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Tachyon emission from white-holes
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Abstract. Investigations are made about the motion of a radially outward propa-
gating tachyon which is created in the singularity with the white-hole. The problem
of confinement or escape of such a tachyon from a white-hole is discussed. It is
shown that the confinement or escape of the tachyon depends on the maximum
radius of the white-hole and also on a parameter k (defined in the text) associated
with the momentum of the tachyon. Also it is shown that when a tachyon escapes
it always escapes before the white-hole has expanded to half its Schwarzschild
radius.
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1. Introduction

Recently considerable amount of research has been directed towards the involve-
ment of tachyons in astrophysical and cosmological phenomena (Narlikar and
Sudarshan 1976, Narlikar and Dhurandhar 1976, Davies 1975, Raychaudhari
1974, Honig etal 1975). Experimentally the attempts to produce or detect,
tachyons have till now yielded null results. But as far as production is concerned
one may look to high-energy astrophysics where phenomena arc found to take
placc on a much grander scale, than can ever be achieved in terrestrial settings.
One such large-scale phenomenon is the big-bang. Narlikar and Sudharshan
(1976) have already discussed the behaviour of a primordial tachyon in the big-
bang universe, whose sole interaction with the sunounding matter was gravita-
tion. Such tachyons are shown to encounter a time-barrier, and the epoch of
the time-baiiier depends on the initial eneigy of the tachyon and also on the
Friedmann model considered.

In this paper the propagation of a tachyon inside a white-hole is discussed.
The geometry inside a homogeneous dust type of white-hole is the same as that
of a big-bang Friedmann model. So to some extent we expect the situation to be
similar to the above-mentioned problem discussed by Narlikar and Sudarshan
(1976). 'There is, however, one cssential difference. Here, we are also concerned
with the problem of confinement or the escape of a tachyon from a white-hole.
Such a problem did not arise, when a tachyon in the expanding universe was
considered, |
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The role of white-holes in high energy astrophysics has been discussed by
Narlikar and Apparao (1975). Exploding galactic nuclei, transient x-rays, gamma-
ray bursts arc some of the examples of likely white-hole plenomena. Tllf:x'e
have also been arguments (Eardley 1974, Zeldovich et a/ 1973) to show that whfte-
holes cannot exist for a long enough time to be physically relevant. These objec-

tions have been successfully countered by Lake and Roeder (1976).

We will not
enter

here into the discussion of these arguments or of the other implications of
white-holes for astrophysics. There is alrcady sufficient observational evidence
_for exploding objects in astrophysics (Hoyle 1975), apart {rom the varying degrees

of faith among different astronomers, for the big-bang origin of the universe.

The model of the white-hole considered here may be regaided as a simplified
version of such exploding phenomena. ’

2, Geometry in the interior of a white-hole

We shall consider the homogeneous dust model of a white-hole, that is, a spherical
object "with uniform density and zcro pressure. The object cmerges from a
singular state and subsequently obeys FEinstein’s field equations

R — % Rgue = — 8w T M
We have chosen units in which C =1, ¢ = 1. We shall consider the white-hole
in the co-moving frame of reference of outward moving particles.

In this frame
the interior of the white-hole has the line-element,

ds® = dt* — S2 (t) [1 :‘2';72 + 12 (db* 4 sin% 0 d¢‘~’)] , r g (2)

where (r, 8, ) are the constant co-ordinates of a co-moving paiticle and ¢ the
proper time of a co-moving observer.

r =ry 18 the coordinzte of a particle on
the boundary of the white-hole. S (1) is the cxpansion fuctor .nd it satisfies the
differential equation

dSy* _a(l—5)
dt) h

3
S (A )
whcre,
' __2m __ 8mp,
@G == ~——-r‘3 - 3
m = — 73
= 3 fofp

po is the lowest density attained by the white-hole when the cxpansion factor
§=1. mis the mass of the white-hole. Tt may be remarked that the line
element (2) resembles the big-bang Friedmann

i _ ) line-elemcnts for ihe closed universe.
Outside the white-hole the metric is Schwarzschild. The radial Schwarzschild
co-ordinate is rS(r), inside the white-hole.

3. Tachyon propagation

VYc assume the tachyo‘n to be created when the white-hole is in the singular state
given by 5 =0 and its motion being directed radj

ally outward. The tachyon
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interacts with the surrounding matter of the white-hole through the relativistic
law of gravitation, but is otherwise free from any other interaction.

