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Unitary invariants for Hilbert modules
of finite rank
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and Mihai Putinar at Santa Barbara

Abstract. We associate a sheaf model to a class of Hilbert modules satisfying a
natural finiteness condition. It is obtained as the dual to a linear system of Hermitian vector
spaces (in the sense of Grothendieck). A refined notion of curvature is derived from this
construction leading to a new unitary invariant for the Hilbert module. A division problem
with bounds, originating in Douady’s privilege, is related to this framework. A series of
concrete computations illustrate the abstract concepts of the paper.

1. Introduction

A Hilbert module over the ring of polynomials C[z] := C|zy, ..., z,] is a Hilbert space
A which is a C[z]-module, where the multiplication by the polynomial p satisfies a conti-
nuity condition of the form

lp- Sl =Gl fed, peCl,

for some positive constant C,. Thus for any compact set K, we have

lp- Sl = Gxllpl. klfNl, f e, peCl]

Extending the product by continuity we find that 2# admits a Hilbert module structure over
the algebra ((C™) of entire functions. The multiplication M, by the complex variable
zi: Mif =z;- f,1 £ j < m, then defines a commutative tuple M = (My,..., M,,) of linear
bounded operators acting on s and vice-versa. Any such system of operators induces a
topological ¢O(C™)-module structure on J#.
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2 Biswas, Misra and Putinar, Hilbert modules

The present article has three distinct but interconnected parts: the first deals with the
classification up to unitary equivalence of a class of Hilbert ¢(C")-modules which possess
many analytic submodules of finite co-dimension, the second part is devoted to division
problems with bounds on classical Hilbert modules of analytic functions and the third
part contains explicit computation of unitary invariant for some non-trivial examples (of
Hilbert modules) studied in the first and the second part. Throughout the article Q is as-
sumed to be a bounded domain in C".

Definition 1.1. A Hilbert module # over the polynomial ring C|z] is said to be in
the class B,(Q), n e N, if

(const) dim#/m,# =n < oo for all w e Q,

(span) [ m,# = {0},
weQ

where m,, denotes the maximal ideal in C[z] at w.

Recall that if m,,»# has finite co-dimension, then m,, is a closed subspace of .
Throughout this paper we call dim #/m,,# the rank of the analytic module at the point
w. For any Hilbert module ## in B,(Q), the analytic localization (/ ®@<@m) A 1is a locally
free module when restricted to Q, see for details [19]. Let us denote in short

H =0 ®<f»(¢:”') A

and let £, be the associated holomorphic vector bundle. Fix w e Q. The last map in
Koszul’s complex 6y (w) : # @ --- @ A — A is defined by (f1,..., fm) — Z(M wi)fi,

where M; is the multiplication operator by the coordinate function z;, for 1 < j < m and
fesx. Then the analytic localization %1 = cokerdy,,(w) is a locally free (), module and
the fiber of the associated holomorphic vector bundle £ is given by

Ey .= Hy ®@‘w (Qw/ m,, 0,

where ¢, denotes the germs of holomorphic functions at w. We identify E7, ,, with
kerd;(w)". Thus E?% is a Hermitian holomorphic vector bundle on Q*:={z:z€Q}.
Let Dy be the commuting m-tuple (M;,..., M) from # to # @ --- @ H. Clearly

01(w)" = D(py_+ and kerdy(w)* = ﬂl ker(M; — w;)" for w e Q.
]:

It is easy to see that, within the class B,(Q), the association # +— E’, provides a
complete unitary invariant for 5. Thus the problem of classifying these analytic modules
is a purely differential geometric one, see [6].

The aim of the present work is to extend the dictionary # — E, to analytic Hilbert
modules whose rank is finite but non-constant, whence £, is no more a vector bundle but
rather a system of Hermitian vector spaces, and to compute differential geometric invari-
ants like the curvature. To be more specific, we will restrict ourselves to the class B;(Q)
defined below.
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Biswas, Misra and Putinar, Hilbert modules 3

Definition 1.2. A Hilbert module .# < ((Q) is said to be in the class B;(Q) if

(rk) it possesses a reproducing kernel K (we don’t rule out the possibility:
K(w,w) = 0 for w in some closed subset X of Q) and

(fin) the dimension of .#/m,,.# is finite for all w € Q.

Most of the examples in B;(Q) arise in the form of a submodule of some Hilbert
module (< 0(Q)) in the Cowen—Douglas class B;(Q). We don’t know of an example
which is not of this form.

Note that if »# is a Hilbert module in B;(Q), restricting Q to a smaller open set if
necessary, the evaluation map E(w) : # — #, = C is continuous and onto, hence there
exists, by Riesz’s Lemma, a non-zero vector K,, € # so that E(w)x = {(x, K, ), x € #.
This defines what is commonly called a reproducing kernel K(z,w) = <{K,,,K.>, z,w € Q,
for the Hilbert space . In this case £, = (/g+, that is, the associate holomorphic vector
bundle is trivial, with K,, as a non-vanishing global section. For modules in B;(Q2), the cur-
vature of the vector bundle E7, is a complete invariant.

Denote by H?(D?) the Hardy space of the bidisk. A typical example of a module in
the class B;(D?), but not in By(D?), is H(D?) := {f € H*(D?) : £(0) = 0} (cf. [11]). In
this example, we have

: . 1, if w=(0,0),
dim ker Dy = dim Hj (D?) ®cy, -,) Cu = {z, if w=(0,0).
Here C,, is the one dimensional module over the polynomial ring C[zj,z;], where the
module action is given by the map (f,4) — f(w)A for f € C[z,z;] and A€ C,, = C.

Let us return to a Hilbert module .# in the class B;(Q). Assume that .# is a sub-
module of some Hilbert module # in B;(Q) and that E is trivial on Q. Let % “ be the
range of the induced map

(1.1) O Qqucmy M — O Qucm H = 0(Q)

at the level of analytic sheaves. In general, for a Hilbert module .# in B;(Q2), we give the
defintion of the sheaf model . below.

Definition 1.3. Let %/ be the subsheaf of the sheaf of holomorphic functions ¢(Q)
determined by the stalks

(1.2) {1 O + -+ (1) On : f1,..., Jne M} SO, weQ.
We will prove that . is a coherent analytic sheaf, in particular, its stalk (& ”’”)w
at a given point w € Q is finitely generated over ¢,,. The main technical result towards
constructing a system of complete unitary invariants for the module .# is formulated as
follows.
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4 Biswas, Misra and Putinar, Hilbert modules

Theorem 1.4. Let wy be a fixed but arbitrary point in Q. Suppose M is in B (Q)
and g0, 1 <i £ d, is a minimal set of generators for the stalk &, ‘0/. Then

Y

(1) there exists an open neighborhood Q of wy such that

K(,w):=K, = g?(w)Kfv1> + -+ g2(w)K<d)

w

w € Q,

for some choice of anti-holomorphic functions KWV, ... K9 : Qy — .,

(ii) the vectors K

hood of wy,

, 1 £i <d, are linearly independent in M for w in some neighbor-

(i) the vectors {Kéi,) : 1 i < d} are uniquely determined by the generators g, ..., g9,

1v) the linear span of the set of vectors K‘@ 1 ZiZd} in A is independent of the
0
generators g?, e ,gg, and

(v) M;K‘EQ = p(wo)K}EQ Sforall i, 1 =i <d, where M, denotes the module multiplica-
tion by the polynomial p.

The module map
1) ®C@(C'") M — eyg///
induced from (1.1) is surjective. This naturally defines a surjective map

(13 ) M / mwoﬂ = (QWU/ mwo (QWU ® M — ’%voﬂ/ mWo ’%@ﬂ

0

for w € Q. In particular,

(1.4) dim (4 [, M) = dirn(yj;(;%/mwoij‘f/).

We remark that the map into the Grassmannian manifold I'x : Q5 — Gr(.#,d) de-
fined by I'g (W) = (KLE,I), e 7K(V“’)) is holomorphic. The pull-back of the canonical bundle
on Gr(.#,d) under I'g defines a holomorphic Hermitian vector bundle on the open
set ;. Unfortunately, the decomposition of the reproducing kernel given in Theorem 1.4
is not canonical except when the stalk is singly generated. In this special case, the holomor-
phic Hermitian bundle obtained in this manner is indeed canonical. However, in general, it
is not clear if this vector bundle contains any useful information. Suppose we have equality
in (1.4) for a Hilbert module .#. Then it is possible to obtain a canonical decomposition
following [7], which leads in the same manner as above, to the construction of a Hermitian
holomorphic vector bundle in a neighborhood of each point w € Q.

For any fixed but arbitrary wy € Q and a small enough neighborhood Qg of wy,
the proof of Theorem 2.2 from [7] shows the existence of a holomorphic function
Py - Qp — L (M) with the property that the operator Py; restricted to the subspace
ker D(ys_,)- 1s invertible. The range of Py; can then be seen to be equal to the kernel of
the operator PoD(y;_,-, where Py is the orthogonal projection onto ran Dy;_,,)-
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Biswas, Misra and Putinar, Hilbert modules 5

Lemma 1.5.  The dimension of ker PoDy_,,+ is constant in a suitably small neighbor-
hood Qg of wy in Q.

Let {eg,...,ex} be a basis for ker D(y;_,,-. Since Pg; is holomorphic on Q, it
follows that y,(w) := Py(W)er, ...,y (W) := Py (W)er are holomorphic on €. Thus
[:Qf — Gr(A4,k), given by T'(w)=kerPoDys_,y:, we, defines a holomorphic
Hermitian vector bundle %, on Q; of rank k corresponding to the Hilbert module .#.

Theorem 1.6. If any two Hilbert modules ./ and M belonging to the class B (Q) are
isomorphic via a unitary module map, then the corresponding vector bundles 2y and 2y on Q;
are equivalent as holomorphic Hermitian vector bundles.

This result shows that complex geometric invariants of the holomorphic Hermitian
vector bundle corresponding to Hilbert modules .# and .# in B;(Q) would distinguish
the unitary orbits of these Hilbert modules. Two examples are included in the last section.
The first of the two examples illustrates the computation of these invariants while the sec-
ond describes the construction of an alternative unitary invariant (see also [3]).

Leaving for the next section the complications related to constructing curvature type
invariants, we return to the key extremal case in inequality (1.4). The question of equality
in (1.4) is the same as the question of whether the map in (1.3) is an isomorphism and can
be interpreted as a global factorization problem. To be more specific, we say that an ana-
lytic Hilbert module .# (cf. [5], page 3) possesses Gleason’s property at a point wy € Q if for

every element f € ./ vanishing at wy there are f1,..., f,, € .4 such that ' = > (z; — wy;) fi.
i=1

We have generalized the notion of solvability of Gleason’s problem for AF-co-submodules
(cf. [5], page 38) and will prove in Section 2 that

Proposition 1.7. Any AF-co-submodule # has Gleason’s property at wy if and only

if
dim(4 J ) = dim(S;7 Jm, S30).

