
PRAMANA c© Indian Academy of Sciences Vol. 73, No. 3
— journal of September 2009

physics pp. 471–483

The structure of states and maps in quantum theory

SUDHAVATHANI SIMON1, S P RAJAGOPALAN2 and R SIMON3,∗
1Department of Computer Science, Women’s Christian College, Chennai 600 006, India
2Mohamed Sathak A.J. College of Engineering, Old Mahabalipuram Road,
Egattur 603 103, India
3The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113, India
∗Corresponding author. E-mail: simon@imsc.res.in

Abstract. The structure of statistical state spaces in the classical and quantum theories
are compared in an interesting and novel manner. Quantum state spaces and maps on
them have rich convex structures arising from the superposition principle and consequent
entanglement. Communication channels (physical processes) in the quantum scheme of
things are in one-to-one correspondence with completely positive maps. Positive maps
which are not completely positive do not correspond to physical processes. Nevertheless
they prove to be invaluable mathematical tools in establishing or witnessing entanglement
of mixed states. We consider some of the recent developments in our understanding of
the convex structure of states and maps in quantum theory, particularly in the context of
quantum information theory.
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In classical theory, the statistical state space of a two-state system is a closed line
segment, say between points A1 and A2. It is a convex set: the end or extremal
points A1, A2 are the two pure states; and the interior points of the segment are
mixed states, being convex or probabilistic sums of the extremal or pure states.
Similarly, the state space for a three-state system is an equilateral triangle, the
vertices A1, A2, A3 being the three pure states. The state space is again a convex
set, with three extremal points this time; every other point of the state space is
a probabilistic sum of the extremals. For a four-state system, the state space is a
regular tetrahedron, being a collection of all probabilistic sums

∑

j

pjAj , pj ≥ 0,
∑

j

pj = 1 (1)

of the four pure states A1, A2, A3, A4, the vertices of the tetrahedron. Clearly, while
for non-extremal points on the six edges and for the interior points of the four faces
respectively two and three pjs in the convex sum realization are non-zero, all the
pjs are non-zero for every genuine interior point. Further, the expansion coefficients
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{pj} are unique for every point (Carathéodory theorem), consistent with the fact
that pure states are mutually independent in the classical scheme.

Pure states in the quantum theory proliferate into a continuum because of the
superposition principle. For instance, pure states of a two-level system are in one-
to-one correspondence with points on the unit sphere S2, called the Poincaré or
Bloch sphere. Even though there are infinite number of pure states, the statistical
state space is still finite-dimensional, owing to the fact that pure states in the
quantum case are neither independent nor reliably distinguishable.

Statistical states of a d-level quantum system is described by d×d density matrices
ρ, whose defining properties are Hermiticity, unit trace, and positivity:

ρ† = ρ, tr ρ = 1, ρ ≥ 0. (2)

For a two-level system, ρ is necessarily of the form

ρ =
1
2
(1 + n · σ), n · n ≤ 1. (3)

The state space is thus the (solid) unit ball in R3 assumed to be centred at the
origin. All boundary points are extremal and pure states, and this is as in the
classical case. However, an interior point or mixed state can be written as a convex
sum of extremal or pure states in an enormously large number of ways [1]. Indeed,
much of the richness (or complexity) of problems related to quantum information
can be traced to this proliferation of possible convex sum decompositions associated
with a mixed state.

1. Three-level systems

The two-level system is special in the sense that for no d > 2 is the statistical
state space of of a d-level quantum system has such a simple geometry as that of a
sphere. Let us look at the case d = 3 in some detail. The λ-matrices

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 , (4)

familiar as generators of the unimodular unitary group SU(3) in the defining rep-
resentation, form a set of Hermitian, traceless, orthogonal matrices:

tr(λkλ`) = 2δk`, k, ` = 1, 2, . . . , 8, (5)
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very much like the Pauli matrices. The structure of these matrices is described by
the product property

λjλk =
2
3
δjk + djk`λ` + ifjk`λ`. (6)

Separating this product into commutator and anticommutator, we have

λjλk − λkλj = 2ifjk`λ`,

λjλk + λkλj =
4
3
δjk + 2djk`λ`. (7)

