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Abstract. The era of advanced ground based interferometric detectors of
gravitational waves (GW) has arrived. These detectors are expected to go line
in six years or so from now and which will have requisite sensitivity for detect-
ing and observing astrophysical gravitational wave sources. In this article we
will focus on a specific GW source, the GWs emitted by an isolated rotating
neutron star/pulsar, and describe a novel approach to address this highly com-
putationally intensive problem. We will describe how the symmetries in the
model can be potentially used to reduce the computational effort.

1. Introduction

We dedicate this article to Prof. P. C. Vaidya who was an eminent Indian relativist and
a fantastic teacher.

Gravitational waves (GW) can be described as a space-time warpage which travels
with the speed of light. Astrophysical GW will bring us information complementary to
that obtained from electromagnetic observations, because the GW have very different
properties. GW are produced in compact, dense, high velocity regions of matter in
the universe and are not easily scattered, unlike electromagnetic waves. Therefore, it
seems reasonable to expect a revolution in understanding of our universe akin to the one
brought on by radio astronomy in the last half a century. Exciting times lie ahead for
GW astronomy.

Currently, the large scale detectors, LIGO of the US, Virgo of Italy and France, the
Japanese TAMA detector and the UK-German GEO detector [1] have achieved impressive
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sensitivities. In many cases, they have infact surpassed their proposed design sensitiv-
ities. Now efforts are on to construct advanced detectors which will have the requisite
sensitivity for detecting astrophysical sources of gravitational waves with a reasonable
event rate. A large scale detector LCGT in Japan [2] has been recently funded and the
plan of LIGO collaborating with Australia (LIGO-Australia) has been approved by the
NSF. On the Indian front, during the past year or so, an initiative in gravitational wave
astronomy has begun on the experimental front - there has already been expert effort
on data analysis and waveform computations for the past twenty years - and an Indian
consortium involving researchers from several Indian leading institutions has been formed
- the IndIGO consortium.

Several types of GW sources have been envisaged which could be directly observed by
Earth-based detectors, such as the burst sources, examples are binary systems of neutron
stars and/or black holes and supernovae explosions; stochastic backgrounds of radiation,
either of primordial or astrophysical origin and continuous wave sources – e.g. rapidly
rotating asymmetrical neutron stars, where a weak deterministic signal is continuously
present in the data stream. In this article we will focus on this last type of source, namely,
continuous wave signals and describe a novel approach based on group theory which could
speed up the data analysis.

Continuous wave sources pose one of the most computationally intensive problems in
GW data analysis [4, 5, 6]. A rapidly rotating asymmetrical neutron star is a source of
continuous gravitational waves. There are some astrophysical systems known from elec-
tromagnetic observation which might be promising sources of continuous GWs. Surveys
for continuous GWs have so for not led to a direct detection, but the searches are now
become astrophysically interesting. For example, data from the LIGO detectors has been
used to set an upper limit on the emission of continuous GWs from the pulsar in the Crab
nebula which beats the known limit based on the observed spindown rate of the pulsar
[3]. These searches for known systems are not computationally intensive since they target
a known sky position, frequency and spindown rates. On the other hand, blind all-sky
and broad-band searches for previously unknown neutron stars are a different matter
altogether. Long integration times, typically of the order of a few months or years are
needed to build up sufficient signal power. Earth’s motion Doppler modulates the signal,
and this Doppler modulation depends on the direction of the GW source. Thus, coherent
extraction of the signal whose direction and frequency is unknown is impossibly compu-
tationally expensive. The parameter space here is very large and a blind survey requires
large computational resources. Several such searches have been carried out using data
from ground based interferometric detectors [7, 8, 9, 10, 11, 12]. The results of this paper
might help in addressing this computational challenge of covering this large parameter
space.

In this article we will consider the simple model of an isolated rapidly rotating neutron
star and ignore the spindown. We will show here, how the group theory and other
algebraic methods can be used to elegantly formulate the problem by exploiting the
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symmetries in the physical model and potentially map the road for a fast algorithm by
saving on the computational costs. In this endeavour, we will make use of the stepping

around the sky method - a method proposed by Schutz twenty years ago [4], which gives
a useful framework for this approach. There have been a host of methods proposed,
notably the Hough transform, the stack and slide, resampling methods etc. [13] which
reduce the computational cost over the straight forward search over the sky directions,
frequency and spindown parameters. Although these methods significantly reduce the
computational burden, it is not reduced to the point where the search can be performed
with the current computer resources available in reasonable time. Therefore, it becomes
necessary to explore novel approaches which may go towards addressing and ultimately
solving this problem. This article presents one such attempt.