This is a special case of a more general division problem for Hilbert modules. To fix
ideas, we consider the following setting: let .# be an analytic Hilbert module with the do-
main Q disjoint of its essential spectrum, let 4 € M, , ((9(5_2)) be a matrix of analytic func-
tions defined in a neighborhood of Q, where p, ¢ are positive integers, and let f e .#”.
Given a solution u € O(Q)? to the linear equation Au = f is it true that u € .#4? Numer-
ous “hard analysis’ questions, such as problems of moduli, or Corona Problem, can be put
into this framework.

We study below this very division problem in conjunction with an earlier work of the
third author [30] dealing with the “disc” algebra .7(Q) instead of Hilbert modules, and
within the general concept of “privilege” introduced by Douady more than forty years
ago [9], [10].

We only focus on the case of Bergman space below. Specifically, the .«Z(Q)-module
N =coker(4 : M ®@¢c CP — M ®c CY) is called privileged with respect to the module ./ if
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6 Biswas, Misra and Putinar, Hilbert modules

it is a Hilbert module in the quotient metric and there exists a resolution

(15) 0= M ®:C" %o M @C" Y @cC™ — N =0,

where d, € M., »,(/(Q)) and d; = A. Note that implicitly in the statement it is assumed
that the range of the operator 4 is closed at the level of the Hilbert module .Z.

An affirmative answer to the division problem is equivalent to the question of ““privi-
lege” in case of the Bergman module on a strictly convex bounded domain Q with smooth
boundary.

Theorem 1.8. Let Q = C™ be a strictly convex domain with smooth boundary, let p, q
be positive integers and let A € Mp,q(&{(Q)) be a matrix of analytic functions belonging to
the disk algebra of Q. The following assertions are equivalent:

(a) The analytic module coker(A : L2(Q)" — L2(Q)?) is privileged with respect to the
Bergman space.

(b) The function { — rank A((), { € 0Q, is constant.

(c) Let f e L2(Q)?. The equation Au= f has a solution u e L}(Q)” if and only if it
has a solution u € 0(Q)".

While we have stated our results for the Bergman space, they remain true for the
Hardy space H?(0Q), that is, the closure of entire functions in the L2-space with respect
to the surface area measure supported on 0Q. Also, the results remain true for the Bergman
or Hardy spaces of a poly-domain Q = Q; x --- x Qy, where Q; = C, 1 < j < d, are con-
vex bounded domains with smooth boundary in C. For these Hilbert modules, the notion
of the sheaf model from the earlier work of [26], [27] coincides with the sheaf model de-
scribed here. Details will be given in the third section below.

We finish the introduction by exhibiting a class of Hilbert modules for which the
Gleason problem admits a solution.

Theorem 1.9. If ./ is a submodule of an analytic Hilbert module of finite co-
dimension with the zero set V(.l) = Q, then the Gleason problem for the Hilbert module ./

admits a solution.

This theorem isolates a large family of Hilbert modules in B;(Q) to which our classi-
fication scheme, using the curvature invariant, applies.

Index of notations.

Clz] the polynomial ring Clzy, ..., z,] of m-complex variables,

m, the maximal ideal of C|z] at the point w € C™,

QF {Z: z e Q} for a bounded domain Q = C",

D" the unit polydisc in C”,

M; the module multiplication by the co-ordinate function z;, 1 < i < m,
M} the adjoint of the operator M;, z;, 1 £i < m,
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Biswas, Misra and Putinar, Hilbert modules 7

gw_w)* the operator ./ — M @ --- @ .4 defined by f — ((M; — w,)*f)]'.il,

(Q) the sheaf of holomorphic functions on Q,
Oy germs of holomorphic functions at the point w e C™,
the analytic localization @ ®(f my A of the Hilbert module H,
_ ol B @\ll
0%, 0” a“ZM’ é‘“:m, az(al,...,am)eZ+x---xZ+,
m
|OC‘ = Z %is
q(D) the dlfferentlal operator Z a,0”, where g = Z a,z?,
B,(Q) Cowen-Douglas class of operators of rankn also, Hilbert modules such
that M* = (My,..., M) € B,(Q"),
g the analytic submodule of (), corresponding to .# in B(Q),
K(z,w) a reproducing kernel,
E(w) the evaluation functional (the linear functional induced by K(-, w)),
Il 1% A(0;) Supremum norm,
- l» the L? norm with respect to the volume measure,
m
A the submodule of .# which is of the form ) (z; — w;).#,
j=1

V(F) {zeQ: f(z) =0forall f e 7}, where # < (0(Q),
Vi(Z#) {qeClz]: q(D)f], =0, f € #} is the characteristic space at w for some
set # of holomorphic functions in a neighborhood of w,

- 0
Vi (F) {q e Clz] % eV, (#),1=5i=< m} for some set # of holomorphic

functions in a neighborhood of w,

[7] the closure of the polynomial ideal .# < .# in some Hilbert module .#,
o/ (Q) the “disc” algebra over Q, which is 0(Q) N C(Q),

0(Q) the space of germs of analytic functions in a neighborhood of Q,

Py the orthogonal projection onto ran Dy;_,,)-,

Py ker PoD s,y for w e Q.

2. Unitary classification via Hermitian spaces

Throughout this section, the Hilbert module .# is assumed to be in the class B;(Q).
We prove below a series of technical results culminating with construction of the new cur-
vature invariants for ./.

2.1. Coherence of the sheaf .
Proposition 2.1.  For any Hilbert module ./ in B1(Q), the sheaf & is coherent.

Proof. The sheaf .#“ is generated by the family {f : f € .4} of global sections of
the sheaf (). Let J be a finite subset of .# and ¥;” < ((Q) be the subsheaf generated by
the sections £, f € J. It follows (see [23], Corollary 9, page 130) that #;* is coherent. The
family {&;% : J is a finite subset of ./} is increasingly filtered, that is, for any two finite
subset 1 and J of ./, the union I U J is again a finite subset of .# and &% L ;" < 5 “,.
Also, clearly & U ;" Using Noether’s Lemma [22], page 111, Wthh says that every
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8 Biswas, Misra and Putinar, Hilbert modules

increasingly filtered family of coherent sheaves must be stationary, we conclude that the
analytic sheaf &*# is coherent. []

Remark 2.2. Let .# be a module in B;(Q) with Q pseudoconvex and a finite set of
generators {f1, ..., f;}. From [5], Lemma 2.3.2, it follows that the associated sheaf & (Q)
is not only coherent, it has global generators {fi,..., f;}, that is, {fi,,..., fos} generates
the stalk 7% for every w € Q. Theorem 2.3.3 of [5] (or equivalently [25], Theorem 7.2.5)
is a consequence of the Cartan Theorem B (cf. [25], Theorem 7.1.7) together with the co-
herence of every locally finitely generated subsheaf of ©* (cf. [25], Theorem 7.1.8). It is then
easy to verify that if .Z is any module in B;(Q) and if {f},..., f;} is a finite set of genera-
tors for .#, then for f € ./, there exist gy, ..., g, € O(Q) such that

(2.1) f=ho+-+ fige

The following lemma isolates a large class of elements from B,(Q) which belong to
B (€y) for some open subset Q) = Q.

Lemma 2.3.  Suppose # € B1(Q) is the closure of a polynomial ideal 9. Then 4 is in
B (Q) if the ideal .7 is principal while if py, pa, ..., p; (t > 1) is a minimal set of generators
t
Sfor I, then M is in B (Q\X) for X = ({z: pi(z) =0} n Q.
i=1

Proof. The proof is a refinement of the argument given in [13], p. 285. Let y,, be any
eigenvector at w for the adjoint of the module multiplication, that is, M,y,, = p(w)y,, for
peClz.

First, assume that the module .# is generated by the single polynomial, say p. In
this case, K(z,w) = p(z)y(z, w)p(w) for some positive definite kernel y on all of Q. Set
Ki(z,w) = p(2)x(z,w) and note that K;(-,w) is a non-zero eigenvector at w € Q. We have

Pgs vy = <0 My = <Py qw)p > = qW)<p, 7,0

Also, we have

PW)g(wW)<p, 7> = <pg, K(-,w)><{p,p,,> = p(W)<pq, <{p, p, K1 (-, w)>.

The analytic function ¢(w){p,7,.> —<pq,<{p,7,>Ki(-,w)> on Q 1is equal to 0 on
Q\{z: p(z) = 0} and hence is 0 on Q (as Q is connected). Thus

pgs vy = <0q: <P, 1) K1 (-, w)).

Since vectors of the form {pq : ¢ € C|z]} are dense in .#, it follows that y,, = {p, y,, > Ki (-, w)
and the proof is complete in this case.

Now, assume that pq,..., p, is a set of generators for the ideal .#. Then for w ¢ X,
there exists a k € {1,...,7} such that pi(w) & 0. We note that forany i, | <i < m,

PeW)piy 7> = {pis My 1> = Pibks V> = Pis My, > = pi(w)<Pies -
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Biswas, Misra and Putinar, Hilbert modules 9

Therefore we have

t
<Zl Pi‘]i,Vw> Z <P17 yw
i=

= iqi(w)<piayw>
! K
_Z< <pk7yn> ( )>
i=i Pe(w)
Setting ¢(w) = <I‘ljk%y‘5> we have
(W

<Ztl Pidi, y> = <Zt1 Pigi, c(W)K(-, W)>-

Since vectors of the form {Z piqi 1 qi€Clz,1 i = t} are dense in ./, it follows that
7,0 = c¢(W)K(-,w) completing the proof of the second half. []

2.2. The proof of the decomposition theorem.

Proof of Theorem 1.4. For simplicity of notation, we assume without loss of gener-
ality, that 0 = wo € Q. Let {e,},—, be an orthonormal basis for .#. From the property of
reproducing kernels, we have

o0

K(z,w) = z;;en(z)m, z,we Q.

It follows from [23], Theorem 2, page 82, that for every element f in %’” , and there-
fore in particular for every e,, we have

d
en(z) = ; gX(2)h"(2), zeA0;r),

for some holomorphic functions h defined on the closed polydisc A(0;r) < Q. Further-
more, these functions can be chosen with the bound ||h || Ao =C llexllx A0:r) for some posi-
tive constant C independent of n. Although, the decomposmon is not necessarlly with re-
spect to the standard coordinate system at 0, we will be using only a point wise estimate.
Consequently, in the equation given above, we have chosen not to emphasize the change of
variable involved and we have

Kzw) = {5000 feno) = Sl { S W2 .

n=0 n=0

R 0 —F
Setting K\ (z)(= Ki(z, w)) to be the sum 3 4" (w)e,(z), we can write

n=0

K(z,w) = f @WK (z), weAO;r).
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10 Biswas, Misra and Putinar, Hilbert modules

The function K; is holomorphic in the first variable and antlholomorphlc in the second by
construction. For the proof of part (i), we need to show that K\ e .4 where w e A(0; 7).