The SU(3) structure constants fjk` are totally antisymmetric in their indices,
whereas djk` are totally symmetric. The numerical values of their non-vanishing
independent components are [2]

f123 = 1, f458 = f678 =
√

3
2

,

f147 = f246 = f257 = f345 = f516 = f637 =
1
2
,

d118 = d228 = d338 = −d888 =
1√
3
,

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1
2
,

d448 = d558 = d668 = d778 = − 1
2
√

3
. (8)

These λ matrices can be used to describe 3× 3 density matrices in the form:

ρ =
1
3
(1 +

√
3n · λ). (9)

While Hermiticity of ρ is ensured by that of λ and reality of n, unit trace is ensured
by the 1/3 factor, the λs being traceless. So only positivity remains to be taken
care of. Since the state space is convex, the extremals being the pure states, it
suffices to isolate those vectors n ∈ R8 which correspond to pure states. We expect
these n ∈ R8 corresponding to pure states to form a four-parameter subset of the
seven-parameter boundary of the state space.

Now a unit trace Hermitian matrix ρ is a pure state density operator if and only
if it is a one-dimensional projection:

ρ is a pure state ⇔ ρ2 = ρ. (10)

We define a star-product on vectors n ∈ R8 through

(n ∗ n)j =
√

3djk`nkn`, (11)

and compute

ρ2 =
1
9
(1 + 2n · n + 2

√
3n · λ +

√
3n ∗ n · λ). (12)
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It follows that ρ specified by n is a pure state if and only if the two conditions

n · n = 1, n ∗ n = n (13)

are met. While the first condition corresponds to the sphere S7, the second one is
a vector equation in R8, i.e., it is a set of eight equations. Interestingly, it can be
transcribed into a single scalar equation! This is a special feature of d = 3 which
does not hold for higher d.

This is easily seen by noting that for every unit vector n ∈ R8, the associated
vector n ∗ n is a unit vector. It follows that the condition n ∗ n = n is equiva-
lent to the cubic scalar condition n ∗ n · n = 1. Thus we arrive at a complete
characterization of CP 2, the family of all pure states of a three-level system:

CP 2 = {n|n · n = 1, n ∗ n · n = 1}. (14)

The enumeration of the extremals of our convex state space is thus complete: the
state space of a three-level quantum system is the convex set in R8 generated by
these extremals. We may call it the Poincaré ‘sphere’ for this system.

Unlike the case of two-level system, the state space of the three-level system
is far from being a sphere. To appreciate this, note that all density operators ρ
which are singular as matrices constitute the boundary of the state space. Density
matrices whose rank is two are precisely the non-extremal boundary points. The
state space is contained within S7, and the radius of the largest sphere contained
in our state space is 1/2. Indeed, n = (0, 0, 0, 0, 0, 0, 0,−1), corresponding to ρ =
diag(0, 0, 1), is an example of a state on S7, while the rank-two density matrix
diag(1/2, 1/2, 0) is also on the boundary at the ‘opposite end’, but it corresponds
to n = (0, 0, 0, 0, 0, 0, 0, 1/2), and hence sits on (the surface of) the sphere of radius
1/2.

Let rout be the radius of the outer sphere, the smallest sphere containing the
state space, and rin be the radius of the inner sphere, the largest sphere contained
in the state space. And let κ = rin/rout. We have just seen that κ = 1/2 for a
three-level quantum system. It is interesting that this ratio assumes the same value
in the classical case as well: the inner circle and the outer circle of an equilateral
triangle have radii in the ratio 1 : 2. Indeed, for a d-state system κ has the same
value in the classical and quantum cases, for every d. The classical state space of
a (d + 1)-level system is a regular d-simplex, the convex set in Rd generated by
d+1 extremal points, the distance between two points being the same for all pairs.
It is not hard to see that κ = 1/d for a regular d-simplex. The tetrahedron is
3-simplex and κ = 1/3. Thus we record, as an important aspect of the state space,
the following theorem:

Theorem 1. The radii of the inner and outer spheres of the convex state space of
a d-level system are in the ratio 1/(d − 1). This holds in the classical as well as
quantum cases.

