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§1. Let n be a positive integer > 5. Let p denote a primitive gth
root of unity. We write
g—1 IQ“"'l 2 2h
S, = 2 p =3 ¢ ¢
P h=0 h=0

where (a4, ¢) = 1. Further
c—2mi%N

AQ =AM 7 g, 5) =geZe T (Sy)
where p runs over the ¢(g) primitive gth roots of unity [4(g) is Euler’s totient
function]. The * singular series ”’ under consideration isfor s > 5,

SO) = S(N;n;s) = Z A(g) =ITx,
b4

=1
where $ runs through all primes and
Xo=1+ A(p) + A(pY) + ..
We shall show that
Theovem 1.
SN, 7;m 4+ 1) == O(1)
t.e., for fixed n and an arbitrary A we can find wnfinitely many positive integers
N such that
(1) S(N,n;n +1) > A,
In fact we prove that the number of numbers N < x with the Property (1)
is greater than Cx (for large x), where C = C(A, n) 4s a positive comstant
depending only on A and n.

Let 7;,,(N) denote the number of representations of N as a sum of s #th
powers > 0. Then the last result helps us to show that
Theorem 2.
Twn(N) == O(1)
t.e., for fixed n and an arbitrary A we can find wnfinitely many N such that
Ynn(N) > A.

* Dedicated to my friend Sivasankaranarayana Pillai.
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Theorem 2 gives us some idea of the behaviour of 7,,(N) for large N.
An opposite kind of result is the famous unproved ‘

Hypothesis K. 7 a(N) = O(N€) for any € > 0.

In what follows the numbers ¢ (OF €1, Ca etc.) denote positive constants
which depend only on 7. '

§2. Let us assume the existence of a ¢ = ¢(n) such that
1) 7..N) < ¢
If (I) is true, then clearly
1
(D) 7usne () <
since (I) is true, Hypothesis K is true. On the latter assumption we have

(from Hardy-Littlewood's P.N. VI in Math. Ztschr., Vol. 23)
1

@) #pra(N) = ENS(N; 252 +1) + o(N)
where

1
3 Z [ompPE=0& " )
m
and E is a positive constant involving only on #.

From (2) and (3) it follows that
1 1

(4) s (N) =ES N; 77 + 1) N" + o(N")
is true for * almost all 7" N.
§3. Notation.
alb
means that @ is a divisor of b a7b is the negation of afb.
91l m
means that ]b@/m but ]59+1 + m.
M(p) = M(p?, N) is the aumber of solutions of A" + -+ + hyr=N(mod p?)
where 0 < Ay < ph. Clearly M(#%, N) > 0 if N=1 (mod 2.
The first six of the lemmas below are from Landaw’s Vorlesungen uber.
Zahlentheorie, Band 1, pages 284, 294, 297, 297, 302, 981 respectively.

Lemma 1. Let pﬁﬁ’“’ | N where B =20, 00 <1; let p9in and
y=f4+1ifp> 2,7 = 042 if p=2. Then AlpY) = 0 for 1 > 1, where
Z0=Max(ﬁn+a+1,ﬁn+y). .
 Lemma 2. If q = o pFn, 2< 1< nthen
sp = £ o o
Lemma 3. If 4 =D,
1Spl < (» — 1) V2.
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Lemma 4. For q = P4, 1 > n, we have
SP = pn*l sz,ﬂ
(clearly, p#” is a primitive p#"th root of unity)
Lemma 5. Forp>c,s=n+1( > 4)

Lemma 6.

LHAR) + AP + -+ + A(pY) = pe M(pt, ).
§4. et p, denote the rth prime. In the sequel we shall employ the

above lemmas only in the case s = n + 1.

Lemma 7. We can find a number z, so large that (pry m) =1 for all

r = z, and further,

1 b
xp,=1+j-§-)—_+j;;%(n>5) (1) < 1)

Jor all r = z,, where N 1s such that
SN (r = zy).

Proof —Since » > z;, p, is prime to n for suficiently large z and it

follows from lemma 1 that
(6) Xp, =1+ Alps) + A2 + --- + Ap,n4),

From lemma 2,

(6) Splg=2".2 < m< n)=pm1,
(7 ) (Sp)”+1 = p, )T
(8 p= 1,1
(9) A(q) = gT-i-l f‘(SPYHIP—N
= (p,” — p,V)p, 71

= prm—n-—l — ?rm-n—z (2 < m < n)

From (5) and (9),

(10) %=1+ o — 2=+ A(p,) + A(ph).

2

n-1

By lemma 3,

(1) Ap) < gomr £ 2 pr= —f— =

for n = 5; by lemmas 3 and 4,

, ) byriig ni
12) A < LA
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(by applying lemma 5, since %3 > ¢, to the third product in (19)), where N
is restricted by the conditions
(20) N= I(mod 2042 0,41 ... Pnftt)
and o S
(21) 9, |N for 1< 7 < %,
It is clear that for given # and A there is a finite proportion of numbers
N satisfying (20) and (21), 7.e., the number of solutions of (20), (21) and
(22) N«
is greater than d x (for large x) where d is positive and depends only on A
and #. Hence we have *

Theorem 3. Let n be a fixed integer > 5. Let A be an arbitrarily large
number.  Then we can find a positive number d, depending only on A and n,
such that the number of solutions (in N) of

S(N;n;n+ 1) > A,
1< N g%,
zs greater than d x for large x.

From Theorem 3, and (4) which is true for almost all N, we easily
deduce that

Theorem 4. Letn > 5 be fixed. Lot A be arbitrarily large. Then if
Hypothesis K is true there exists a number 4 — d (A, n) > O such that the
number of solutions (in N) of

(23) ¥re+1,n (N) > A N"
and 1L NLKx
s greater than d x for large x.

Now if (I) were true, then (II) would be true. Further Hypothesis K
would be true since (I) is supposed true, and hence by Theorem 4, there
would be infinitely many N satisfying (23), which contradicts (IT). Hence
(I) is false and Theorem 2 is true.

Note.—Results similar to Theorem 2, e.g., that #;4N) > 2 for
infinitely many N(3 < % < 9) where ?'z4 (m) is the number of distinct and
primitive representations (permutation of the bases not allowed) of m as a
sum of & kth powers > 0, have been proved by Wright in his paper ““ On
Sums of kth Powers, ” Jour. London Math. Soc., 1935, 10, 94-99.
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