Or, equivalently, we have to show that Z |hl- (w)| < oo for each w € A(0; r). First, using
the estimate on /;", we have n=0

B0 = 15 500 S Clleallzon-

We prove below, the inequality Z ||e,,|| Ay < © completing the proof of part (i). We
n=0

prove, more generally, that for f € ./,

(2.2) 11500 < 1N 300
where || - ||, denotes the L? norm with respect to the volume measure on A(0;r). It is evi-
dent from the proof that the constant C’ may be chosen to be independent of the func-
tions f.

Any function / holomorphic on Q belongs to the Bergman space L2 (A(O; r+ 8)) as

long as A(0;r 4 &) < Q. We can surely pick ¢ > 0 small enough to ensure A(0;r +¢) < Q.
Let B be the Bergman kernel of the Bergman space L2 (A(O; r+ 8)) Thus we have

L) = 1K, BC W] S (11l aorrse BOV, W) we AO;r +é).

Since the function B(w,w) is bounded on compact subsets of A(0;7 +¢), it follows that
C"? := sup{B(w,w) : w e A(0;r)} is finite. We therefore see that

1/ 150y = sup{Lf (w)] = w e A0;1)} = 1S 1y, a:r40)-
Since ¢ > 0 can be chosen arbitrarily close to 0, we infer the inequality (2.2).

The inequality (2.2) implies, in particular, that

o0 e¢]
Z||en||25(0;,.) <SC?Y [ len(2)Pdzi AdE A Adzy AdE,.
n=0 :

n=0 &(O;r)
) o) S 2 . .

Since K. := K(-,z) = Z e,(2)e,, the function G(z) := 3 |e,(2)|” is finite for each z e Q.

n=0 n=0

k
The sequence of positive continuous functions Gi(z) := e, (z)|* converges uniformly to

G on A(0;r). To see this, we note that n=0

Gk = Gll3 gy = C% [ |G(z) = G(2) dzi AdZy A+ Az A d2y,

A(0;r)

. 2
<Cc? | { > |en(z)|2} dzy ndzy A+ Adzyy AdZy,
)

&(O;F n=k+1
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Biswas, Misra and Putinar, Hilbert modules 11

which tends to 0 as kK — oo. So, by Monotone Convergence Theorem, we can interchange
the integral and the infinite sum to conclude

ZHenHA()r <C | Z|en ]a’zl/\dzl/\ “ANdzyy ANdZ,, < 0
A( )n =0

as G is a continuous function on A(0; 7). This shows that
N7 (1) 0\ 2 < 2
S0P S K 3l < o

Hence K,ii) e, £i<d.

To prove statement (ii) at 0, we have to show that whenever there exist complex
numbers o, . .., oz such that Z ;K;i(z,0) = 0, then o; = 0 for all i. We assume, on the con-
trary, that there exists some i € {1 .,d} such that o; :|: 0. Without loss of generality, we
assume o =i= 0, then K(z,0) = Z/)’ZK (z,0) where f; = e , 2=i=d. This shows that

Ki(z,w) — Z p:Ki(z,w) has a zero at w = 0. From [25], Theorem 7.2.9, it follows that
i=2

Ki(zw) - ZﬁK(z W) = f Gy (2, w)

for some function G; : Q x A(0;r) — C, 1 < j < m, which is holomorphic in the first and
antiholomorphic in the second variable. So, we can write

K(z,w) = Zg, (W)Ki(z,w) = G{(w)Ki(z,w) + Z;gl( w)Ki(z, )

d m d
_ g?m{g Bz + 3w w)} EPOUIILIENS
d

= (300 + A0 Ki(zw) + S0 w00 (W) Gy (2, w).

=2 j=1

For f € .4 and w € A(0;r), we have
fw) =< K(w)»
d _ m
= (6200 + Bt 0)<f Kilz w)> + g2(w) <f, w6z W>>.
J=

i=2

m

We note that < [ wiGilz, w)> is a holomorphic function in w which vanishes at w = 0.
j=1
It then follows that < [ wiGi(z, w)> =" w;G,(w) for some holomorphic functions G;,
j=1 j=1
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12 Biswas, Misra and Putinar, Hilbert modules

1 < j < m, on A(0;r). Therefore, we have

F00) = 35(6200) + g (0) <1 Koz ) + 3 180G ).

i=2

Since the sheaf .| A(0;) 18 generated by the Hilbert module .7, it follows that the set
{99+ Brg?, ... N +ﬁdg1,zlg1 ) zmgl} also generates . |A 0. In particular, they gen-
erate the stalk at 0. Th1s we clalm is a contradiction. Suppose A < " is generated by
germs of the functions g9 + ﬁzgl peey g+ ﬂdg? Let m(() denote the only maximal ideal
of the local ring (y, consisting of the germs of functions vanishing at 0. Then it follows that

m(C0) (%" A} = S A.

Using Nakayama’s Lemma (cf. [33], p. 57), we see that %, /A = 0, that is, % = A. This
contradicts the minimality of the generators of the stalk at 0 completing the proof of the
first half of (ii).

To prove the slightly stronger statement, namely, the 1ndependence of the vectors Ké’),
1 =i = d, in a small neighborhood of 0, consider the Grammian (((Kw Ky >)) The deter-
minant of this Grammian is nonzero at 0. Therefore it remains non-zero in a suitably small
neighborhood of 0 since it is a real analytic function on . Consequently, the vectors K,g’),
i=1,...,d are linearly independent for all w in this neighborhood.

To prove statement (iii), we have to prove that Ké') are uniquely determined by
the generators g?, 1 <i<d. We will let g° denote the germ of g at 0 as well. Let

K(z,w) = Zg, (W)KW be another decomposition. Let K = Z h”( )e, for some holo-

morphic functlons on some small enough neighborhood of 0. Thus we have

g2 () (W) — hf (w) Yeu = 0.

M:t

00
>
n=0i=1

Hence, for each n
d o .
; g (2){hi(z) — hi'(2)} = 0.

. d
Fix n and let o;(z) = h?(z) — h?(z). In this notation, Y g?(z)x;(z) = 0. Now we claim that
i=1
2;(0) =0forallie {1,...,d}. If not, we may assume o;(0) = 0. Then the germ of o; at 0 is
a unit in (). Hence we can write, in (),

go (Z g; OC;o) Oclola

i=2

where o denotes the germs of the analytic functions «; at 0, 1 < i < d. This is a contradic-
tion, as g, ..., ¢ is a minimal set of generators of the stalk 5" by hypothesis. As a result,
h7(0) = h7(0) for all i e {1,...,d} and n e N U {0}. This completes the proof of (iii).
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Biswas, Misra and Putinar, Hilbert modules 13

To prove statement (iv), let {g?,...,¢9} and {g},...,gJ} be two sets of generators
for % both of which are minimal. Let K and K, 1 < i < d, be the corresponding vec-
tors that appear in the decomposition of the reproducing kernel K as in (i). It is enough to
show that

spang{K;(z,0) : 1 £i < d} = spanc{K;(z,0): 1 <i < d}.

There exist holomorphic functions ¢, 1 < i, j < d, in a small enough neighborhood of 0

ij>
d
such that g0 = Y ¢l~jgj(-). For w, possibly from an even smaller neighborhood of 0, it follows
that =1

e

Il
—

But K(z,w) = Y g)(w)K;(z, w) and uniqueness at the point 0 implies that

J

¢;(0)Ki(z,0)

M~

K_}'(Z,O) =

i=1

for 1 <j<d. So, we have spanc{K;(z,0):1=<i=<d} < spanc{K;(z,0):1=<i<d}.
Writing g](.’ in terms of g°, we get the other inclusion.
Finally, to prove statement (v), let us apply M’ to both sides of the decomposition of

d
the reproducing kernel K given in part (i) to obtain w;K(z,w) = > g?(w)Mj*Ki(z, w). Sub-
stituting K from the first equation, we get i=l

= g2 00)(M; ) Ki(z0) =0,

Let Fj(z,w) = (M; — w;) " K;(z,w). For a fixed but arbitrary zo € Q, consider the equation
d

> g?(w)E-j-(zo, w) = 0. Suppose there exists k, I < k < d, such that Fy;(zo,0) = 0. Then
i=1

d
. -
g9p = {Fiy(20, )} 12 kg?Fii(Zo, Jo-
=14

This is a contradiction. Therefore Fj;(z9,0) =0, 1 <i=<d, and for all zpeQ. So
Mj*Ki(z, 0)=0,1<i=d, 1= j=<m. This completes the proof of the theorem. []

Remark 2.4. Let .# be an ideal in the polynomial ring C|z]. Suppose .# > .# and
that .# is dense in .#. Let {p;e C[z] : 1 £i <t} be a minimal set of generators for the
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14 Biswas, Misra and Putinar, Hilbert modules

ideal .#. Let V(.#) be the zero variety of the ideal .#. If w ¢ V(.#), then &/ = (. Al-
though py, ..., p; generate the stalk at every point, they are not necessarily a minimal set
of generators. For example, let ¥ = (z;(1 +z),z1(1 — 22),25) = C|z1,22]. The poly-
nomials z;(1 + z1), z1(1 — z), z3 form a minimal set of generators for the ideal .#. Since
1+ z; and 1 — z; are units in »Cy, it follows that the functions z; and z3 form a minimal
set of generators for the stalk ;%

For simplicity, we have stated the decomposition theorem for Hilbert modules which
consist of holomorphic functions taking values in C. However, all the tools that we use for
the proof work equally well in the case of holomorphic functions taking values in C"”'. Con-
sequently, we expect it to remain valid in this more general set-up of vector valued holo-
morphic functions.

