A REMARKABLE PROPERTY OF THE "SINGULAR SERIES" IN WARING'S PROBLEM AND ITS RELATION TO HYPOTHESIS K OF HARDY AND LITTLEWOOD.*

By S. CHOWLA,

Andhra University, Waltair.

Received September 24, 1935.

§1. Let n be a positive integer \geqslant 5. Let ρ denote a primitive qth root of unity. We write

$$S_{\rho} = \sum_{h=0}^{q-1} \rho^{h^n} = \sum_{h=0}^{q-1} e^{2\pi i \frac{a}{q}h^n}$$

where (a, q) = 1. Further

$$A(q) = A(N, n, q, s) = q^{-s} \sum_{\rho} e^{-2\pi i \frac{q}{q} N} (S_{\rho})^{s}$$

where ρ runs over the $\phi(q)$ primitive qth roots of unity $[\phi(q)]$ is Euler's totient function]. The "singular series" under consideration is for $s \ge 5$,

$$S(N) = S(N; n; s) = \sum_{q=1}^{\infty} A(q) = \prod_{p} \chi_{p}$$

where p runs through all primes and

$$\chi_{p}=1+A(p)+A(p^{2})+\cdots$$

We shall show that

Theorem 1.

$$S(N, n; n + 1) \neq O(1)$$

i.e., for fixed n and an arbitrary A we can find infinitely many positive integers N such that

(1)
$$S(N, n; n + 1) > A$$
.

In fact we prove that the number of numbers $N \leq x$ with the property (1) is greater than Cx (for large x), where C = C(A, n) is a positive constant depending only on A and n.

Let $r_{s,n}(N)$ denote the number of representations of N as a sum of s nth powers ≥ 0 . Then the last result helps us to show that

Theorem 2.

$$r_{n,n}(N) \neq O(1)$$

i.e., for fixed n and an arbitrary A we can find infinitely many N such that $r_{n,n}(N) > A$.

^{*} Dedicated to my friend Sivasankaranarayana Pillai.

Theorem 2 gives us some idea of the behaviour of $r_{n,n}(N)$ for large N. An opposite kind of result is the famous unproved

Hypothesis K. $r_{n,n}(N) = O(N^{\epsilon})$ for any $\epsilon > 0$.

In what follows the numbers c (or c_1 , c_2 , etc.) denote positive constants which depend only on n.

Let us assume the existence of a c = c(n) such that

(I) $r_{n,n}(N) < c$.

If (I) is true, then clearly

(II) $r_{n+1,n}$ (N) $< cN^{\hat{n}}$

since (I) is true, Hypothesis K is true. On the latter assumption we have (from Hardy-Littlewood's P.N. VI in Math. Ztschr., Vol. 23)

(2)
$$\gamma_{n+1,n}(N) = E N^{\frac{1}{n}} S(N; n; n+1) + \sigma(N)$$

where

$$(3) \quad \underset{m \leqslant x}{\Sigma} \left[\sigma(m) \right]^2 = O(x^{1 + \frac{2}{n} - c})$$

and E is a positive constant involving only on n.

From (2) and (3) it follows that

From (2) and (3) it follows that
$$(4) \quad r_{n+1,n}(\mathbb{N}) = \mathbb{E} \,\mathbb{S} \,(\mathbb{N}; \, n \,; \, n+1) \,\mathbb{N}^{n} \,+ o(\mathbb{N}^{n})$$
is true for "almost all" \mathbb{N} .

§3. Notation.

means that a is a divisor of b; $a \neq b$ is the negation of a/b.

$$p^{\theta} \parallel m$$

means that p^{θ}/m but $p^{\theta+1} + m$.

 $M(p^l) = M(p^l, N)$ is the number of solutions of $h_1^n + \cdots + h_s^n \equiv N \pmod{p^l}$ where $0 \leqslant h_m < p^l$. Clearly $M(p^l, N) > 0$ if $N \equiv 1 \pmod{p^l}$.

The first six of the lemmas below are from Landau's Vorlesungen uber. Zahlentheorie, Band 1, pages 284, 294, 297, 297, 302, 281 respectively.

Lemma 1. Let $p^{\beta_n+\sigma} \parallel N$ where $\beta \geqslant 0$, $0 \leqslant \sigma < n$; let $p^{\theta} \parallel n$ $\gamma = \theta + 1$ if p > 2, $\gamma = \theta + 2$ if p = 2. Then $A(p^l) = 0$ for $1 > l_0$ where $l_0 = \text{Max} (\beta n + \sigma + 1, \beta n + \gamma).$

Lemma 2. If
$$q = p^l$$
, $p \neq n$, $2 \le 1 \le n$ then $S\rho = p^{l-1}$

Lemma 3. If
$$q = p$$
, $|S\rho| \leq (n-1) \sqrt{p}$.