Under the above assumptions the tachyon motion is along a space-like geodesic
starting at =0 and ¢ = 0. Initially the tachyon momentum is radial, directed
along ( ==0 ¢ =d,, say. The integration of the 0, ¢ geodesic equations lead
to the result, that the tachyon motion continues to be radial and given by 0 =@,
95 = Sbo-

For a tachyon trajectory we have ds® < 0, so that ds is imaginary. We
define a real affine parameter o by the relation,

do? = — ds®, - (4)
For a radially moving tachyon we have, '

2 .2
o %) dr g )

do [
The geodesic equations corresponding to the radial motion given by (3), when
integrated, result in the relation,
L8
/{1 —ar?) d
where £ is a real constant. Using (5) and (6) we get,
an: k*— S
o) == @
The interpretation of the constant & may be sought by considering the 3-velocity
of the tachyon in the rest-frame of an outward moving particle of the white-hole,
which coincides instantaneously with the tachyon at (r, #). This velocity v (¢) is
given by '

= k (a constant) (6)

__S@ _ a

YO =TT —w® @ @)
Using (6), {7} and (8) we get,

S |

F=Tmm—1" ©)
The momentum per unit meta-mass of the tachyon may be defined by the relation

' _ v(t)

PO =T =) | (10)
From (9) and (10),

Ek=S(@P() (11)

(11) clearly gives the physical interpretation of the constant k.

4, Tachyon trajectorics

It is convenient to investigate the radiel trajectory of a tachyon in {erms of the
expansion factor S instead of 7. Defining a parameter 7 by S = sin? 5 and
‘then integrating (3) we get,

1 . ; :
t= — (p—cosysiny). : (12)

v @
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In the expansion phase of the white-hole, as S increases from 0 to 1,7 ranges from
0 to m/2. 1In this range of », it is seen that S is a monotonic function of t, so that
our choice of S instead of ¢ as the independent variable is not unjustified. (3),
(6) and (7) give the differential equation of the trajectory in terms of r and § as,

dS)2 _aS(k*—8)(1—8)

dr k2 (1 — ar?) (1)
+ Aa dr kdS '
VI —ar®) VSO —25) (kK — 89" (14)
It is conveﬂient to define a new variable R by the relation, ‘
R =sint/a . (15)

The values over which R ranges are determinea by the values over which r ranges.
Since 0<r<ry,, we have 0 < R £ R, where,

R, =sin Va 1y (16)
In view of a =2m/r;?, (16) becomes
R, = sin™! 2 (17)
rb ’

We shall consider only those white-holes for which r, > 2m, that is, those white-
holes whose boundary crosses their Schwarzschild radius. (17) immediately
implies that R, < =f2. Henceforth we shall consider R, = «/2 as the upper limit
of the permitted range of R,.

It can be remarked here that in (13), r is the co-moving radgial coordinate of
the tachyon, and hence the equation is valid physically only when the tachyon
is inside the white-hole. In the region exterior to the white-hole, the geometry
is different and consequently the tachyon would obey a different equation. It
is meaningful to consider (13) as describing the trajectory of the tachyon only for
r < ry. The condition r < r,, in our newly defined cocrdinate is equivalent to
R < Ry. Equation (14) with tiae help of (15) becomes,

dRY k -
+ (G T VBT =8 E -8 (18)

Solving (18) we shall have R as a function of S§. Initially, when the white-hole
is in its singular state S =0, we shall have R = 0. With the aid of (18} and the
above initial condition, we can plot the trajectory of the tachyon in the R-S$
plane. However, since the maximum value attained by R, is »/2 and R < R,, we
shall consider only the part of the plane described by 0 < R < =/2.

5. Equations of frajectories

For a physically acceptable solution one would require dR/dS in (18) to be non-
negative in the neighbourhood of R= 0, § = 0. Since we have the choice of sign
in (18) we can choose the positive sign and hence restrict k to non-negative values.

We note that dS/dR = 0 at § =0 and at S =k (the other roots of dS[dR are
irrelevant) and ‘
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d* S
_d—R_e‘ —%’ E'Fs:k:_u_l—k).

