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Abstract. Rotating neutron stars are one of the important sources of gravitational waves (GW) for
the ground based as well as space based detectors. Since the waves are emitted continuously, the
source is termed as a continuous gravitational wave (CGW) source. The expected weakness of the
signal requires long integration times (� year). The data analysis problem involves tracking the phase
coherently over such large integration times, which makes it the most computationally intensive
problem among all GW sources envisaged. In this article, the general problem of data analysis is
discussed, and more so, in the context of searching for CGW sources orbiting another companion
object. The problem is important because there are several pulsars, which could be deemed to be
CGW sources orbiting another companion star. Differential geometric techniques for data analysis
are described and used to obtain computational costs. These results are applied to known systems to
assess whether such systems are detectable with current (or near future) computing resources.
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1. Introduction

The general theory of relativity predicts the existence of gravitational waves. Since gravity
couples very weakly to matter, highly sensitive detectors are required to detect gravita-
tional waves. Over the next decade several large-scale interferometric gravitational wave
detectors will come online. These include the LIGO, composed of two interferometric de-
tectors situated in the United States each with baselines of 4 km, VIRGO, an Italian/French
project located near Pisa with a baseline of 3 km, GEO600, a British/German interferome-
ter under construction near Hannover with a baseline of 600 m, TAMA in Japan, a medium-
scale laser interferometer with a baseline of 300 m and with funding approval AIGO500,
the proposed 500 m project sponsored by ACIGA [1–5]. There are also separate pro-
posals for space-based detectors which could be operational twenty-five years from now
(e.g. LISA: the Laser Interferometer Space Antenna, a cornerstone project of the European
Space Agency) [6].

Several types of GW sources have been envisaged which could be directly observed
by Earth-based detectors (see [7–9] and references therein for recent reviews): (i) burst
sources – such as binary systems of neutron stars (NS) and/or black holes (BH) in their
in-spiral phase, BH/BH mergers and supernovae explosions – whose signals last for a time
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much shorter, typically between a few milli-seconds and a few minutes, (ii) stochastic
backgrounds of radiation, either of primordial or astrophysical origin, and (iii) continu-
ous gravitational wave (CGW) sources – emitted by rapidly rotating NS – where a weak
deterministic signal is continuously present in the data stream.

In this article data analysis issues concerning CGW sources will be discussed. The data
analysis will be applied for investigating the computational load involved in filtering the
data stream to search for monochromatic radiation emitted by a NS orbiting a companion
object.

CGW emitters pose one of the most computationally intensive problems in GW data
analysis. In fact, the weakness of the expected signal requires very long observation times,
of the order of a year (or possibly more) in order to accumulate enough signal-to-noise
ratio (SNR) for ensuring detection. During this time a monochromatic signal, as mea-
sured in the source reference frame, is Doppler modulated by the motion of the detec-
tor carried by the spinning Earth orbiting the Sun. The emitted energy is spread over
' 2 � 106 (T=107 sec)2 (f=1 kHz) frequency bins of width�f = 1=T , whereT is the
time of observation (the formula holds forT up to six months, after that the bins increase
linearly withT ). In order to recover the whole power in one frequency bin one has to ‘cor-
rect’ the recorded data stream for each possible source position in the sky. The problem
is much worse, if the the intrinsic frequency of the source changes, say due to spindown.
Then the power is spread over3� 106 (�=103 yrs)�1 (T=107 sec)2 (f=1 kHz) bins, where
� = f= _f is the spin-down age of the NS. Indeed, one then needs to correct also for this
effect, searching through one or more of the spin-down parameters. It is clear that searches
for CGW are limited by the available computational resources [10,11].