2. d-Level systems

We may extend this Poincaré sphere kind of construction to higher values of d by
noting that d×d Hermitian traceless matrices form a real vector space of dimension
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Nd ≡ d2 − 1. The structure of the convex state space Ω ∈ RNd of a d-level system
thus obtained is no way close to a sphere. Considerable research has aimed at an
understanding of its structure [3]. We may obtain a convenient Pauli or λ-like basis
for this Nd-dimensional space in the following manner:

• Define σ3-like diagonal traceless matrices J1, J2, . . . , Jd−1 through

J1 = diag(1,−1, 0, 0, . . . , 0),√
3J2 = diag(1, 1,−2, 0, . . . , 0),

... ... ...
√

(d− 1)(d− 2)/2Jd−2 = diag(1, 1, . . . , 1,−(d− 2), 0),√
d(d− 1)/2Jd−1 = diag(1, 1, . . . , 1, 1,−(d− 1)).

• For each 1 ≤ i0 < j0 ≤ d define σ1-like and σ2-like matrices thus:

(M(i0, j0))i,j = δii0δjj0 + δij0δji0 ,

(N(i0, j0))i,j = i(δii0δjj0 − δij0δji0).

• Rename and relabel these d2 − 1 matrices as J1, J2, . . . , Jd2−1.

There are thus d(d − 1)/2 symmetric off-diagonal σ1-type matrices, d(d − 1)/2
antisymmetric (and hence purely imaginary) off-diagonal σ2-type matrices and d−1
diagonal σ3-type matrices. And these d2−1 matrices form a complete orthonormal
traceless set:

tr(JkJ`) = 2δk`, k, ` = 1, 2, . . . , d2 − 1. (15)

We can again express the product structure of these J matrices through totally
antisymmetric structure constants fjk` and totally symmetric djk`. Any d × d
density operator can be written in the form

ρ =
1
d
(1 +

√
d(d− 1)/2n · J), (16)

the role of
√

3 in the three-level case being now played by
√

d(d− 1)/2. Again
we can define the star product on vectors n ∈ Rd2−1 using the totally symmetric
djk`s, and obtain n · n = 1, n ∗ n = n as the two conditions for purity. But we
cannot reduce these pure state condition to two scalar conditions, for in the present
case we will have to ensure tr ρ4 = tr ρ5 = · · · = tr ρd = 1 in addition to the
earlier tr ρ2 = tr ρ3 = 1. Stated differently, n ∗ n is no more a unit vector for all
n ∈ Sd2−1. The unit vector n = (0, 0, . . . , 0,−1) ∈ Sd2−2 corresponds to the pure
state ρ = diag(0, 0, . . . , 0, 1), but the vector n = (0, 0, . . . , 0, 1/(d − 1)) of length
1/(d−1) too corresponds to a boundary point, for it represents the density operator
ρ = diag

(
1

d−1 , 1
d−1 , . . . , 1

d−1 , 0
)

which is of less than maximal rank. Thus, κ indeed
equals 1/(d− 1).
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3. Positive maps and completely positive paps

Having looked at the convex structure of the state space in some detail, we now
move forward to consider maps or transformations of the state space. Let B(H) be
the complex linear space of linear operators acting on an underlying d-dimensional
Hilbert space H. (Since d is finite, these operators are necessarily bounded.) In
particular, density operators of a d-level system are elements of B(H). A linear
map (or simply map) M is a (complex) linear transformation B(H) → B(H):

M : ρ → ρ′ = M(ρ)

ρ′ij =
n∑

k,`=1

Mik,j`ρk`. (17)

Linear maps are sometimes called super-operators to underline the fact that they
are operators on operators.

We know that any and every operator ρ ∈ B(H) obeying the defining conditions
(i) ρ† = ρ, (ii) tr ρ = 1 and (iii) ρ ≥ 0 is a valid density operator, that every
density operator describes a possible quantum state, and that the set of all density
operators forms a convex set, the state space. Obviously, maps of interest to us
should image this convex set into itself, and this leads to the notion of positive
maps. A map M is said to be positive if, for every Hermitian positive input ρ, the
output M(ρ) is Hermitian positive. M is called trace preserving if tr M(ρ) = tr ρ
for all ρ. It is clear from the definition that positive maps on B(H) form a convex
set. Examples of positive maps are easy to construct:

• Every unitary evolution |ψ〉 → |ψ′〉 = U |ψ〉 of the state vector defines a map
U : ρ → ρ′ = UρU†, which is manifestly positive.

• The defining properties of density operators are left unchanged under matrix
transposition. That is, the transpose map T : ρ → ρT (defined in any chosen
basis) is positive.