2.3. The joint kernel at wy and the stalk .7, A Let 99, ... ,g?, be a minimal set of gen-
erators for the stalk ¥ /' as before. For f e ; o we can find holomorphic functions f;,

wo 2

d
1 < i < d, on some small open neighborhood U of wy such that /' = Y g%f; on U. We write
i=1

d d d
‘fzgangy%ﬁ—ﬁwm}+;¢%w@

on U. Let m(0,,) be the maximal ideal (consisting of the germs of holomorphic functions
vanishing at the point wy) in the local ring @,,, and m(0,,,), M — mwoy . Thus the linear

wo
span of the equivalence classes [¢}],...,[g)] is the quotient module ij;// / mm],%v/l There-
fore we have

dim ¥, ”/mwoy “<d.
Yo

It turns out that the elements [g?],. .., [¢)] in the quotient module are linearly independent.
Then dim %" /m,,%,;* = d. To prove the linear independence, let us consider the equation

> oci[g?] = 0 for some complex numbers «;, | <i < d, or equivalently,

d
Z O(ig,(‘) € m((pw)y “

i=1

Thus there exist holomorphic functions fi, 1 £i £d, defined on a small neighborhood

of wy and vanishing at wy such that Z( — f1)g? = 0. Now suppose oy = 0 for some k,
1 < k < d. Then we can write =1

gy == (o — fi)g (o — fi)og?,

ik
which is a contradiction. From the Decomposition Theorem 1.4, it follows that

(2.3) dimker Dy;_,,)* Z #{minimal generators for ¥, A

> dim &7 /m,, S

wo
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Biswas, Misra and Putinar, Hilbert modules 15

We will impose additional conditions on the Hilbert module .#, which is always
assumed to be in the class B;(Q), so as to ensure equality in (2.3) (or (1.4)). One such
assumption is that the module .# is finitely generated. Let

V() ={weQ: f(w)=0forall fe.#}.

Then for wy ¢ V(.#), the number of minimal generators for the stalk at wy is one, in fact,
yj“/)” Oy, Also for wo ¢ V(4), dimker D(y;_,, - = 1, following the proof of Lemma 2.3.
Therefore, outside the zero set, we have equality in (1.4). For a large class of Hilbert mod-
ules we will show, even on the zero set, that the reverse inequality is valid. For instance, for
Hilbert modules of rank 1 over C|[z], we have equality everywhere. This is easy to see from

[15], page 89:

1 =>dim.# ®cpg Cwy = dim ker Dipogy 2 dim ¥ ”/muo 9””;0” > 1.
To understand the more general case, consider the map i, : .# — .#, defined by
f +— f., where f, is the germ of the function f at w. Clearly, this map is a vector space
isomorphism onto its image. The linear space

s

Il
=

M) =3 (25— W)l =

J

is closed since ./ is assumed to be in B;(Q). The map f +— f,, restricted to .# ) is a linear
isomorphism from .#™ to (./™), . Consider
M S S i, S

W w0

where 7 is the quotient map. Now we have a map

W : %W/ (%(W))w - ‘9’;’%/ mw‘s’i;///
which is well defined because (.# (‘”)‘ c M, "nm,% Whenever l// can be shown to be

one-one, equality in (1.4) is forced. To see this, note that MM = ). 4™ and

ker Dyy_ e = ﬂ{ran( — WY = MOz —wy) = D M.

Jj=1 Jj=1

Hence

(24)  d <dimkerDy - = dim.# /4" < dim ;" Jm,, S;" = d.

Suppose Y (f) = 0 for some f € .#. Then f, € m,.%;” and consequently, f = Z(z, wi) fi

i=1
for holomorphic functions f;, 1 < i < m, on some small open set U. The main question is if
the functions f;, 1 < i < m, can be chosen from the Hilbert module .#. We isolate below, a
class of Hilbert modules for which this question has an affirmative answer.

Let # be a Hilbert module in B, (Q) N B;(Q). Pick, for each w € Q, a C-linear sub-
space V,, of the polynomial ring C[z] with the property that it is invariant under the action
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16 Biswas, Misra and Putinar, Hilbert modules

of the partial differential operators i, . ,i (see [5]). Set
821 azm
(2.5) M(w)={feAH :qD)f|,=0forallqgeV,}.

For f e #(w) and g € V,,

0
a(D)(zf)],, = wig(D)f1, + a—q (D)f], = 0.

Now, the assumptions on V,, ensure that .#(w) is a module. We consider below, the class of

(non-trivial) Hilbert modules which are of the form .# := (| .#(w). It is easy to see that
weQ
w ¢ V() if and only if V,, = {0} and then V,, = {0} if and only if .#(w) = # . Therefore,
M= () M (w). These modules are called AF-co-submodules (see [5], page 38). Let
we V(M)

Vy (M) :={qeClz] : q(D)f]|,=0forall fe.#}.

Note that V,,(.#) = V,,. Fix a point in V(.#), say wy. Consider
v q .
Vy (M) =< q € Clz] o€ Vi (M), 1 S i <mp.
i

Forwe V() let

Vy(A), if w = wy,

\/W w = ~ .
() {\/wo(%), if w=wy.

Now, define .#"°(w) to be the submodule (of #) corresponding to the C-linear space
Vyo,w(4) (as in (2.5)) and let

M= () A(w).
we V(M)

m
So we have V,,(.#4") = V,,, (). For f e 4™, we have f = > (z; — wp,)f;, for some
j=1
choice of fi,..., fi, € 4. Now for any ¢ € Clz], following [5], we have

(2.6) g(D)f = iqw){(zj — ) fi}

_ z{< (D) + <D>f,}.

Forwe V() and f e .4™) it follows from the definitions that

- 0
_Zl{(wj o Woj)q(D)ﬁ|vv +£(D)f]|w} = 0’ q€ \/w(%), w % Wy,
= j

a1 =1,, ~
Z{a_q (D)ﬁ|“’()} = O’ qeE \/wo (ﬂ)a w = wy.
j=110Z;
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Biswas, Misra and Putinar, Hilbert modules 17

Thus f € .#") implies that f € .4"°(w) for each w e V(.#). Hence .4 < .4/". Now
we describe the Gleason’s property for .# at a point wy.

Definition 2.5. We say that an AF co-submodule .# has the Gleason’s property at a
point wy € V(M) if ™ = 0™,

In analogy with the definition of V,, (.#) for a Hilbert module .#, we define the space
Vo (Z:7) = {q e C[2] : q(D)f1,, =0, fi, € 5”//{ It will be useful to record the relation

wo
between V,,, (.#) and V,, (" ./) in a separate lemma.

Lemma 2.6. For any Hilbert module .4 in B;(Q) and wy € Q, we have

Vi (%> =V, (y/[)

wo

Proof. Note that the inclusion \/WO(,ZJ(;”) € V() follows from .%,, < ¥, “ To
prove the reverse inclusion, we need to show that g(D)h|, =0 for he ?j;” , for all

q eV, (). Since h € ", we can find functions fi,..., f, € /4 and gi,...,g, € O, such

wo 2

n
that 4 = fig; in some small open neighborhood of wy. Therefore, it is enough to show
i=1
that ¢(D)(f9)|,, =0 for f e .#, g holomorphic in a neighborhood, say U, of wop, and
q € V,,, (). We can choose U, to be a small enough polydisk such that

g=>a,(z—wp)"*, zeU,,.
o

Then ¢(D)(fy) = > ayq(D){(z — wo)*f} for z e U,,. Clearly, (z—wy)”f belongs to .#

whenever f € .#. Hence q(D){(z — wo)*f}|,, = 0 and we have ¢(D)( /)|
the proof of the inclusion V,, (.#) < V,,,(%:%). O

wo

= (0 completing

wo

We will show that we have equality in (1.4) for all AF-co-submodules satisfying
Gleason’s property. Proposition 1.7 includes this.

Proof of Proposition 1.7. We first show that ker(n o i,,) = .#". Showing
ker(z o i,,) < /" is the same as showing .#,,, N mwoy c (A™), wo- We claim that

2.7) Vi (M Z) = Vg () (= Vi ().
If fem,, ;" then there exists f; € ;% 1 < j < m, such that [ = Z( — wo,) f;. From
equation (2.6), we have =1
. G
qe \/‘,Vo(mw()yj;f{) if and only if a—q € \/Wo(yjm”) =V (&), 1=j<m.
Zj

0 . . ~ .
Now, from Lemma 2.6, we find 8_q €V (#),1 £j<m,ifand only if g € V,,, (.#), which
Zj

proves our claim. So for f e ., if f,, € my, w“”, then f e .#"(w) for all we V(4).

Hence f € .#™ and as a result, we have .4,,, nm,, %, 0” c (")

wo*©
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18 Biswas, Misra and Putinar, Hilbert modules
Now let f € .#"™. From (2.7) it follows that
f € {g € (QWU : Q(D)g|wo =0 fOI' all qe€ \/Wo(mw()%t;;%)}'

According to [5], Proposition 2.3.1, we have f € mwofgff . Therefore f € ker(noi,,) and
ker(m o iy,) = M.

n

Next we show that the map n o i, is onto. Let > fig; € <, N
i—1

wo 2

where f; € ./ and g;’s

=
are holomorphic functions in some neighborhood of wy, 1 < i < n. We need to show that

there exists /' € .# such that the class [f] is equal to [Z fig,] in 5”1;,(/)/{ /m,m&@;,f{. Let us take
n i=1

f =2 figi(wo). Then
i=1

n n
Zlflgl - f= Zlfl{gl - gi(WO)} € mwo‘%&jj’

This completes the proof of surjectivity.

Suppose Gleason’s property holds for .# at wy. Since ker(n o iy, ) = .#"°, it follows
from the Gleason’s property at wy that we have the equality ker(zoi,,) = .# (%) The
map v : M [ M — yﬁv‘f/ J{m, 3@0” } is then one to one. The equality in (1.4) is established
as in the equation (2.4).

Now suppose equality holds in (1.4). From the above, it is clear that .#/.#"" is iso-
morphic to 7,;” /m,, F:# Thus

dim .2 4" = dim 4 | 4.

But as .#") < 4™, we have .#™) = 4" and hence Gleason’s property holds for .#
at wy. [

A class of examples of Hilbert spaces satisfying Gleason’s property can be found in
[20]. It was shown in [20] that Gleason’s property holds for analytic Hilbert modules ([5],
page 3). However it is not entirely clear if it continues to hold for submodules of analytic
Hilbert modules. Nevertheless, we will identify here, a class of submodules for which we
have equality in (1.4). Let .# be a submodule of an analytic Hilbert module over C[z]. As-
sume that .# is the closure of an ideal .# = C|z]. From [5], [17], we note that

m
dimker Dps_,,)+ = dim .ﬂl ker(M; — wy;)" = dim.# /m,, S
]:

Therefore from (2.3) we have

dim.# /m,, . = dim &7 Jm,,, S

0 wo

So it remains to prove the reverse inequality. Fix a point wy € Q. Consider the map

i
N pll E cpll ¥4
I = L= Ly, S
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Biswas, Misra and Putinar, Hilbert modules 19

We will show that ker(z o iy, ) = m,,,.#. Let V(%) denote the zero set of the ideal .# and
V,,(#) be its characteristic space at w. We begin by proving that the characteristic space
of the ideal coincides with that of the corresponding Hilbert module.

Lemma 2.7. Assume that # = [I] is in By (Q). Then V., (F) = V,,, (M) for wy € Q.