Due to the large computational burden, algorithms investigated so far have been re-
stricted toisolatedNS ie. NS which are at rest or in uniform motion with respect to the
barycentre, but whose GW frequency and location in the sky are unknown. This is called
the ‘all sky all frequency’ search [10]. Even here the computational costs are formidable,
typically involving1024 operations, for an intrinsically monochromatic source, where the
search carried is up to a maximum GW frequency of 1 kHz and observation time of10 7

sec. The problem of searching for a CGW emitter orbiting a companion object is simply
considered computationally intractable, since up to five more search parameters would be
required and this would compound the already enormous computational cost. In this ar-
ticle, we address the complementary problem: we assume that the direction to the source
is known, but that the source orbits a companion object. Such a situation manifests it-
self astrophysically in globular clusters in our galaxy. There are about 200 such clusters
whose directions are known. The large ones contain more than a million stars each, a
large fraction of them believed to be in binaries. Restricting ourselves to this problem does
not sacrifice generality. The general problem in which one must perform a search over
directions as well, the number of filters (independent Doppler corrections) is essentially
(ignoring correlations between parameters) the product of the number of filters obtained
here and the number of directions in the sky over which one must search.

2. Emission of GW from rotating NS

The NS must be non-axisymmetric in order that it radiates gravitationally. Several mech-
anisms have been envisaged which can give rise to non-axisymmetry in NS. These have
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been detailed in Bradyet al [11]. Here we briefly mention the mechanisms. The measure
of non-axisymmetry is denoted by� and the characterstic amplitudeh of the CGW source
is given by

h � 10�25
�

I

1045gm:cm2

��
f

1 kHz

�2 � �

10�5

�� r

10 kpc

��1
; (1)

whereI is the moment of inertia of the NS,f the GW frequency andr the distance to the
source.

The following mechanisms are envisaged:

1. Large magnetic fields:Large magnetic fields not aligned along the spin-axis can
produce asymmetry due to the magnetic pressure.� � 10�9 is possible by this type
of mechanism.

2. The Chandrasekhar–Friedman–Schutz (CFS) instability and r-modes:The CFS in-
stability can occur for fast spinning NS, where the instability is driven by gravita-
tional radiation reaction. A similar mechanism which has been recently realised,
involves the Rossby (r) - modes. These modes are again driven by the gravitational
radiation reaction which couples to the current multipole moments. Theh for these
modes can be as much as few times10�25(20 Mpc=r) [12].

3. Accretion on to NS:A far more interesting scenario is the accretion of hot material
onto the NS surface. Here the induced quadrupole moment is directly related to the
accretion rate, which can be copious. The gravitational energy reservoir, moreover,
can be continuously replenished, if continuous accretion occurs. The key idea be-
hind this scenario is that gravitational wave radiation can balance the torque due to
accretion, and was proposed over 20 years ago [13,14]. However, it has attracted
considerable new interest in the past two years and has been fully revitalized by the
launch of the Rossi X-ray timing explorer, designed for precision timing of accret-
ing NS. The observational evidence that low mass X-ray binaries (LMXBs) – binary
systems where a NS accretes material from a low mass companion – in our galaxy
are clustered around a rotation frequency� 300 Hz, led Bildsten [15] to propose
a mechanism to explain this behaviour. The fundamental idea is that continuous
emission of GW radiates away the angular momentum that is transferred to the NS
by the infalling material. The fact that the rate of angular momentum loss through
GW’s scales asf5, provides a very natural justification of the clustering of rotation
frequency of several sources. The physical process responsible for producing a net
quadrupole moment is the change of composition in the NS crust, which in turn
is produced by the temperature gradient caused by the infalling hot material. Re-
cently, Ushomirskyet al [16] have posed this initial idea on more solid theoretical
grounds. If such mechanism does operate, LMXBs are extremely interesting can-
didate sources for Earth-based detectors. Several systems would be detectable by
LIGO operating in the ‘enhanced’ configuration (LIGO II), if the detector sensitivity
is tuned, through narrow-banding, around the emission frequency. In particular, Sco
X-1, the most luminous X-ray source in the sky, possibly is marginally detectable
by ‘initial’ LIGO and GEO600 (the latter in narrow-band configuration), where an
integration time of approximately 2 years would be required. The characteristic am-
plitude for this source is
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he� ' 4� 10�27
�

RNS

106 cm

�3=4 �
mNS

1:4M�

��1=4

�
�

FX
10�8 erg cm�2 sec�1

��1=2
; (2)

whereRNS is the typical radius of a neutron star andFX is the X-ray flux.