Lemma 4. For
$$q = p^l$$
, $1 > n$, we have $S_{\rho} = p^{n-1} S_{\rho} p^n$

(clearly, ρ^{p^n} is a primitive p^{j-n} th root of unity)

Lemma 5. For $p > c_1$, s = n + 1 ($n \ge 4$)

$$\chi_{p} > 1 - p^{-\frac{5}{4}}$$

Lemma 6.

$$1 + A(p) + A(p^2) + \cdots + A(p^l) = p^{-(s-1)l} M(p^l, N).$$

Let p_r denote the rth prime. In the sequel we shall employ the above lemmas only in the case s = n + 1.

Lemma 7. We can find a number z_1 so large that $(p_r, n) = 1$ for all $r \geqslant z_1$ and further,

$$\chi_{p_r} = 1 + \frac{1}{p_r} + \frac{b}{p_r^{\frac{3}{2}}} (n \ge 5)$$
 (|b| < 1)

for all $r \ge z_1$, where N is such that

$$p_r^n \mid N \qquad (r \geqslant z_1).$$

Proof.—Since $r \ge z_1$, p_r is prime to n for sufficiently large z_1 and it follows from lemma 1 that

(5)
$$\chi_{p_r} = 1 + A(p_r) + A(p_r^2) + \cdots + A(p_r^{n+1}).$$

From lemma 2,

(6)
$$S_{\rho}(q = p_r^m, 2 \leq m \leq n) = p_r^{m-1},$$

(7)
$$(S_{\rho})^{n+1} = p_r^{m(n+1)-n-1},$$

(8)
$$\rho^{-n} = 1$$
,

(8)
$$\rho^{-N} = 1$$
,
(9) $A(q) = \frac{1}{q^{n+1}} \sum_{\rho} (S_{\rho})^{n+1} \rho^{-N}$
 $= (p_r^m - p_r^{m-1}) p_r^{-n-1}$
 $= p_r^{m-n-1} - p_r^{m-n-2}$ $(2 \le m \le n)$.

From (5) and (9),

(10)
$$\chi_{p_r} = 1 + \frac{1}{p_r} - \frac{1}{p_{r^n}} + A(p_r) + A(p_{r^{n+1}}).$$

By lemma 3,

(11)
$$A(p_r) \le \frac{c}{p_r^{n+1}} p_r^{\frac{n+1}{2}} p_r = \frac{c}{p_r^{\frac{n+1}{2}-1}} = \frac{c}{p_r^2}$$

for $n \geqslant 5$; by lemmas 3 and 4,

(12)
$$A(p_r^{n+1}) \leq c \frac{(p_r^{n-\frac{1}{2}})^{n+1}p_r^{n+1}}{p_r^{(n+1)}(n+1)}$$

$$= \frac{c}{p_r^{\frac{n}{2} + \frac{1}{2}}} = \frac{c}{p_r^2} (n \geq 3).$$

Remarkable Property of the "Singular Series" in Waring's Problem 401

(by applying lemma 5, since $z_2 > c_1$, to the third product in (19)), where N is restricted by the conditions

(20)
$$N \equiv 1 \pmod{2^{\theta_1 + 2} p_2 \theta_2 + 1 \dots p_m \theta_m + 1}$$

and

(21)
$$p_r^n || N \text{ for } z_1 \leqslant r \leqslant z_2$$
.

It is clear that for given n and A there is a finite proportion of numbers N satisfying (20) and (21), *i.e.*, the number of solutions of (20), (21) and

(22) $N \le x$ is greater than dx (for large x) where d is positive and depends only on A and n. Hence we have

Theorem 3. Let n be a fixed integer $\geqslant 5$. Let A be an arbitrarily large number. Then we can find a positive number d, depending only on A and n, such that the number of solutions (in N) of

$$S(N; n; n+1) > A,$$

$$1 \leqslant N \leqslant x$$
,

is greater than d x for large x.

From Theorem 3, and (4) which is true for almost all N, we easily deduce that

Theorem 4. Let $n \ge 5$ be fixed. Let A be arbitrarily large. Then if Hypothesis K is true there exists a number d = d (A, n) > 0 such that the number of solutions (in N) of

(23)
$$r_{n+1,n}$$
 (N) > A N^{n}

and $1 \leq N \leq x$

is greater than d x for large x.

Now if (I) were true, then (II) would be true. Further Hypothesis K would be true since (I) is supposed true, and hence by Theorem 4, there would be infinitely many N satisfying (23), which contradicts (II). Hence (I) is false and Theorem 2 is true.

Note.—Results similar to Theorem 2, e.g., that $r'_{k,k}(N) \ge 2$ for infinitely many $N(3 \le k \le 9)$ where $r'_{k,k}(m)$ is the number of distinct and primitive representations (permutation of the bases not allowed) of m as a sum of k kth powers ≥ 0 , have been proved by Wright in his paper "On Sums of kth Powers," Jour. London Math. Soc., 1935, 10, 94-99.