Proof. Clearly V,, (#) 2 V,,(#), so we have to prove V,, (#) € V,, (.#). For

g€ V,,(F) and f € .4, we show that ¢(D)f], = 0. Now, for each f € .#, there exists a
sequence of polynomials p, € .# such that p, — f in the Hilbert space norm. Recall that
if K is the reproducing kernel for .#, then

(2.8) (0*f)(w) = f,0"K(-,w)y foraeZ!' weQ, fe. .
For w € Q and a compact neighborhood C of w, we have

|g(D) pu(w) — q(D)f(W)| = [Kpn — 1, q(D)K(-, w))|
< || pn _f||t/////||‘](D)K('aW)H,,z/

< low = SNl sup lg(D)K (- w)ll -

weC

Therefore, g(D)pyl,, — q(D)f|,, as n — co. Since ¢(D)p,|,, = 0 for all n, it follows that
q(D)f],, = 0. Hence g € V,,,(.#) and we are done. []

Now let # = m,,.#. Recall (cf. [17], Proposition 2.3) that
VIOV () = {weC": Vi (F) € Vi(F)} = {wo}.

Here we will explicitly write down the characteristic space. Let

V() = {q eCl: g—j €V (#),1<i< m}

and

Vi (H), w £ wy,
Vi, () = {\~/V (F), w=wp
wo 9 - .

Lemma 2.8. Forwe C", V,,(#) = Vi w(F).

Proof. Since ¢ < .#, we have V,,(#) < V,,(#) for all we C". Now let w + wy. For
f e and g eV, (), we show that ¢(D)f|,, = 0 which implies ¢ must be in V,,(.#).

Note that for any k e N and j € {1,...,m},

k k
a(D){(zj — woy) S}, =0 as (z;—wy)"f € 7.
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20 Biswas, Misra and Putinar, Hilbert modules

k1
This implies Z( woj)l (k> g fl] (D)f],, = 0. Hence (inductively) we have

1=0 / 6Z]k

q ,
(Wj - woj)kq(D)f‘w = (_ ) W(D)qu forall k e N and] € {17 s 77’}’1}.
%
So, if w = wy, then there exists i € {1,...,m} such that w; + wy;. Therefore, by choosing k&
large enough with respect to the degree of g, we can ensure (w; — wm)kCI(D) f1,, = 0. Thus

qg(D)f],, = 0. For w = wy, we have g € V,, (#) if and only if ¢(D){(z; — wo;) f}|,, = 0 for

wo

all fesand je{l,...,m} ifandonlyifg—zq(D)ﬂWO:Oforallfefandje{l,...,m}
J

e V,,(#) forall je{l,...,m} if and only if ¢ € V,, (.#). This completes

if and only if — Oq
0z

the proof of the lemma. []

We have shown that V,, () = V. (#) = V,,, (7 ). The next lemma provides a re-

lationship between the characteristic space of # at the pomt wo and the sheaf ,%t:i.

Lemma 2.9. V, (%) = V,,(m,%:").

Wwo

Proof:  We have V,, (m,, 7, (OF= Vy, (7). From the previous lemma, it follows that

wo

. ~ G
if e V,,(#), then g € V,, (£), that is, 6_q € Vyo (F) = V,,, (L) for all je{l,...,m}.
z

wo

j
From (2.7), it follows that ¢ € V,, (m,, y%/)' O
Now, we have all the ingredients to prove that we must have equality in (1.4) for sub-

modules of analytic Hilbert modules which are obtained as closure of some polynomial
ideal.

Proposition 2.10. Let .# = [F] be a submodule of an analytic Hilbert module over
Clz] on a bounded domain Q, where .9 is a polynomial ideal, each of whose algebraic compo-
nent intersects Q. Then

dim .4 j . = dim F;7 g, S wo € Q.
Proof. Let pe.# such that moi, (p) =0, that is, p,, € m,, WO . The preceding
lemma implies ¢(D)p|,, = 0 for all g € V,,,(.#). So,

p€ gy, ={reClz:q(D)pl,, = 0forall g eV, (5)}.

Since each of the algebraic components of # intersects €, therefore, from [5], Corol-

lary 2.1.2, we have pe (| 4= ¢. Thus ker(noi,)= ¢ =m,,.#. Then the map
weQ
T o iy, : dim . /m,, .# — dim.¥; “ o S /// is one-one and we have

dim.7/m,,# < dim &7 /m,,, S,

wo

Therefore, we have equality in (1.4). []

The proof of the Theorem 1.9 is now immediate.
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Biswas, Misra and Putinar, Hilbert modules 21

Proof of Theorem 1.9. From the Rigidity Theorem in [16], it follows that the sub-
module .# corresponds to an ideal such that .# = [.#]. The proof is complete using Prop-
ositions 1.7 and 2.10. [

Remark 2.11. In fact, this corollary is valid for all submodules of the form [.7]
whenever it is an AF-co-submodule for some polynomial ideal .#.

The following corollary to Proposition 2.10 answers, in part, the conjecture of [14],
page 262. These answers were found by Duan—Guo earlier in [17].

Corollary 2.12. Suppose M is a submodule of an analytic Hilbert module given by
closure of a polynomial ideal .9 and wy € V() is a smooth point then,

dimker D ys_,,)* = co-dimension of V(.5).

Proof. From Remark 2.2, it follows that if .# is generated by py,..., p;, then ,ijo” is
generated by piy,, ..., Pay- In the course of the proof in [17] Theorem 2.3, a change of
variable arguments is used to show that the stalk %, “at wy is isomorphic to the ideal gen-
erated by the co-ordinate functions z; — wyy, ..., z, — Wy, Where r is the co-dimension of
V(#). Therefore, the number of minimal generators for the stalk at a smooth point is equal

to r which is the co-dimension of V' (.#). The proof is completed by Proposition 2.10. []

2.4. Curvature invariants. Let ./ be a Hilbert module in B;(Q) and w, € Q be fixed.
The vectors K.\ e M, 1 <i<d, for win some small neighborhood, say Qg of wy, pro-
duced in part (ii) of the Decomposition Theorem 1.4 are independent. However, while the
choice of these vectors is not canonical, in general, we provide below a recipe for finding
the vectors Kw), 1 £i £ d, satisfying

K(,w) =g wW)KWD + -+ gS(w)KD, we

following [7]. We note that m,,.# is a closed submodule of .#. We assume that we have
equality in (1.4) for the module .# at the point wy € Q, that is,

spanC{K c1Si=d} =ker Dy

Let Doy = V(W) Dpg—y* _w)*> Where
[Dp—y:| 18 the positive square root of the operator (Dip_)*) "Dp—y+ and Vag(w) is the
partlal isometry mapping (ker D(y;_,): ) onto ranD(M w*- Let Op(w) be the positive
operator:

-1
o

Let Ry(w): #4 @ @® .M — M be the operator Ry (w) = Op(w)Vay(w)*. The two
equations, involving the operator D)+, stated below are analogous to the semi-
Fredholmness property of a single operator (cf. [6], Proposition 1.11):

QM(W) ’kerD(an.)* =0 and QM(W) ’(ker Dipr_y,

,)*)l = (’D(M*W)*‘ ’(kerD

(M—w)*

(2.9) RM(W)D(M*W) - I PkerDM w)

(210) D(Mfw)*RM(W) = PranD(Mfw)m
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22 Biswas, Misra and Putinar, Hilbert modules

where Py, Dipgo- (resp. Pran Y .), for weQy, is the orthogonal projection onto
ker Dpy_yp (resp ran Dy,_,+). Consider the operator

P(, 9) = I — {I — Rag(wo)Dis—,} ' Ras (o) Diag

w e B(wo; |[R(wo)|| "), where B(wo; ||R(wo)| ") is the ball of radius || R(wo)|| " around wy.
Using the equations (2.9) and (2.10) given above, we write

(2.11) P(w, o) = {1 — RM(WO)Dwffvo}71PkerD(M7w0)x7

where Di_g, /= ((w1 — Wo1)f1, -, (Wm — Wom) fm). The details can be found in [7], page
452. From the definition of P(i, W), it follows that P(w, W) Pker Dorvye = PrerDiyy e which
implies ker D(y;_,)- < ran P(w, o) for w e A(wy;¢). Consequently K(-,w) € ran P(iw, i)
and therefore

for some complex valued functions a,...,a; on A(wy;¢e). We will show that the func-
tions a;, 1 £i < d, are holomorphic and their germs form a minimal set of generators
for S:”. Now

wo *

RM(WO)DW—WOK('7 W) = RM(WO)D(M—WO)*K(U W) = (1 — Pxerp )K(7 W)-

(M-wg)*
Hence we have
{I — Ry (wo)Dis—5, }K (-, w) = Pierp,y,., - K(-s ).
Since K(-,w) € ran P(w, wy), we also have
P(w, Wo)_lK(~, w) = PkerD(M,,l,.O)*K('v w).

Let vy, ..., vq be the orthonormal basis for ker Dys_,, )+ Let g1, ..., ga denote the minimal
set of generators for the stalk at 7, ' Then there exists a neighborhood U, small enough,
such that v; = Z gi fl , 1 £j=d, and for some holomorphic functions f/ , 126, j5d,

on U. We then have

d
P(W’ WO)ilK(" W) = PkerD(M7‘1,0)*K(', W) = Z<K(7 W)’ Uj>vj
J=1

U

(Ko S oy =5 5 a0 0o

1 i=1j=1

J

I
M&

<>{Zf%mw}
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Biswas, Misra and Putinar, Hilbert modules 23

Since the vectors Kn?, 1 £i <d, are uniquely determined as long as g¢1,..., gy are fixed

and P(#Wg, W) = Pger Dipt sy it follows that

Therefore, the determinant of the d xd matrix (f/ (wo))ld] , 18 non-zero. Since

Det( /i J (w ))u , is an anti-holomorphic function, there exists a neighborhood of wy, say
A(wo; ¢), for some ¢ > 0, such that

De‘[(f,-j(w))l.dj:1 +0, weA(wp;e).

The set of vectors {P(i, io)v;},; is linearly independent since P(w, wo) is injective on

ker Dias - Let (o)) = {(f (o) )ij:l} , in consequence, v; = ZO{j[Kwo. We then
have ’ =1

«“wm:iimw{iﬁNMPWJm(i%mw)}

/-\

= {Egl

>,Uw%m%m®-
i,j=1

Since the matrices (f; (w))f(].:1 and (o);';_, are invertible, the functions

a(®) = 3 g ey 1514,

ij=1

form a minimal set of generators for the stalk ¥ ““ and hence we have the canonical decom-
position,

Let 2, = ran P(w, Wo)PkerD - for we B(wo, | Ras(wo)l|~ ) Since P(w, ) te-
stricted to the ker Dy, is one- one, and for w in B(wo; [[Ry(wo)|| "), the dimension
of #,, is constant. Thus to prove Lemma 1.5, we will show that 2, = ker PoD y_,,)+, where
Py is the orthogonal projection onto ran Dy _,,)--

Proof of Lemma 1.5. From [7], page 453, it follows that PoD y;_,,- P(i, Wp) = 0.
So, #,, < ker PoD y;_,)-. Using (2.9) and (2.10), we can write
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24 Biswas, Misra and Putinar, Hilbert modules
PoDpr—w)* = Dpr—wo)* Rt (Wo){D(p—p)* — Diio—iwo)
= Dpwy) {1 = Prernyy e — Ru(Wo) Dismiy)
= D(p—wp)y 11 — R (wo) D(i5—75) }-
Since {7 — Ry (wo) Dy} is invertible for w in B(wo; |[Rar(wo)|| '), we have
dim 2, = dimker Dy;_,,» = dimker PoD s+
This completes the proof. []

From the construction of the operator P(w, ), it follows that w+— 2, defines a
Hermitian holomorphic vector bundle of rank m over

Q; ={z:zeQ} where Q) = B(wo; ||RM(W0)||71).
Let 2 denote this Hermitian holomorphic vector bundle.