3. The signal

For a typical CGW source the signal at the detector is essentially sinusoidal. The frequency
can change slightly (i) intrinsically by spindown, and/or (ii) Doppler modulation because of
the relative motion between the source and the detector. Consider for simplicity a source
that is monochromatic in its own rest frame where the changes in intrinsic frequency of
the source have been ignored. This problem is sufficiently numerically intensive that any
insight gained will be a significant step. Since the observation lasts for a long time�
a year, the Earth partakes of several motions – rotational, orbital motion about the sun,
motion about the moon etc. – the detector being carried with it. Moreover, during the
observation time, the source too can change position while orbiting a companion. If the
centre of mass (CM) of the binary system is at rest or moves with constant velocity with
respect to the barycentre, the phase� of the signal has the form

�(t) = 2�f0t+ �D(t); (3)

where

�D(t) = 2�f0

�
(��rd(t) + ��rs(t)) :

n̂(�; �)

c

�
: (4)

�D(t) is the Doppler phase correction which comprises of two terms��rd(t) and��rs(t)
representing the displacements of the detector and source at timet respectively.n̂(�; �)
is the unit vector pointing from the barycentre to the CM of the binary,f 0 is the constant
frequency of the source in the barycentric frame, if the source is held at rest in the CM
frame of the binary andc ' 2:9979 � 1010 cm/sec is the speed of light. From (3) we
observe that, the total phase is the sum of the intrinsic phase2�f0t and the Doppler phase
contribution�D(t). Both��rd(t) and��rs(t), in general, can involve complex accelerated
motions making the problem of data analysis highly nontrivial. It therefore becomes pru-
dent to divide the problem into relatively simpler special cases, and treat each such case
individually.

The signal gravitational strain amplitudeh(t) is given by

h(t) = <[A exp(�i�(t) + i	)]; (5)

where�(t) is given by eq. (3). The polarization amplitudeA, and the polarization phase
	 are slowly varying time-dependent functions over the time-scale of the day and depend
on the relative orientations of the source and the detector. In agreement with all the inves-
tigations carried out so far, we assume them constant in our analysis. It is expected that
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these factors can be easily included in the full analysis and will not significantly affect the
computational burden [11].

If we set��rs(t) = 0, we obtain the case of theisolatedNS, which has been dealt with
extensively in the literature [10,11,17]. The signal is monochromatic in the barycentric
frame, but in the detector frame the signal gets phase modulated as the detector is carried
along with the Earth which moves with respect to the barycentre. Since��r d(t) is known,
the phase modulation profile depends only on the directionn̂ to the source, as also the
Doppler correction that one must apply. If we can tolerate a SNR loss of say30%, the
correction ‘works’ for a tiny patch in the sky. This criterion leads to a search of about10 13

directions [10] for detecting a kHz GW in a observation time of10 7 sec. The detector in
the meanwhile has traversed the orbit of the Earth. This number is basically the square of
the size of the Earth’s orbit divided by the minimum wavelength of the gravitational wave
that one is interested in detecting. The number of floating point operations that one must
perform, even after employing the FFT algorithm, gives the colossal figure of about10 24!
As mentioned before the data analysis is then limited by the computing power available.
Hierarchical methods are being explored [17,18] in which coherent and incoherent stages
are alternated in order to identify cheaply candidates with a suboptimal algorithm. The
candidates are then followed up with a coherent but computationally intensive search.

The second special case arises when the direction to the source is taken to be known.
Then the motion of the detector can be subtracted out and one has to deal only with the
motion of the source (described by the term��rs(t)). The source motion is described by
the model of the orbit that we assume. For a circular orbit the Doppler phase depends on
3 parameters, while for a Keplerian elliptical orbit the phase depends on 5 parameters. In
this article this case will be described in detail inx5.