The trajectory reaches a maximum at S =4k, when R = R, say. In the inte-
gration of (18) two cases arise according as

1. k<1
2. k=1
For R<R,

Reh={ Ak k31 @

where,

. . kdS
K50 = f VISA=5) (& = 5]

0<S<k

S

kdS

f:_;(S, k)= \/[S(l =5) (k2 — 59)]

0581

filk k), k<1
R, {f(lk) k>1 (20)

For R = R,,

. 2R,, — 1, (S, k), k<1
RED=1 3" Zhs s, ko @n

(19) and (21) comprise the equations of the trajectory. A typical trajectory is
shown in figure 1, corresponding to £ = 0- 086.

(19) and (21) show that dS/dR > 0 for R < R,, and dS/dR < 0 for R > R,.
Sincé S is a monotonic function of time, the trajectory of R < R, represents a
tachyon moving forward in time, while for R > R,,, the tachyon moves backward
in time, which may be interpreted as an antitachyon moving foiward in time
(see Sudarshan 1970). Both the tachyon and the antitachyon anrhilate each otker
at R = R,

One may remark at this stage that the trajectory is mathematically defined for
0<R<2R,. Butif R, <2R,, then the physically relevant portion of thé
trajectory would be that for which its R-coordinate is less than or equal to R,

6. Main problem

We ask the following question: Under what circumstances does the tachyon

.escape from the white-hole ? The question is equivalent to the choice betwéen
the two conditions:

() 2R; < R, (b) 2R, > R,
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Figure 1. Tachyon trajectories with various values of k£ are shown. In particular
the trajectories with k= k,= 0:-306 and k= k,= 0086 are also shown.

In case (a) the trajectory of the tachyon does not cross the boundary coordinate
R = R, which implies that the tachyon is confined to the white-hole. Case (b)
represents the trajectory of a tachyon, which crosses the boundary coordinate

R = R,, which means that the tachyon escapes. The two situations are shown in
figure 2.

In case (b) when the tachyon escapes two cases arise according as,
(1) R,, < Ry < 2R,
(ii) Rb < -Rm'
The two cases are shown in figure 3.
In case (i) the trajectory bends back in time near R = R,, so that one can inter-
pret this situation as the anuihilation of the tachyon and the antitachyon taking

place inside the white-hole, with the antitachyon originating outside the white-
hole. Or, one can say that the tachyon escapes from the white-hole, while moving
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backward in time. In case (i) the tachyon always moves forward in til.nc for
R < Ry, reaches R = R, and then escapes. There is no annihilation in this case.

From the foregoing one can make the following statements:

() If R, > =/4, then the tachyon surely escapes either going back in time or
going forward in time.

(i) If R,, > =/2, the tachyon surely escapes moving forward in time.
(i) If R, > R,, > =/4, the tachyon surely escapes moving forward in time.

In the light of the above statements it is necessary to investigate the behaviour

of R, as a function of £, (20) gives the required relations in terms of elliptic
functions. For k < 1,

k

Ra(k)= [ \/[S(I&_'CS%LS-E)} = V2 F (\/ E;E 3)

Q

22

Fer k> 1,

; Tk 3
=6 Jsmse—s e F Wike )
0 (23)

The plot of R, (k) vs. kis shown in figure 4. As k increases from O to 1, Ry (K)
increases monotonically from 0 to oo; further increase in k makes R, decrease
monotonically from oo until it asymptotically tends to 7.

In view of statement (i) the case for k > 1 becomes exceedingly simple, because
then R, > 7 > #/2 and the tachyon suarely escapes moving fcrwaid in time, what-
ever b€ the value of R, for the white-hole. 'The case of interest arises when k < 1.

1 1
05 10 15 20

Figure 4. Curve showing the dependence of R,, on k. For large values of %, R,, (k)
asymptotically tends to =.

m———— A
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When 0<C k<< 1, R, (k)is monotonic increasing; we can use this fact to translate
the three statements pertaining to R ,,, into equivalent statcments regarding k. Define
ky and k, by,

R, (kl) = 77'/4 ]

Ry, (k:l) = 77'/ 2 j (24)
and k, by,
R, (k) =R, (25

Now we can replace #/4, 7/2, R,, R,, by k,, ks, ky, k respectively in statements: (i)
(ii) and (iii) and obtain equivalent statements.
From (22) it is possible to evaluate k, and ko,

ky = 0-086
ky= 0-306.
We can get an upper-bound on A, using the fact that R, << «/2
ky < ko
that is,
ky, < 0-306.
If a tachyon has k£ > k,, the tachyon escapes moving forward in time. We shall

list in table 1 a few values of &, corresponding to various values of R,,.