Proof of Theorem 1.6.  Since .# and .4 are equivalent Hilbert modules, there exists
a unitary U: .4 — M intertwining the adjoint of the module multiplication, that is,
UM; =M U, 1 = j<m. Here M denotes the multiplication by co-ordinate functions
zj, 1 <j= < m, on ./. 1t is enough to show that

UP(i, o) = P(, o) U for w € B(wo; | Rar(wo)| ™).

2
M,M]*} , that is, the positive square root of (Dys+)"Dys-. We have

™=

I
_

J

o * * Xy * 2
> MMy = U (ZIM]-MJ)U:(U 1Dy, |U)?.
J= J=

Clearly, [Dy+| = U”|Dyy.|U. Similarly, we have [Dys ) | = U*[D g,y
Pl ®MD - ®M— M

be the orthogonal projection on the ith component. In this notation, for 1 < j < m, we
have P;Dy+ = M. Then,

P D(M wo) * UPiD(M_‘VO)* v

= UP]VM(WO)U*|D(M7W()>* .

But 13_,~D( Mowg)* = PV, (wo) D (3-v,)* |- The uniqueness of the polar decomposition implies
that P;Vy(wo) = UP;Va(wo)U*, 1< j<m. It follows that Qg (wo) = UQp(wo)U*.
Note that P} : .M — M & --- @ M 1s given by

Pih=(0,...,h,...,0), hest,1<j<m.
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Biswas, Misra and Putinar, Hilbert modules 25

So, we have V(wo) " P; = UV (wo) P;U*, 1 < j<m. Let Dy : ll — M @--- @ M be
the operator: Dyf = (Wi f,...,Wuf), f € M. Clearly, Dy = UDzU", that is,

U*PDy = PDgU", 1<j<m.
Finally,

R (wo) D, = Qg (w0) Vg (w0) " Diy—,

= QM<W0) VM(WO)*(Plbwfl_vov s ’PmD\T/*Wo)

= Q) Viglon)" (3 P 2.Ds )

= QM(W()) l]I/]\l(W()))k (Z P; U*Pjﬁl—wo>

ZUQM(WO)VM(Wo)*< PfP;Dw_WOU*>
D

= UQm(wo)Var(wo) D5, U”
= URM(W())D‘;,‘—VOU*.

Hence {RM(WO)D,—V,,—VO}I‘ = U{Rp(wo)Dys_s, }*U* for all k € N. From (2.11), we have
- k
P(w, wo) = > {Rar(wo) Dii—izy}" Piernyyy -
k=0

Also as U maps ker D(;_,)+ onto ker D g, for each w, we have in particular,

UPyer Dirt gy = Pyer Dyt U. Therefore,

o0
UP(w, %) = > U{Ra(w0) Dss—si,} Prer Dy, -
k=0

0 ~
= Z {RM(WO)DVT‘f%}k UPkerD(M,WO)*

k=0
= P(w, o) U,
for we B(wo; |[Ru(wo)|| ). O
Remark 2.13. For any commuting m-tuple T = (71, ..., T,,) of operators on #, the

construction given above, of the Hermitian holomorphic vector bundle, provides a unitary
invariant, assuming only that ran Dy_,, is closed for w in Q = C™. Consequently, the class
of this Hermitian holomorphic vector bundle is an invariant for any Hilbert module over
C[z] of finite rank.
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26 Biswas, Misra and Putinar, Hilbert modules
3. Division problems

3.1. Bergman space privilege. Fix two positive integers p, ¢. The division problem
asks if the solution u € 0(Q)? to the linear equation Au = f must belong to L2(Q)? if
f€L(Q)” and the matrix 4 € M, ,(0(Q)) of analytic functions defined in a neighbor-
hood of Q are given. Two independent steps are necessary to understand the nature of the
division problem.

First, the solution ¥ may not be unique, simply due to the non-trivial relations
among the columns of the matrix 4. This difficulty is clarified by homological algebra: at
the level of coherent analytic sheaves, 9t = coker(4 : (O|§12 — (§|;1_2) admits a finite free reso-
lution

d
np 1 noy
5 — 0l —N—0,

(3.1) o_>(9|;_’;i..._>(9|
where ny = p, np = g and d; = A. The existence of such a resolution is assured by the ana-
logue of Hilberts Syzygies Theorem in the analytic context, see for instance [22].

The second step, of circumventing the non-existence of boundary values for Bergman
space functions, is resolved by a canonical quantization method, that is, by passing to the
algebra of Toeplitz operators with continuous symbol on L2(Q). We import below, from
the well understood theory of Toeplitz operators on domains of C”, a crucial criterion for
a matrix of Toepliz operators to be Fredholm (cf. [32], [34]).

Assume that the analytic matrix 4(z) is defined on a neighborhood of Q. One proves
by standard homological techniques that every free, finite type resolution of the analytic
coherent sheaf 9t = coker(4 : Cﬁ% — O|%) induces at the level of the Bergman space L2(Q)
an exact complex, see [9]. Theorem 1.8 shows that the similarity between the two resolu-
tions given above are not accidental. After understanding the disc-algebra privilege on a
strictly convex domain [30], the statement of Theorem 1.8 is not surprising.

Proof of Theorem 1.8. The proof is very similar to the one of the disk algebra case
[30], and we only sketch below the main ideas. Assume that the resolution (1.5) exists and
that the last arrow has closed range. The exactness at each degree of the resolution is equiv-
alent to the invertibility of the Hodge operator:

dljdk + dk+1d/:+l : Lg(Q)nk - Lﬁ(Q)nk} l=sk= b,

where we put d,,; = 0. To be more specific: the condition ker[d;dy + dy1d; ] =0 is
equivalent to the exactness of the complex at stage k, implying that ran(dj;) is closed.
In addition, if the range of dj is closed, then, and only then, the self-adjoint operator
didy + di1dy . 1s invertible.

Since the boundary of Q is smooth, the commutator [Ty, Ty] of two Toeplitz opera-
tors acting on the Bergman space and with continuous symbols f, g € C(Q) is compact, see
for details and terminology [4], [32], [34]. Consequently for every k, djdj + di1d},, s,

modulo compact operators, an n; X n; matrix of Toeplitz operators with symbol

d(2)"di(2) + diy1 (2)di1 (2)", weQ,
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Biswas, Misra and Putinar, Hilbert modules 27

where the adjoint is now taken with respect to the canonical inner product in C". Accord-
ing to a main result of [4], or [34], [32], if the Toeplitz operator djdy + di1d} | is
Fredholm, then its matrix symbol is invertible. Hence

ker[dk(z) *dk(z) + dk—H (Z)dk+1 (Z)*] =0, 1= k< D

Thus, for every z € 0QQ,
rank A(z) = dimcoker(di(w)) =no —ny +m — -+ (=1)"n,.

To prove the other implication, we rely on the disk algebra privilege criterion ob-
tained in the note [30]. Namely, in view of [30], Theorem 2.2, if the rank of the matrix
A(z) does not jump for z belonging to the boundary of Q, then there exists a resolution of
N = coker 4 : o/ (Q)’ — o/(Q)? with free, finite type .oZ(Q)-modules:

(3.2) 0— Q)" % o (" D Q)" — N — 0.

As before, we denote d; = A. We have to prove that the induced complex (1.5), obtained
after applying (3.2) the functor & L2(Q), remains exact and the boundary operator d
has closed range. A (Q)

For this, we “glue” together local resolutions of coker 4 with the aid of Cartan’s
lemma of invertible matrices, as originally explained in [10], or in [30]. For points close to
the boundary of Q, such a resolution exists by the local freeness assumption, while in the
interior, in neighborhoods of the points where the rank of the matrix 4 may jump, they
exist by Douady’s privilege on polydiscs. This proves that the Hilbert analytic module
N = coker(A : L2(Q)" — L2(Q)?) is privileged with respect to the Bergman space.

As for assertion (c), we simply remark that it is equivalent to the injectivity of the re-
striction map

coker(A4 : L3(Q)? — L2(Q)?) — coker(4 : 0(Q)" — 0(Q)7).

The last co-kernel is always Hausdorff in the natural quotient topology as the global sec-
tion space of a coherent analytic sheaf.

The only place in the proof where the convexity of Q is needed, is to ensure that, if the
resolution (1.5) exists, then the induced complex at the level of sheaf models (cf. [19])
n dl

0= L@ &~ L@ S L3@)" — A =0

is exact. For a proof see [30]. [

Remark 3.1. It is worth mentioning that for non-smooth domains Q in C” the
above result is not true. For instance .o/ (Q)-privilege for a poly-domain Q was fully char-
acterized by Douady [10]. On the other hand, even for smooth boundaries, the privilege
with respect to the Fréchet algebra ((Q) n C*(Q) seems to be quite intricate and definitely
different than the Bergman space or disk algebra privileges, as indicated by an observation
of Amar [1].
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28 Biswas, Misra and Putinar, Hilbert modules

Corollary 3.2. Coker[(¢;,...,p,) : L2(Q)" — L2(Q)] is privileged if and only if the
analytic functions (¢y, .. .,¢,) have no common zero on the boundary.

Proof. No common zero of the functions ¢,,..., ¢, lies on the boundary of Q.
Therefore, the matrix (¢, ..., ,) is of full rank 1 on the boundary of Q. []

For many Hilbert modules of finite rank such as the Hardy space on Q, the result
given above, remains true ([9], [10]).

Since the restriction to an open subset 0y = Q does not change the equivalence class
of a module in B;(Q), we can always assume, without loss of generality, that the domain Q
is pseudoconvex in our context. For wy € Q, the m-tuple (z; — woi, ..., Zm — Won) has no
common zero on the boundary of Q. We have pointed out, in Section 1, that if for f € .#

m
the equation f = > (z; — wy;) f; admits a solution (f1,..., f,) in O(Q)" and if the mod-
i=1
ule .# is privileged, then the solution is in .#"". This shows that f e .# ). Thus for Hilbert
modules which are privileged, we have

#{minimal generators for &;”} = dimker D(s;_,,)-.

