ON THE CLASS NUMBER OF REAL QUADRATIC FIELDS

BY S. CHOWLA

UNIVERSITY OF NOTRE DAME

Communicated by Deane Montgomery, May 5, 1961

THEOREM.—Let \(p \) be a prime \(\equiv 1 \pmod{4} \), \(h \) the class number of the real quadratic field \(\mathbb{Q}(\sqrt{p}) \), \(\epsilon = \left[\frac{(t + u \sqrt{p})/2}{2} \right] > 1 \) its fundamental unit. Then,

\[
\left(\frac{p - 1}{2} \right)_! \equiv (-1)^{(p+1)/2} \frac{p}{2} \pmod{p}.
\]

(1)

Proof: From Dirichlet’s classical formula we derive

\[
\sqrt{p} \; \epsilon^h = \prod_{\mathbb{Z}} \left(1 - \theta^n \right),
\]

(2)

where \(\theta = e^{2\pi i/p} \) and \(n \) runs over the numbers with \(0 < n < p \) and \((n/p) = -1 \), where \((x/p) \) is Legendre’s symbol of quadratic residuacity. Working with integers of \(\mathcal{R}(\theta) \), we note

\[
\sqrt{p} = \left(\frac{p - 1}{2} \right)_! \left(1 - \theta^{(p-1)/2} \right) \pmod{1 - \theta^{(p+1)/2}},
\]

(3)

\[
\prod_{\mathbb{Z}} \left(1 - \theta^n \right) = (1 - \theta^{(p-1)/2}) \pmod{1 - \theta^{(p+1)/2}}.
\]

(4)

(1) follows from (2), (3), and (4). Our result supplements formulae of Ankeny- Artin-Chowla in *Ann. Math.*, 1952, p. 479.

I am grateful to Professor A. Selberg for noticing an error in my original argument. Paromita Chowla has checked the formula in many special cases. See L. J. Mordell, *Amer. Math. Monthly* (Feb. 1961) for a similar result for primes \(p \equiv 3 \pmod{4} \).