The third special case is of a NS whose direction and orbit are known. Radio pulsars
fall into this category. 706 pulsars are listed in the Princeton catalogue [19]. But they
must satisfy the condition that their GW frequency (taken to be twice the electromagnetic
frequency) falls within the bandwidth of the detector. Secondly, from the spindown one
can compute the upper bound on the amplitudeh, by attributing all the spin down to grav-
itational radiation. For most pulsars this yields low amplitudesh <� 10�26; 10�27. For the
pulsar PSR 437-4715 which is the nearest millisecond pulsar detailed analyses have been
performed [20,21]. For some of the known pulsars few or all of the parameters are known
within given error bars. Then the search must be launched only within these parameter
ranges, which brings down the computational cost of the search dramatically.

However, pulsar statistics [22] predicts about 200,000 pulsars in our galaxy. Also it is
estimated that there could be� 108 NS in our galaxy. Since less than a percent of the
pulsars have been observed so far, it is clear that a GW search for unknown NS is highly
recommended.

4. The differential geometric formalism for data analysis

In order to accumulate the signal-to-noise (SNR) efficiently it is desirable to track the
phase of the signal as accurately as possible during the entire observation time. This is
referred to as coherent integration of the signal, where the SNR grows asT 1=2. This is
in contrast with incoherent methods, where one disregards the phase information, and the
SNR does not accumulate as quickly. Coherently integrating the signal implies that one
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must faithfully follow the phase of the signal sufficiently accurately, that is, well within
one cycle, perhaps something like a fraction of a radian. If one exactly know the phase of
the signal, then this can be easily achieved. However, the problem becomes enormously
demanding, if the phase is known only as a function of parameters, where the parameters
are constrained to lie within some given range. Since in general the signal may contain a
large number of cycles – a kHz signal lasting for107 seconds has1010 cycles – there exist
a large number of ways in which the phases could mismatch for different values of the
parameters. More precisely if the correlation integral between two signals with different
phase developments reduces below some acceptable value, then we call the two phase
developments as different.

The above remarks can be elegantly described in a geometrical framework. In the ge-
ometrical picture [23,24], the signal is a vector in the vector space of data trains and the
N -parameter family of signals traces out anN -dimensional manifold which is termed as
thesignal manifold. The parameters themselves are coordinates on this manifold, which
we denote by theN -dimensional parameter vector�. One can introduce a metric
 jk on
the signal manifold which is related to the fractional loss in the signal to noise ratio when
there is a mismatch of parameters between the signal and the filter. The spacing of the grid
of filters is decided by the fractional loss due to the imperfect match that can be tolerated.
Given the parameter space that one needs to scan, it is then easy to estimate the total num-
ber of filters required to carry out the search for the signal. Inx4, we first briefly review the
method introduced by Bradyet al [11] which in turn was based on Owen’s [25] method for
searching for GW signals from in-spiralling compact binaries. We present here a rigourous
approach based on differential geometric methods.

4.1 Number of filters

In this approach, the idea is to first correct for the Doppler effect in the phase for each of
the grid points of the parameter space and then compute the power spectrum. The power
spectrum is obtained efficiently via the FFT algorithm. Even if we know the frequency of
the pulsar, it is desirable to search over frequencies over a band of a percent of the pulsar
frequency [26]. We therefore have a large number of frequency bins to search over and
the FFT algorithm is computationally advantageous. If the Doppler correction is right, that
is, if the signal and filter parameters match perfectly, then the signal is all concentrated at
f = f0 in the power spectrum. The grid spacing is decided by the amount the maximum
of the power spectrum falls when the parameters of the signal and filter mismatch. The
mismatch� is defined as the fractional reduction in the maximum of the power spectrum
when the parameters mismatch. Fixing the mismatch�, fixes the grid spacing of the filters
in the parameter space which we will denote byP . The number density of filters (the
number of filters per unit proper volume – proper volume defined through the metric) in
P depends on�, and is denoted by�N (�), whereN is the dimension ofP . For a hyper-
rectangular mesh, we have

�N(�) =

�
2

r
�

N

��N
: (6)

The proper volume ofP , can be easily computed from the metric
 jk onP [11]
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VP =

Z
P

d�
q
det jj
jk jj : (7)

The number of filtersN is then just the proper volume eq. (7), times the filter density eq.
(6):

N = �N(�)VP : (8)

For the Keplerian elliptical orbit we haveN = 5, while for the circular case the dimension
of P reduces toN = 3. For a mismatch� = 0:03, �3(�) is 125 and�5(�) � 104.