2. The formulation of the problem: Modulation operators

Consider a barycentric frame in which the isolated neutron star is at rest or moving
with uniform velocity. Ignoring spindowns the signal in this frame is assumed to be a
pure sinusoid - monochromatic of constant frequency say f . The detector however, takes
part in an accelerated motion - in general a superposition of simple harmonic motions of
varying amplitudes and phases. In some approximation this motion can also be considered
as superposition of circular motions - cycles and epicycles. Thus the signal in the detector
is not a pure sinusoid but is modulated by a Doppler correction. The Doppler correction
depends on the direction to the source relative to the motion of the detector. If the
direction to the source and the frequency is unknown, one must scan over all directions
in the sky and the frequency. From astrophysical considerations usually the maximum
frequency fmax is taken to be 1 kHz. The stepping method gives a direct way for obtaining
the Fourier transform in the barycentric frame of the demodulated signals connecting two
different directions say n̂ and n̂

′.

The signal expected is so weak that one typically needs to integrate the signal for
several months or an year before one could build up a significant signal to noise ratio
(SNR). So the observation time needed is T ∼ 107 sec or more and if the maximum
frequency to be scanned is taken about a kHz, then the number of samples in a data
train are N ∼ 1010. Since the detector orbits the Sun in this time, the ‘aperture’ of the
’telescope’ is the diameter D of the Earth’s orbit; D ∼ 3×108 km while the minimum GW
wavelength is λ ∼ 300 km corresponding to a frequency of 1 kHz. Thus the resolution is
∆θ = λ/D ∼ 10−6 radian, fraction of an arc second - a Fourier transform of such a signal
spreads into a million Fourier bins, and consequently the signal is lost in the noise of the
detector. One therefore needs to demodulate the signal first and then take its Fourier
transform in order to collect the signal power in a single frequency bin. This means one
needs to scan or demodulate over 4π/∆θ2 ∼ 1013 directions in the sky. So even this naive
calculation gives the number of operations for the search to be Nops ∼ 1025 if one were
to perform the FFT of the data train after demodulating in each direction. A machine
having a speed of few teraflops would need several thousand years to perform the analysis!
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Moreover, this estimate excludes overheads, ignores spindown parameters etc. Including
these would increase the cost of the search by several orders of magnitude.

Let the motion of the detector be described in general by R(t) in the barycentric
frame (X,Y, Z); for circular motion R(t) = R(cosΩtX̂ + sin ΩtŶ) - we take the detector
motion in the (X,Y ) plane. We will treat R(t) generally, except later, when we consider
the specific case of circular motion.

The modulation operator which has a matrix representation in the time domain and
Fourier domain (or any other convenient basis), can be computed from the key defining
equation:

s′(t′) = s(t) , (1)

where we define the detector time coordinate t′, which is infact a retarded or advanced
time, given by t′ = t−R(t)·n̂/c and related to the barycentric time coordinate t. (c is the
velocity of light or more appropriately gravitational wave). From our assumptions, the
signal in the barycentric frame can be taken to be monochromatic. So after demodulation
a Fourier transform is all that is necessary to extract the signal from the detector noise.
Of course for computing the modulation/demodulation operators, the specific form the
signal is not relevant. However, a specific model of the signal helps in fixing ideas. Note
that the retarded time contains the unit vector n̂ describing the direction of the source as
a parameter and therefore the modulation operator too is dependent on n̂. We express
the modulation operators in the Fourier domain. Since the detector data are also stored
in the Fourier domain, this domain is appropriate. Then we have the following relations:

s′(n̂; f ′) =

∫

df M(n̂; f ′, f) s(f), s(n̂; f) =

∫

df ′M−1(n̂; f, f ′) s′(f ′) , (2)

where now the matrices M(n̂) and M−1(n̂) are given by the integrals:

M(n̂; f ′, f) =

∫

dt′ e2πi(ft(t
′)−f ′t′), M−1(n̂; f, f ′) =

∫

dt e2πi(f
′t′(t)−ft) . (3)

These are explicit representations of the matrices M and M−1 respectively in the Fourier
domain, where the (un)primed variable corresponds to the (‘barycentric) detector frame
respectively. In the real world, the frequencies take discrete set of values and the integrals
are to be interpreted as sums. M may be called the modulation operator, while M−1

may be called the demodulation operator.