7. Epoch of escape of a tachyon

The next problemx of concern to us is summarised by the following question:
Assuming that a tachyon does cscape, when does it escapc? In what state of
expansion of the white-hole does the tachyon escape? The problem is to find
the point of intersection of the tachyon trajectory R = R (S, k) and the line R = R,
and to observe how this intersection point behaves for different k’s or R,’s. The
S-coordinate of this point of interscction will determine the phase of expan:ion
of the white-hole, when the tachyon escapes. To this end, we first propose to

Table 1.

Sl. WNo. (@--RB) 8 cosect Ry
2m

ki3

1. 15 14-93 0-01
2. 20° 4- 00 0-u4
3. 45° 200 0- 086
1. 60° 1.33 0-148
3. 75° 1.072 0-222
6. 90° 1-00 0-306
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find an upper-limit on this S-coordinate of the point of intersection. Only the .

portion of the trajectories for which R<C R,, will be needed. We have,

-
R(S, k) = nf Uy (F ] 0= S<min(l, K

where min (1, £) denotes the minimum of the numbers 1 and %.

Now k[ /kz —x? is a decreasing function of k for each x, hence R (S, k)
is a decreasing function of & for a fixed §. In figure 1 the {trajectories are
plotted for different k’s. As k increases the trajectories move ‘ higher up’ in the
R-S plane. Finally the trajectory for which k& — oo will have the least R for
a given S or equivalently a greatest S for a given R, when compared with otker
trajectories with finite k. So if we consider the extreme case, that is, a white~
hole with R, = /2 and a tachyon with k — oo, the tachyon will escape in the

greatest expansion phase of the white-hole, as compared with other white-holes or
with tachyons with finite k. For k — oo, we have,

lim R(S, k) = R, (S) =2sin14/5. (26)

k=»oo
From (26) we have,

Ry (S = 0°5) ==/2.

Hence in the extreme case the tachyon cscapes wken S =0"5.

On this basis, one can now make a general statement, that wlen a tachycen docs
escape, it always escapes before the white-Lole rcachies hall its ultimate lincer
size.

Incidently it may be remarked that the tachyon trajectory with A& — oo corres-
ponds to the trajectory of a photon. :

It is seen that a tachyon having R,, = R, escapes at an epoch ¢z, given by S (¢,)
= k.. From (11), it is noted that such a tachyon has P (¢,) = 1, that is, in the
frame of reference of the surface of the white-hole the tachyon has momentum
unity or zero energy. In general the momentum of escape of the tachyon at an
epoch 1, is given by (L1) to be P (t)) = k[S(t,). Since S (1)< 0'5, P (#,) — oo
as k— oo. In the particular case of R, = =/2, we have S(f,) = 0-306, and in
the limit &> 1, P (t,) ~ 2k.

Another aspect one can investigate is the radial distance at which the tachyon
escapes from the white-hole. We intend to get an upper limit on this radial
distance of escape of a tachyon.

For a given ry, the maximum radial Schwarzschild coordinate of escape ¥, S (to)
will be obtained by considering the trajectory k — oo, as is easily seen from figure 1
To this end we solve the equation R, (S) = R, for r,, that is

. . 2m
2811’1 1‘\/S0 = SIn 1 '—r-;— (2‘7)

where

So = S (o).

g}

I
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after simplification of (27) one gets,

m

Fy Sozm . (28)

Since S, is the epoch of escape, Sy < 0-5, (27) immediately gives the relation,
ry So < m. ' ‘(29)

Hence if a tachyon escapes, it always escapes before the white-hole has expanded

to half its Schwarzschild radius.
In the limit r, ~> oo, and k sufficiently large, we shall have from (28), S¢— 0 :

in which case, R (S, k) ~ 2sin"14/S. One can apply eo. (28) in this case, which

in the limit S,— 0 yields,

ry So= mf2. (30) ‘ |

Hence it is seen that the tachyon always escapes, when the white-hole is entirely
inside the Schwarzschild radius. After the escape of a tachyon its motion is
governed by Schwarzschild geometry. Such a motion has already been discussed
by Narlikar and Dhurandhar (1976). \

8. Conclusion

From the foregoing one can conclude that not all tachyons escape from white-
holes; some are confined, but generally the energetic ones escape. Hence one o
may look for tachyons which have velocities near the speed of light. - -
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