4.2 The general form of the metric

If the signal parameters are(f0;�) denoted together by� and the filter parameters are
�+��, the power spectrumP (f) for an observation timeT is given by

P (f ; f0;�;��) =
A2

T

�����
Z T

0

dt exp[i�(t;�;��)]

�����
2

; (9)

where

�(t;�;��) = 2�(f � f0)t+ �D(t; f0;�+��)� �D(t; f0;�) : (10)

The mismatch is both in� as well as inf (this can occur because of sampling at the wrong
frequency) and is denoted bym(�;��)

m(�;��) � 1� P (f ; f0;�;��)

P (f0; f0;�; �0)
;

' g��(�)������ + o(��3) : (11)

From eqs (9) and (11) the metricg�� can be computed by Taylor expansion. It is given by

g�� = h����i � h��ih��i; (12)

where the suffix, say�, denotes derivative with respect to��� and the angular brackets
denote time averages defined as follows: For a functionX(t) defined on the data train
[0; T ], the time average ofX is

hXi = 1

T

Z T

0

dtX(t) : (13)

We remark thatg�� is not the metric which is used to calculate the proper volume, because
it still includesf . We need to maximize overf , which is tantamount to projectingg�� or-
thogonal to the�f direction. Thus the metric on the submanifold of the search parameters
� is


ij = gij �
g0ig0j
g00

: (14)

Here the index0 identifies the parameter corresponding to the frequencyf . If fmax is the
highest GW frequency that we are searching for, then we must putf 0 = fmax in the above
expression for
ij . The proper volume of the signal and the total number of templates can
be easily derived by inserting eqs (14) and (6), into eqs (7) and (8), respectively.
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5. CGW source orbiting a companion

We investigate in this section the problem of a CGW source orbiting a companion star.
The discussion here is largely based on the detailed work by Dhurandhar and Vecchio
[27]. We apply the data analysis formalism described in the previous section to obtain the
computational costs for Keplerian elliptical orbits, treating circular orbits as an important
special case. We finally also discuss targetted searches for the X-ray source Sco X-1 and
the 44 known radio pulsars in binaries listed in [19].

5.1 The signal phase

Here we first compute the Doppler phase modulation due to the motion of the source. To
this end, orient the Cartesian coordinate system(�; �; �) attached to the binary source, so
that: (i) rs(t) lies in the(�; �) plane with the origin at the centre of the ellipse, (ii) the
semi-major axis of the ellipse coincides with the�-axis, and (iii) the�-axis points in the
direction of the orbital angular momentum. We specify the direction to the detector by the
unit vector (note thiŝn has opposite direction to the one in eq. (4)):

n̂ = (sin � cos ) �̂ + (sin � sin ) �̂ + (cos �) �̂ ; (15)

where� and are the usual polar angles.
The orbit in the(�; �) plane is given as follows: Leta be thesemi-major axesof the

elliptical orbit ande theeccentricity, then, the orbit is described by the equations

�(t) = a cosE(t);

�(t) = a
p
1� e2 sinE(t); (16)

whereE(t) is the so-calledeccentric anomaly; it is related to themean angular velocity!
by the Kepler equation

E(t)� e sinE(t) = !t+ �; (17)

where� is an initial phase,0 � � < 2�. When!t+ � = 0 we haveE = 0 and the mass
is closest to the focus� = ae; � = 0. These equations describe the orbit in the(�; �)-plane
as function of time, that is determined by the four orbital elementsa; !; �; e. However, the
orbit in space requires two additional parameters, namely, the angles� and . Thus in all
we have six orbital elements which specify the orbit in space.