In accordance with the terminology of local spectral theory, see [19], we isolate the
following observation.

Corollary 3.3.  Assume that the analytic module A" = coker(4 : L2(Q)" — L2(Q)7)
is Hausdorff, where A and Q are as in the theorem. Then N is a Hilbert analytic quasi-
coherent module, and for every Stein open subset U of C™, the associated sheaf model is

N(U) = O0(U) @) N = coker(4 : #(U)" — #(U)7)
= coker(z —w: O(U) @ /"™ — O(U) ® ),
where H denotes the sheaf model of the Bergman space.
Remark 3.4. We recall that (see [19])
H(U)={fe0(UnQ):|flg < oo, K compact in U}.

Since #|g = |, we infer that the restriction 47|, is a coherent sheaf, with finite free
resolution

0—>(9|?{i>---—>(0|gd—l>(9|5°—>JV|Q—>O.

3.2. Coincidence of sheaf models. Besides the expected relaxations of the main result
above, for instance from convex to pseudoconvex domains, a natural problem to consider
at this stage is the classification of the analytic Hilbert modules

N = coker(4 : LZ(Q)” — LZ(Q)?)

appearing in the Theorem 1.8 above. This question fits into the framework of quasi-free
Hilbert modules introduced in [12]. That the resulting parameter space is wild, there is no
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Biswas, Misra and Putinar, Hilbert modules 29

doubt, as all Artinian modules M (over the polynomial algebra) supported by a fix point
wo € Q enter into our discussion. Specifically, we can take

M = coker(((pl, Py :LS(Q)” — Li(Q)),
where ¢y, ..., ¢, are polynomials with the only common zero {wo}. Then in virtue of The-
orem 1.8, the analytic module M is finite dimensional and privileged with respect to the
Bergman space L2(Q). An algebraic reduction of the classification of all finite co-dimension
analytic Hilbert modules of the Bergman space associated of a smooth, strictly convex do-

main can be found in [28], [29].

In order to better relate the Cowen—Douglas theory to the above framework, we con-
sider together with the map

A1 L2(Q) — L2(Q)"
whose cokernel was supposed to be Hausdorff, the dual, anti-analytic map
A% LHQ)T — L2(Q)”.

It is the linear system, in the terminology of Grothendieck [31] or [21], with its associated
Hermitian structure induced from the embedding into Bergman space,

ker4*(z) = L2(Q)!, zeQ,
which was initially considered in Operator Theory, see [15].
Traditionally one works with the torsion-free module

M =rtan(4 : L;(Q)" — LI(Q)7),

rather than the cokernel ./ studied in the previous section. A short exact sequence relates
the two modules:

0— M — L2(Q)! — A — 0.

Proposition 3.5. Assume, in the conditions of Theorem 1.8, that the range M of the
module map A is closed. Then ./ is an analytic Hilbert quasi-coherent module, with associ-
ated sheaf model

M(U) =ran(4: #(U)" — #(U)7),
for every Stein open subset U of C".
In particular, for every point wy € Q, there are finitely many elements

gl,...,gdeﬂch(Q)q,

such that the stalk %Awo coincides with the O,,-module generated in O by gi,...,4ga.

wo
Brought to you by | Tanzania Commission for Science and Technology (Tanzania Commission for Science and Technology)
Authenticated | 172.16.1.226
Download Date | 3/21/12 7:47 AM



30 Biswas, Misra and Putinar, Hilbert modules

Proof.  The first assertion follows from the main result of the previous section and
the yoga of quasi-coherent sheaves. In particular, we obtain an exact complex of coherent
analytic sheaves

0 — M| — O — N|q — 0.

For the proof of the second assertion, recall that the quasi-coherence of .# yields a
finite presentation, derived from the associated Koszul complex

Z—w

o) ®% - (011’()@%_)%1)0 — 0.

Wwo
By evaluating the presentation at w = wy, we obtain the exact complex
MM M — M (wp) — 0.

Above we denote by w = (wy,...,w,) the m-tuple of local coordinates in the ring 0,,,,
while z = (z,...,z,) stands for the m-tuple of coordinate functions in the base space of
the Hilbert module L2(Q).

By coherence, dim.#(wy) < oo, and it remains to choose the d-tuple of elements
g=1(g1,...,9a4) as a basis of the ortho-complement of ran(z — wg : .#" — .4#). Then the
map

0" ® (M @®CH Y0, Q.4

wo

is onto. Consequently, the functions ¢y, ..., g,s generate ,/%AWO as a submodule of Of . As a

matter of fact the same functions will generate .4, for all points w belonging to a neighbor-
hood of wyg. [

Corollary 3.6. Under the assumptions of the proposition, the restriction to Q of the
sheaf model M = ran A coincides with the analytic subsheaf of 09 generated by all functions

fla, f e

The dual picture emerges easily: let wy be a fixed point of Q, under the assumptions
of Theorem 1.8, the map 4,,(z) := (z1 — Woi, ..., 2Zm — Wom) : #™ — . has finite dimen-
sional cokernel. Choose a basis vy, ..., v, of ker 4,,(z)" and denote by P,, the orthogonal
projection onto ker 4,,(z)". Then for w belonging to a small enough open neighborhood €
of wy, the elements P, (v;),..., P,(v/) generate ker 4,,(z)" as a vector space, but they need
not remain linearly independent on Q. Nevertheless, starting with a module .# in B;(Q),
we have established the existence of a holomorphic Hermitian vector bundle E , on Q (in
Subsection 2.4).

4. Examples

4.1. The (A, u) examples. Let .# and .4 be two Hilbert modules in B;(Q) and ., #
be two ideals in C[z]. Let .4, := [J] < .M (resp. My := | J] < M) denote the closure of .7
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Biswas, Misra and Putinar, Hilbert modules 31

in . (resp. closure of ¢ in ./). Also assume that every algebraic component of V(.#)
and V(#) intersects Q and their dimension is at most m — 2. It is then not hard to see
that .4, and 4 /; are equivalent then .# = # following the argument in the proof of [2],
Theorem 2.10, and using the characteristic space theory of [5], Chapter 2 (see [3]).

Although this assertion may appear to be slightly more general than the rigidity the-
orem of [16], Theorem 3.3, we believe the proof of Theorem 3.3 from [16] works in this case
as well.

Assume .# and .4 are minimal e)stensions of the two modules .#, and .4, respec-
tively and that .#, is equivalent to .#,. We ask if these assumptions force the exten-
sions .# and ./ to be equivalent. The answer for a class of examples is given below.

For A, 1 > 0, let H»#)(D?) be the reproducing kernel Hilbert space on the bi-disc de-
termined by the positive definite kernel

K(i”‘)(z, w) = /11 . z,we D2
(1 —lel) (1 —Zsz)#

As is well known, H%#(D?) is in Bl([D) ). Let I be the maximal ideal in Clz;,z,] of
polynom1a1s vamshlng at (0 0) Let H (4.4) (D?) := [I]. For any other pair of positive num-
bers A/, u’, we let H (ID ) denote the closure of [ in the reproducing kernel Hilbert
space H (2 u )(Dz) Let K*#) denote the corresponding reproducmg kernel. The modules
H"(D?) and H" ") (D?) are in B (D*\{(0,0)}) but not in B;(D?). So, there is no easy
computation to determlne when they are equivalent. We compute the curvature, at (0,0),

of the holomorphlc Hermltlan bundle 2 and 2 of rank2 corresponding to the modules
Hé)“’“ )( D?) and H )(I]])z) respectively. The calculation of the curvature shows that if
these modules are equivalent then 4 = 2" and u = 4/, that is, the extensions H#(D?)
and H*-#)(D?) are then equal.

Since H""(D?) := {f e H*M(D?) : £(0,0) = 0}, the corresponding reproducing
kernel Ké”’” ) is given by the formula

1
Kou’”)(z,w): -1, zweD?

(1 — Zlv_t/'l)i(l — ZQWQ)'”

The set {z{"z} :m,n=0,(m,n) =% (0,0)} forms an orthogonal basis for Héi’”)(l]])z).
Also

<2122 , M* m+1> <ZI+IZ§, Zin+1> — 07

unless / = m, k = 0 and m > 0. In consequence,

- <ZInszn
m+1 —A m+1 —A
(=™ <m+1) (=™ <m+1>
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where (;j) _ (_l)m,a(ﬂ -

I,k =0and (/,k) £+ (0,0

Similarly,

We easily verify that {z/z&, Mz

m+1

/1+mzl>_0 forall/,k =0, (I,k) % (0,0),
('/l—l-m—l)‘ Now, (zlzk Mjz1y = (IHzk 21y =0,
m!

). Therefore, we have

m+1

M m+l /“rmzf”, m > 0,
0, m=
n+1

Mz — mzfa n >0,
0, n=0.

+1> <Z Zk+1

for m,n = 0. Finally, calculatlons similar to the one given above, show that

m+1

n+1

Mzt ===t and Mzt = g, mnz0
A+m ptn -
Therefore we have
1
2l m+ oy for m > 0,
A+m
1
P n+l ! for n > 0,
(MM} + M, M) : et
1 1
Z{n+12£1+1 (ﬂ + n+ ) {"Hz;’“ for m,n = 0,
A+m pu+n
z1,z20 — 0.
Also, since Dy+f = (M['f, M5 f), we have
] m+1
Zm ,1+m21’0 for m > 0,
1
Zgﬂ = <0’” + zf) for n > 0,
DM* . :u+n
1 1
Z;nJrlZEHrl — (Wl+ Z{"Z?Jr],n + Zf'ﬁlzg) for m,n = 0,
A+m u+tn
Z],2p = (O?O)
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It is easy to calculate Vj,(0) and Qps(0) (see Subsection 2.4) and show that

1 m+1
Zl + — H—m(Zin,O) fOI‘ m > 0,
1
2 P 0,2 for 1 > 0,
u+n
Vi (0): 1 +1 +1
m n
Ziﬂﬂzgﬂ R ( anzgﬂ’—Z{nHZg) for myn = 0,
1 n+l A+m u+n
——+
A+m u+n
21,22 (070)7
while
m+1 1 m-+1
2 z! for m > 0,
m+ 1
A+m
1
e z5+1 for n > 0,
n+1
Zm+1Z£l+l — 1 Zm+1zn+l form.n=>0
m+1 n+1
A+m u+n
Z1,2p — 0

Now for w e A(0,¢),

o0
P(,0) = (I = Ry(0)D5) ' Prer,. = S (Ru(0)Di) "Prer oy
n=0

where Rpr(0) = Opr(0)Var(0)*. The vectors z; and z, form a basis for ker Dy;+ and there-
fore define a holomorphic frame: (P(w,0)z;, P(w,0)z;). Recall that

P(,0)z — io (Ru(0)D5)"z; and  P(i,0)z; = io (Ry(0)D5)"2.