In the abstract form, the signal at the detector coming from the direction n̂ is related
to the signal in the barycentric frame by the equation:

s
′(n̂) = M(n̂) s , (4)

where M(n̂) is the modulation operator. Note that in the all sky all frequency search
we do not know n̂. Therefore we need to scan over the directions, a trial demodulation
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is performed for some general direction n̂
′ given by n̂

′ = (sin θ′ cosφ′, sin θ′ sinφ′, cos θ′),
which is not necessarily n̂ and so we have:

strial(n̂
′; n̂) = M−1(n̂′) s

′(n̂) . (5)

If n̂
′ 6= n̂, then the demodulation is incorrect and we must try again with a different n̂

′

until we get to n̂ or atleast get close enough. If n̂
′ = n̂, we must observe a peak in Fourier

domain. Using these formulae we can now step directly to a direction n̂
′ as follows:

strial(n̂
′; n̂) = M−1(n̂′) s

′(n̂) ,

= M−1(n̂′) M(n̂) s ,

≡ Q(n̂′, n̂) s , (6)

where the stepping operator is defined by:

Q(n̂′, n̂) = M−1(n̂′) M(n̂) . (7)

This was the approach suggested by Schutz so that one may directly step from the di-
rection n̂ to the direction n̂

′. This formulation was expected to enhance the efficiency of
the search. Our approach builds upon this formulation. The goal of our work is towards
using the symmetries in the problem and capturing them in the algebra to efficiently
step in the sky. The symmetry is made manifest via the language of group theory. We
outline the group theory below in the next section and show how it can be applied to the
idealistic case of the circular orbit.

3. Modulation matrices as representations of the translation

group in R3

We show that the matrices M , M−1 and the stepping kernel Q are elements of the same
group which can be identified with the group G of translations in R3. For the relevant
group theory see [14].

Consider the observation time interval [0, T ]. We need to somewhat modify and
enlarge our set of transformations from those we have considered before. In order that
we have a group, we must consider all vectors a ∈ R3 instead of just unit vectors we have
considered in defining the matrices M(n̂); so that we now consider (i) the enlarged set
M(a) - the previous matrices were only confined to the unit sphere, a subset of R3 or
more precisely, they were defined on the projective space of directions - it is better to deal
with the full space R3, rather than the quotient space of directions, (ii) we replace R(t) by
∆R(t) = R(t)−R(0), and assume that the motion of the detector is periodic and T is an
integral number of periods. This period could be a day or about a year when the detector
comes back to its initial location approximately. These modifications and conditions are
required in order to have a 1-1 and onto map of [0, T ] into itself for the group action.
Note that replacing R by ∆R does not change the Doppler modulation profile, which is
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dependent only on the detector velocity V, because Ṙ = ˙∆R ≡ V; it means a translation
of the origin to the initial location of the detector R(0), or a (cancellation of) constant
phase factor in the Fourier domain. We define the group action on [0, T ] by:

ga(t) = t−
∆R · a

c
, ga ∈ G . (8)

Note that ga(0) = 0, because R has been replaced by ∆R. Also because of the periodicity
assumed ga(T ) = T , since ∆R(T ) = R(T )−R(0) = 0. Also taking the derivative of this
equation we get:

dga
dt

= 1 −
V · a

c
. (9)

As long as |a| ∼ 1 and since V/c ∼ 10−4 or less in our context, we notice that ga is a
monotonic function of t. This proves that the function ga : [0, T ] −→ [0, T ] is both 1-1
and onto.

Further, if a = 0, the identity element of G, then this corresponds to the identity
transformation g0(t) = t. Now consider two elements a,b ∈ G. We then have:

ga(gb(t)) = t−
∆R · a

c
−

b

c
· ∆R

(

t−
∆R · a

c

)

= t−
∆R(t)

c
· (a + b) + relativistic corrections , (10)

where we have performed a Taylor expansion. If |a|, |b| ∼ 1 then we may drop the
relativistic corrections which then gives ga(gb(t)) = ga+b(t) = (gagb)(t). Therefore G has
a valid action on [0, T ] within this approximation.

As our further discussions will show this extension to arbitrary vectors in R3 is most
useful. It has the following properties:

• When a is a unit vector, one then actually gets the modulation relating the detector
frame to the barycentric frame; that is M(a) = M(n̂).

• a can be chosen to be the step from the direction n̂ to the direction n̂
′ or related

to ∆n̂ = n̂
′ − n̂ in which case we get the stepping kernel q or Q(n̂′, n̂).