The Doppler phase correction is obtained from eq. (4). We assume that we have cor-
rected for Earth’s motion, so that it is only the second term in eq. (4) that we must consider,

�D(t) = �2�f0a sin �

c

h
cos cosE(t) + sin 

p
1� e2 sinE(t)

i
: (18)

The t here can be regarded as the barycentric time. The parameters over which one must
launch a search are not exactly the orbital elements, and need not be of the same number.
It is the Doppler phase correction that is observed and so the information about the system
that we can glean depends on the combination of the orbital elements that enter into it. The
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a and� combine into a single parametera sin � � ap, the projected semi-major axis along
the line of sight, which is actually the quantity inferred from astrophysical observations.
The other search parameters are the remaining orbital elements!; �; e and . So in the
general case, when we do not know any of the parameters exactly, we have a5-dimensional
parameter spaceto search.

We note thatf0 is not a search parameter because of the special search technique that
is employed [11]: it involves ‘stretching’ the time coordinate in such a way, so as to make
the signal appear monochromatic in this time coordinate. One then simply takes the FFT
to compute the power spectrum, which now is concentrated in a single frequency bin. It is
convenient for the purposes of computation to express the phase�(t), eq. (10), in terms of
dimensionless parameters. We write

� = (2�f0T ) ~�; (19)

where

~� = �u+X cosE + Y
p
1� e2 sinE ; (20)

and the dimensionless parameters are given byu = t=T , � = (f � f0)=f0, X =
�a sin � cos =cT , Y = �a sin � sin =cT and
 = !T . Hereu is a dimensionless time
satisfying0 � u � 1. So now the new set of parameters is� = (� ;X ; Y ; e ;
 ; �) and
� = (X ;Y ; e ;
 ; �).

The exact expression for the determinant is quite complicated. There are two relevant
regimes: (i)
 � 1 and (ii)
 � 1 in which one obtains simple enough expressions and
which are useful over most of the astrophysically interesting range of parameters.

5.2 The circular orbit case

The circular case is important both from the pedagogical and physical point of view: (a) it
provides us several insights into the problem via a comparatively easier computation; (b) in
targetted searches, several known NS in binary systems, including Sco X-1, are essentially
in a circular orbit; (c) for blind searches, present and near future processing power is likely
to allow us to search over a reasonable parameter space mainly for emitters orbiting a
companion withe = 0.

For circular orbits, the expression of the phase (20) simplifies considerably. We have
e = 0 and and� combine additively into a single parameter which we redefine again as
� for the sake of simplicity; in effect we put = 0. ThenX is just the projected radius of
the orbit which we denote byA. We therefore have just 3 search parameters for which a
discrete mesh of filters is required:� = (� ;A ;
 ; �) and� = (A ;
 ; �). The phase (20)
is rewritten as

~� = �u+A cos(
u+ �) : (21)

The scaled metric~g�� is now a4� 4 matrix, and we compute it from eqs (12) and (21).
The exact analytical expression of~VP =

p
det jj~
jk jj is very complex and not illumi-

nating. However, as discussed in the previous section, it is possible to computedet jj~
 jk jj
in a closed form in the two relevant regimes: (i)
 � 1, the limit of several orbits during
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the observation timeT , and (ii)
� 1, the limit of monitoring fraction of an orbit. In the
limit 
� 1, the proper volume element in scaled coordinates is:

q
det jj~
ij jj =

A2

p
96

+ o(
�1; A3) : (22)

From numerical computations it is found that even for
 >� 10, which corresponds to about
2 orbits completed during an observation timeT , the above expression gives reasonably
accurate results. The approximation improves further with large
.

The (unscaled) proper volume is given by (we have multiplied by the appropriate power
of 2�fmaxT )

VP =
�

6
p
6

�
2�fmax

c

�3

[a3p;max � a3p;min](!max � !min)T ; (23)

where the subscripts ‘max’ and ‘min’ specify the maximum and minimum respectively, of
the ranges of the parameters. Notice that the factor2�fmax=c is the maximum wavenumber
of the gravitational wave that we want to detect. The main point in eq. (23) is to observe
how the volume scales. The number of filters increases linearly in the observation timeT ,
so hierarchical searches based onT will not work effectively (compare this to the case of
the all sky all frequency search for isolated pulsars where the patches scale asT 5). The
volume is proportional to the cube of the size of the projected orbit along the line of sight
ap. So knowing this parameter will greatly reduce the computational load.

