brief representation of the table would be.

T 11 21 2’2 12
8 11 2V 22/ 12
re |[++ | +— | —— | —+

(IT) n = 4¢#. This case is disposed of in exactly the same way as
n = p’gk since the number 4 has the primitive root 3. The case 2'g¥,
where A > 2, is discussed a little farther down. :

(III) n = 2*.(A > 2). This case is disposed of in exactly the same
way as p’g¢ for the following reason. Any primitive residue class
(mod 2%) can be represented as {a, B}, where {«, B} represents the
residue class z, if and only if 2 = 5%(—1)8 (mod n).

~ We get all the residue classes by giving to « the values 0, 1, 2,...,
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22-2__1, and to .8 the values 0 and 1. This representation has all the
properties mentioned earlier-in connexion with the case n = pig~.
We give below the details of the choice of s, s,,..., 8,, where

h= 21— 4M.
ry |—5, —5%..., —5M\—5MH1 _ 5MI5M sM+1 52M-1 1,5, 5%...,5M1
8 |—5, —5%,.., —5M|5M+1 52M —5ML __sM+2  _52M|5 52 53 . M
7,8 52a — 52¢ — H2atl 52atl
l<ag M) (M<a2M) M<La<2M) 0<a< M)

(IV) n = p’qprv. Let g, g', ¢" be respectively primitive roots of
P, g#, . We denote by {a, B, y} the residue class z (mod =), where

z = ¢* (modp?), z = ¢g'f (modg*), = = g"” (modr”).
The choice of s, is made according to the following table:

7s 111 211 222 122 221 1’21 2’12 1’12
8 111 21'1 22°2' 122/ 221’ 121/ 21°2 112
T8 +++{+—-+{+—-=}++-|-—-+—-|—-—F|—++
A more explicit version of this table would be
n=plg#r, $(p")=2M, ¢(g*) = 2N,
¢(r”)=2L, rt={°" :B’ 7"}
o B Y 8 T8t
l<a<M | 1<B<N |1<y<I |{nBy} 4+
M<ag2M| 1<B<N | 1<y< L |{aB—1,9} + -4+
M<ag?2M | N<B<?2N|L<yx?2L {a,B—l,y—l} 4 ——
l<a<M |N<B<?2N|L<y<2L|{aBy-1} 44—
Mcau<2M | N<B<?2N|1<y< L |{at+t],B—1y—1}| ———
O0<a<M |[N<B<g<?2N|1g<y< L |{«at+1,8,vy-1} — -
M<a<?2M | 1<B<N |[L<y<g?2L|{at+l,f-1,%} —_—4
0<a<M | 1<B<N |L<y<2L|{a+L By} —++

(V) m = 4g#r. This case is disposed of like the previous case since
the number 4 has the primitive root 3.

(VI) » = 24¥ (A > 2). This case also is covered by the discussion
in the case n = p’g#r, for the residue class z (mod2*) can be
represented by {«, 8, y}, where «, B, y are such that

z = 5%—1) (mod2)), =z = g” (mod7r?),
g being a primitive root of 7*. This completes all the cases included
in the set S, and, as pointed out already, the proof of the theorem
is now plain.
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SUMMARY

It is known that, if ¢ > 2 and ¢ is prime, then there do not exist
two complete residue sets r,, 7,,..., 7, and s, $,..., s, such that
7181, T3S8y,..., Ty, als0 Is a complete residue set (mod g). It is pointed
out in this note that the same conclusion holds not only for prime
values of ¢ but also for all numbers ¢ > 2. The main result of the
note is the theorem

THEOREM. Ifn > 2 and ¢(n) = h, then there exist complete primitive
residue sets 1y, Ta,..., T, and 8y, 8,,..., 8;, such that r, sy, 758,,..., 1), 8, t00
18 a complete primitive residue set if and only if n has no primitive root.