To describe these explicitly, we calculate (Ras(0) D)z and (R (0)D5)za:

(RM(O)D\,—V)Zl = RM(O)(\/_Vl,Zl, WgZz)
= W1 Rm(0)(z1,0) + W2 R (0)(0, 22)
= w1 0m(0)Vau(0)"(21,0) + w20m(0) Vs (0)7(0, 22).
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34 Biswas, Misra and Putinar, Hilbert modules

We see that

Zle Zle
O G0 = S () @0 ) R

1k20, (1K) +(0,0) llz{=z511/ 1|1z 25]]
Therefore,

Var(0)*(21,0), 20255 = ((21,0), Vg (0)(z125)>, 1,k =0, (1,k) + (0,0).

From the explicit form of V);(0), it is clear that the inner product given above is 0 unless
=2, k=0.For/=2, k=0, we have

[ 2 1
<(2170)7 VM(O)Z%> = ” 1” j. +1 l
3 3 1/1 o e
Va(0)(z1,0) = A+l AHZ2” A+1 2 o

Again, to calculate Vy(0)(0,z), we note that (¥ (0)*(0,21),2z1z5> is 0 unless / = 1,
m=1.For/=1,m=1, we have

Hence

Vm(0)°(0,21), z122) = (0, z1), Var(0)z122)

— <% <%22,£Zl>7(0721)>
+

1.1
Aou
_ 1 1
| A TR RL
itu itu
Thus
« N Z12 1
VM(O) (0,21) = <VM(0) (0,21),2122> 122 3 = Z12Z.
2122 ] 1.1
VA
Since

Om(0)z122 2122,
l+ 1
VA
2 ut+l1 ,
QM(O) 2 2 Z27
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it follows that

A+1 A
Rm(0)Dyzy = wy 42— zi + Wzﬁzﬂz-
Similarly, we obtain the formula
A 1
RM(O)D,;,ZZ =W ﬁzlzz + Wzlu_; Z%.

We claim that
4.1)  ((Rm(0)D5)"z;, (Ru(0)D5)"z;) =0 forallm+nandi,j=1,2.
This makes the calculation of
h(w,w) = ((<P(9,0)z;, P(,0)2))) o, <py WeUC D2,

which is the Hermitian metric for the vector bundle 2, on some small open set U < D?
around (0,0), corresponding to the module H, (%.4) (D?), somewhat easier.

We will prove the claim by showing that (RM(O) w)nzl consists of terms of degree
n+ 1. For this, it is enough to calculate Vys(0)"(z/z%,0) and V(0)"(0,z!z%) for different
I,k = 0 such that (/,k) + (0,0). Calculations similar to that of V;(0)* show that

Pu(0)"(1",0) =\ [L— 2 V(0)7(0,25) =y [ —— 75!

1
Var(0)"(z]'257,0) = Vi (0) (0, 27+ 25) = zptzg
m+1 n+1

+
u+n u+n

and

Recall that (RM(O)DW)zi is of degree 2. From the equations given above, inductively, we
see that (Ry(0)Dy)"z; is of degree n + 1. Since monomials are orthogonal in H*#)(D?),
the proof of claim (4.1) is complete. We then have

_ A+1 A ©
P(w,0)z; = z; + W) —— 5 12 + Wzl fﬂzlzz + > (RM(O)DW)”Zl
n=2

and

_ u+
ad Z122 + Wzﬂ

P(w,0)zy=z,+ W
(w,0)z2 = 2 1/1+,u

1 O n
> Z+ Zz(RM(O)Dw) 2

Putting all of this together, we see that

A0

1—J
+ > apgw w’,
0 u) 2

) = (

where the sum is over all multi-indices 7, J satisfying |I],|J| >0 and w! = w]'w2,
o . . A0

i/ = #{' W} . The metric / is (almost) normalized at (0,0), that is, i(w, 0) = ( 0 ) The
i
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36 Biswas, Misra and Putinar, Hilbert modules

metric /1 obtained by conjugating the metric / by the invertible (constant) linear transfor-

Vo

mation \3_ induces an equivalence of holomorphic Hermitian bundles. The vec-
fm

tor bundle # equipped with the Hermitian metric /o has the additional property that the

metric is normalized: /g(w,0) = I. The coefficient of dw; Adw;, i, j = 1,2, in the curvature

of the holomorphic Hermitian bundle 2 at (0, 0) is then the Taylor coefficient of w;w; in the

expansion of Ay around (0, 0) (cf. [35], Lemma 2.3).

Thus the normalized metric /o (w, w), which is real analytic, is of the form

o (o0, w) = IP(W,0)z1, P(9,0)z1>  /2ulP(i,0)zy, P(,0)z2)>
o(w, VHCP(9,0)z2, P(i9,0)z1 > udP(,0)z2, P(#,0)22)
A+1 2 Au

wi|” + ws|? ! A4 2w W
-5 M 2 5 1W2
2 A+ p)? o \A+
=1+ ( 2) + o(jw]),
\/1 ( & )szl Ao+
puNA (2+w)? 2

where 0(|w|3)i7j is of degree = 3. Explicitly, it is of the form

o0

§2< (RM(O)DW)HZB (RM(O)Dw)nZ]>

The curvature at (0,0), as pointed out earlier, is given by 0dhy(0,0). Consequently, if
Hé)"” )([D)Z) and Hé}‘/ (D?) are equivalent, then the corresponding holomorphic Hermitian
vector bundles 2 and 2 of rank 2 must be equivalent. Hence their curvatures, in particular,
at (0,0), must be unitarily equivalent. The curvature for £ at (0,0) is given by the 2 x 2
matrices

0
p

b
M

1
% 0 , ! ( u >2
lluZ 1) \/lﬂ l-f—/,t 9

0 3 0 0

(24w

0 0 Au
== 0]’
/A \A+u 0 'UTH

The curvature for 2 has a similar form with 2" and z in place of A and p respectively. All
of them are to be simultaneously equivalent by some unitary map. The only unitary that
intertwines the 2 x 2 matrices

0 — (iﬂ )2 L 2
A \A+ and VAl \A
0 0 0 0
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is al with |a| = 1. Since this fixes the unitary intertwiner, we see that the 2 x 2 matrices

A+1 !
Sl o

;“ﬂz and 0 /ll,u’z

(2+w? (2 + )
A+1 A+1
must be equal. Hence we have —5 = % that is 1 = A’. Consequently,
A = 2 gives ” _ K 2
+w?® () G+w?® (+u)

and then

(1= )W (u+ 1) + 20’} = 0.

We then have u = u’. Therefore, H ( D?) and Hé}'/"” /)(IDZ) are equivalent if and only if
=2 and u=y'.

We describe below, a second family of examples of Hilbert modules in the class
9B (D?) which are shown to be inequivalent. For this, we use a somewhat different unitary
invariant which is relatively easy to compute.

4.2. The (n, k) examples. For a fixed natural number j, let J; be the polynomial
ideal generated by the set {z{, zf Zy ’} ki 0. Let .4, be the closure of I; in the Hardy
space H 2( ) We claim that .#, and ,/%2 are 1nequ1va1ent as Hilbert modules unless
k1 = k. From Lemma 2.3, it follows that both the modules .#; and .#, are in B ( 2\X ),
where X := {(0,z) : |z| < 1} is the zero set of the ideal /;, j =1,2. However, there is a
holomorphic Hermitian line bundle corresponding to these modules on the projectivization
of D\ X at (0,0) (cf. [14], p. 264). Following the proof of [14], Theorem 5.1, we see that if
these modules are assumed to be equivalent, then the corresponding line bundles they de-
termine must also be equivalent. This leads to contradiction unless k; + k3.

Suppose L : .4 — . is given to be a unitary module map. Let Kj, j = 1,2, be
the corresponding reproducing kernel. By our assumption, the localizations of the mod-
ules, M;(w) at the point w e D?\ X are one dimensional and spanned by the correspond-
ing reproducing kernel Kj, j = 1,2. Since L intertwines module actions, it follows that
MJLK,(-,w) = f(w)LKi(-, w). Hence,

(4.2) LK\ (-,w) = gw)Ks(-,w), forw¢X.

We conclude that g must be holomorphic on D*\ X since both LK, (-, w) and K,(-,w) are
anti-holomorphic in w. For j = 1,2, let E; be the holomorphic line bundle on P! whose
section on the affine chart U = {w; # 0} is given by

—ky —k; —n—k;
Ki(z,w) _ Ay —|—zl zy w,w, "’ + higher order terms

el
wi

5i(0) = lim
w—»O,%:H w

ankl’lk

:Zl iz’ Zy
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38 Biswas, Misra and Putinar, Hilbert modules

Consider the co-ordinate change (w;,ws) — (p,0) where W, = p and #; = p0 on D>\ X.
Note that

R il

(4.3) lim  g(p,0)* = :
g—fz(l, w—0 1+ |0n—k2 |2

g(p,0) has a finite limit at (0, 0), say g(¢). Then from (4.2), and the expression of s;(0), by a
limiting argument, we find that Ls; (6) = ¢g(6)s2(0). The unitarity of the map L implies that

IZsi (D)7 = l9(0)*1s2(0)°

and consequently the bundles E; determined by .#;, j = 1,2, on P! are equivalent. We now
calculate the curvature to determine when these line bundles are equivalent. Since the
monomials are orthonormal, we note that the square norm of the section is given by

Is1(O)]> =1+ |o]** .

Consequently the curvature (actually coefficient of the (1,1) form d0 A df) of the line
bundle on the affine chart U is given by

H;(0) = —090;log]|s1 O = —090;log(1 + 102

] (l’l _ kj)g(n—k/)é("_k./_l)

1 _|_ |0|2(n*kj)

(1= K IO 1+ 0P} — (0 — k)10 o0
o {1+ ]0Pe )2

_ (=KoY

So if the bundles are equivalent on P!, then #7(0) = #3(6) for 6 € U, and we obtain
(n _ k1)2{|0|2<n7k171) + 2|0|2(n7k2)|9|2(n7k171) + |H|4(n7k2)|0|2(n7k171)}
_ (n _ k2)2{|0|2(n7k271) _|_ 2|0|2(ﬂ*k|)|0|2(7[7k271) _|_ |9|4(Vl7k1)|0|2(}’l*k271)} — 0

Since the equation given above must be satisfied by all 6§ corresponding to the affine
chart U, it must be an identity. In particular, the coefficient of |0|2{("_k‘)+("_k2)_1} must
be 0 implying (n — /q)2 =(n— kz)z, that is, k1 = k». Hence .4, and .#, are always inequiv-
alent unless they are equal.
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