In the opposite limit of
� 1, we obtain the following volume element

p
det jj
ikjj =

j cos�j
3628800

p
35
A2
8 + o(
9; A3): (24)

Figure 1 shows the square root of the determinant of the metric computed numerically. It
is seen that in the two regimes, the relevant approximations are quite accurate. Moreover,
there is only a small range of
 around 1 radian, where the approximations are not so
accurate.

By integrating eq. (24) over the parameter range and following steps similar to the pre-
vious case, we obtain the volume:

VP =
1

24494400
p
35

�
2�fmax

c

�3

[a3p;max � a3p;min]

� �(!maxT )
9 � (!minT )

9
�
: (25)

Following the same scheme as in the previous section, we can obtain the total volume of
the parameter space, when no prior information about the source parameters is available:

VP ' 0:6

�
fmax

1 kHz

�3 � ap;max

1011 cm

�3 � !max

10�4 rad=sec

�9 �
T

1 hr

�9

' 3:4� 104
�
fmax

1 kHz

�3 � ap;max

1013 cm

�3 � !max

10�7 rad=sec

�9 �
T

1month

�9

: (26)
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Figure 1. The plot shows the proper volume element
p

det jj
jkjj, in arbitrary units,
as a function of the dimensionless orbital frequency parameter
 � !T for circular
and elliptical orbits. Note that the normalizations for the two cases are different; they
are chosen such that the values of

p
det jj
jkjj are comparable. The numerical results

are shown with a solid line, while the asymptotic analytical expressions for
� 1 and

 � 1 are shown with dotted-dashed lines. Notice that for
 � 20 the asymptotic
expansion is indistinguishable from the full expression. In the opposite limit,
 � 1,
we observe that

p
det jj
jkjj / 


8 for the circular orbit and/ 

19 for the elliptical

orbit.

5.3 The elliptical orbit (e > 0)

We take the expansion of the eccentric anomalyE up to 7th order ine, which means we
consider 7 harmonics in!. The volume that we obtain is also correct up to this order ine.
Since now there are two more parameters, the problem is more complex than in the circular
case and it is impossible to obtain a closed form expression of the determinant. We present
here an approximate expression of the volume element, and therefore the number of filters,
in the asymptotic limit
� 1.

In the coordinatesA; ; e;
; � the volume element is

q
det jj~
jkjj =

A4

32
p
6

�
e� 3

4
e3 � 41

256
e5 +

cos 2 

32
(4e3 � e5)� cos 4 

256
e5
�
:

(27)
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Comparing the former expression with the numerical evaluation of the full determinant
it turns out that eq. (27) is accurate within a few per cent even if the number of orbits
completed during the timeT is just about 2 or 3.

In order to obtain the proper volume of the parameter space, we integrate eq. (27) over
the parameter range and multiply by an appropriate power of the scaling factor

VP =
�2

160
p
6

�
2�fmax

c

�5

[a5p;max � a5p;min] (!max � !min)T F (emax); (28)

where

F (e) = e2
�
1� 3

8
e2 � 41

768
e4
�
: (29)

We expect that eq. (29) will be correct up toe � 0:8. We also checked how well the
leading order terme2 approximatesF (e), and we found that up toe = 0:5 ande = 0:8 (as
reference values), they agree within' 10% and' 35%, respectively.