• When a is infinitismal, then the step is infinitismal and the operator is then related
in a straight forward way to the metric on the signal parameter space [15, 16, 5, 17].

We now describe the representation of G. It is basically described by generalising
Eq.(1) to arbitrary vectors a ∈ R3. The equation for the signals is generalised to:

sa(ta) = s(t) . (11)

Here sa is the signal at the ’detector’, ta = ga(t) is the time at the ’detector’ given by
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Eq. (8) and s and t are the corresponding quantities in a special reference frame which
we may call the ’barycentric’ frame in keeping with earlier literature.

Here the carrier space is the infinite dimensional vector space V of continuous real
valued functions, namely, the signals s(t) on the interval [0, T ]. The function s is now
mapped to the function sa by the operator which we call M(a) by the rule:

sa(ta) ≡ (M(a)s)(ta) = s(t) ≡ s(g−1
a

(ta)) . (12)

Thus M(a) is an operator M(a) : V −→ V which is linear and maps the element s ∈ V
to sa = M(a)s ∈ V . Such groups are called transformation groups. The matrices M(a)
form a representation of G.

4. The case of circular motion

We consider the problem of circular motion of the detector - essentially a toy problem -
and investigate how the group theory works in this simplified case. The representation
group then is the Euclidean group in two dimensions denoted by E(2). Without loss of
generality, by choosing the coordinates apprpriately, the detector motion is given by:

R(t) = R[cos(Ωt) X̂ + sin(Ωt) Ŷ] , (13)

where 0 ≤ t ≤ T . We also assume that the detector goes through exactly one rotation,
i.e., ΩT = 2π.

We need to adapt the Fourier representation of M to a finite time interval [0, T ].
The integral must range only over the interval [0, T ]. Then the frequencies take discrete
set of values, namely, f −→ n and f ′ −→ n′ and are explicitly given by the relations,
f = n

T , f ′ = n′

T where n, n′ are integers. The Hilbert space here is L2[0, T ] with the
scalar product of two functions f1 and f2 defined by:

(f1, f2) =
1

T

∫ T

0

f1(t) f
∗

2 (t) dt . (14)

The functions e2πint/T ,−∞ < n <∞ form a complete orthonormal basis for the Hilbert
space L2[0, T ]. With the convention followed earlier we consider the time 0 ≤ t′ ≤ T and
write:

M(a;n′, n) = (M(a) e2πin
t
′

T , e2πin
′ t

′

T ) . (15)

But from the definition of M , we have M(a)s(t′) = s(t), where t′ = t−R · a/c; thus the
effect of M is to replace t′ by t in the function. We then have,

M(a;n′, n) = (e2πin
t

T , e2πin
′ t

′

T )

=
1

T

∫ T

0

dt′ e2πin
t

T
−2πin′ t

′

T . (16)
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The matrices M(a;n′, n) form a representation of the group.

We now obtain an explicit expression for M(a;n′, n), where we choose a to be the
unit vector n̂ = (sin θ cosφ, sin θ sinφ, cos θ). Making the subsitutions:

ψ = Ωt′, ΩT = 2π, n =
2πf

Ω
= fT, n′ =

2πf ′

Ω
= f ′T, β =

RΩ

c
, (17)

and we obtain:

M(n̂;n′, n) =
1

2π

∫ 2π

0

dψ ei(n−n
′)ψ+inβ sin θ cos(ψ−φ)

≡ eiχ(n−n′) Jn−n′ (nβ sin θ) , (18)

where χ = φ+ π/2, the translated azimuthal angle.

The modulation matrices take a simple form in this specific case. From the form of
M(n̂;n′, n) it is evident that when applied to the data vector xn, the search in χ can be
performed by a fast Fourier transform; the stepping in the azimuthal parameter is done
in an efficient way. If there are B samples of the χ parameter, then the search over χ for
a given θ and frequency n′ can be performed in order of B log2B number of operations.
It may be possible to further reduce this computational cost by applying methods such
as singular value decomposition of the matrix M to obtain a speed up over other search
parameters. Encouraging results have been obtained in this direction.

5. Conclusion

We have shown how the problem of the all sky all frequency search for asymmetric rotating
neutron stars can be efficiently performed by capturing the symmetries of the model in
a group theoretic framework and group representation theory. As an example, we have
considered the simple case of a complete circular orbit of the detector and shown how it
is amenable to the group theoretic approach. We have also indicated how this could lead
to a gain in computational efficiency. Work is underway to extend this idea to the case of
general elliptic orbits and to eventually implement this in a practical gravitational wave
search pipeline.
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