For blind searches, the volume of the parameter space is

V
(e)

P
' 2:5� 1023

�
fmax

1 kHz

�5 � ap;max

1011 cm

�5 � !max

10�3 rad=sec

� �
T

107 sec

�

�
��max

2�

� � max

2�

� �emax

0:5

�2
; (30)

where, for the sake of simplicity, we have retained only the leading order term ine, in
eqs (28) and (29), and have considered the same typical values for parameter ranges as in
the circular case. The total number of filters now is

N ' 1:1� 1027

 
V
(e)

P

1023

! �
�5(�)

1:12� 104

�
: (31)

It is clear that in this case we will need some information about the system to reduce the
computational costs. Clearly the steep dependence onap to the power5 means that we
could cut down the computational costs substantially, if we had a good estimate of this
parameter. Also there is steep dependence on the maximum frequency of the GW we want
to detect. If we reduce our expectations by a factor half in thefmax, the computing cost
comes down by as much as a factor of� 30. These are the crucial parameters which govern
the computational costs.N still scales linearly with!T . For sufficiently small values of
the eccentricity, it scales quadratically withe.

5.4 Computational costs for targetted searches

In this section we investigate the computational costs involved in searching for the X-ray
source Sco X-1 and the 44 radio pulsars in binaries listed in [19]. Some of the parameters
are known within error bars from X-ray and radio observations. One then integrates the
volume element within the given error bars to obtain the volume and the computational
cost. If the error bars are very narrow, within inter-filter distance, boundary effects are
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crucial in computing the costs and must be incorporated into the calculation. The problem
of boundary effects is quite involved, which we do not discuss here, but refer to our detailed
paper [27]. The costs mentioned here include the boundary effects.

Sco X-1 is at a distance of 2.8�0:3 kpc and the system is essentially in a circular orbit
with periodP = 0:787313 (1) days and radial velocityvr = 58:2 (3:0) km/sec. The phase
of the orbit is known within�0:1 radians and the maximal frequency is approximately
fmax � 600 Hz [15]. These observations in our variables give,aproj = Pvr=2� '
6:3� 105 km and! ' 9:2� 10�5 rad/sec. Integrating within the error bars we obtain the
number of filters as

Nf ' 2:5� 106
�
fmax

600Hz

�3 �
T

105 sec

� �
�3(�)

125

�
: (32)

Sco X-1 could be marginally detectable by the first generation of instruments for coherent
integration times of a few years (here we consider the fiducial timeT = 10 7 sec) [9,15].
We can enquire about the accuracy with which we must know the orbital parameters so
as only a single Doppler correction is necessary. It turns out that one needs to know all
the parameters within one part in106 for this purpose. For the enhanced configuration
of detectors only a few days of coherent integration is necessary [9] and the requirements
become one order of magnitude less stringent.

The computational costs for the 44 radio pulsars are as follows: The number of filters
required for an observation time of 1 year and with a mismatch at3% is computed. Out
of the 44 pulsars, 7 emit at GW frequencies (taken to be twice the radio frequency) less
than 10 Hz and thus lie outside the detector bandwidth. Out of the remaining 37 pulsars,
23 need less than 10 filters, 6 need between 10 and103 filters, 6 need between103 and108

filters and 2 need more than108 filters.

6. Conclusions

In this article, the data analysis problem for CGW sources has been discussed with special
emphasis on the problem of a CGW source orbiting a companion. It is found that the
computational cost for a ‘blind’ search can be prohibitive and the data analysis is therefore
restricted by the available computing power. Targetted searches however are possible if
sufficient information is available about the source. Here we have not considered intrinsic
changes in frequency of the source, such as, spin down. These effects need to be included
in a future programme. One expects the cost to increase enormously, as in the search for
isolated NS [11]. In order to deal with this enormous computational burden alternative
data analysis strategies need to be devised. Hierarchical search is one such strategy. Such
strategies are being designed for the isolated NS [17,18]. One needs to design similar
strategies for the CGW source in a binary. This problem will be addressed in future.

Perhaps a radically new approach to the problem is called for. One alternative could be
to develop a transform which quickly processes the data by applying the necessary Doppler
(and other corrections) in relatively less number of operations. The problem is analogous
to the FFT. The FFT ‘works’ because there is the cyclic group of roots of unity at the basis
of the algorithm. For the isolated NS whose direction is unknown, the rotation group is the
relevant one. Developing a transform using the symmetries of the group could well turn
out to be a worthwhile approach to consider.
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