• It is easy to verify that the reduction map R: ρ → ρ′ = (d− 1)−1(tr ρ− ρ) is
positive.

• The map A: ρ → ρ′ = AρA†, for any operator A, preserves Hermiticity and
positivity (it preserves trace if and only if A is unitary). It follows from the
convexity of positive maps that ρ → ρ′ =

∑
α AαρA†α is a positive map, for any

collection of operators {Aα}. Clearly, this map will be trace preserving if and
only if the collection {Aα} respects the resolution of identity

∑
α A†αAα = Id.

It is also clear that this map is unital, i.e., it maps the identity matrix (the
maximally mixed state) into identity, if and only if the collection is obedient
to

∑
α AαA†α = Id.

Since any positive map on a system A takes its states into states, classical expe-
rience may prompt one to associate positive maps with valid evolutions or physical
processes. There are, however, positive maps which acting on part of a composite
system can map a density operator into something which is not. Clearly, such a
positive map cannot represent any physical process. Therefore, the notion of posi-
tive maps needs to be further refined to isolate the ones which correspond to valid
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physical processes. It turns out that, in order to represent a valid evolution, a
positive map should be completely positive.

Given a positive map M on HB (i.e., on B(HB)), let us extend it to the map
IdA ⊗M on the tensor product space HA ⊗HB, the Hilbert space of a composite
system S=A+B:

IdA ⊗M : ρ → ρ′

ρ′αi,βj =
∑

k,`

Mik,j`ραk,β`. (18)

Here the Greek indices on ρ correspond to basis vectors in the Hilbert space of the
subsystem A, and the Roman indices to those of B. This trivial-looking extension is
not all that trivial. Even though M is a positive map on HB, the extension IdA⊗M
need not be a positive map on the extended Hilbert space HA ⊗ HB, in spite of
the fact that we are doing nothing to subsystem A. And this ‘spooky action’ leads
to the notion of completely positive maps. A positive (P) map M is said to be
completely positive (CP) if and only if all its trivial extensions are positive.

Of the four examples of positive maps we listed earlier, the first and the last are
completely positive, but the second and third are not. Positive maps which are not
completely positive are not objects of contempt in quantum information theory. It
is their failure to be physical that empowers the transpose and reduction maps with
the capacity to detect or witness entanglement.

It is again clear from the very definition that the set of all completely positive
maps on a Hilbert space H (or more properly on B(H)) is a convex set, a subset of
the larger convex set of all positive maps. Indeed, this subset is fully characterized
by a fundamental representation theorem.

Theorem 2. All trace-preserving CP maps are of the form

ρ → ρ′ =
∑
α

AαρA†α,
∑
α

A†αAα = Id. (19)

That this kind of a map is CP and trace preserving is obvious. The non-trivial
part therefore is the assertion that this is all. This result is at least as old as the 1961
work of Sudarshan and coworkers [4] but in the quantum information literature it
has come to be known as the Kraus representation theorem [5].

If a positive map M on HB is not CP, then there exists at least one bipartite
density operator ρAB such that (IdA⊗M)ρAB is not positive, and hence a non-state
[6]. In that case, we say that M witnesses the inseparability of ρAB. The converse
is also true in the following sense [6]:

Theorem 3. A bipartite density operator ρAB is separable if and only if (IdA ⊗
M)ρAB is a density operator, for every positive map M on B(H).

This theorem suggests that separability of a given ρAB can be determined by
running through all P maps which are not CP. And convexity of the set of all P
maps further suggests that it is sufficient to run through just the extremal P maps.
Unfortunately, while the CP maps are fully characterized by the representation
theorem, complete characterization of the set of all P maps which are not CP
continues to remain a difficult open problem.
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The transpose map T is a P but not CP map of singular importance for two
reasons. First, it is essentially the only such (i.e., P but not CP) map which maps
the space of density operators on a Hilbert space onto itself. Second, when the
dimensions of HA ⊗ HB are either 2 × 2 or 2 × 3, ρAB is separable if and only if
(IdA ⊗ T )ρAB is positive. That is, positivity under partial transpose (PPT) is a
necessary and sufficient condition for separability in these dimensions [6,7]. (In the
continuous variable case of infinite Hilbert space dimension, the transpose map can
be viewed as momentum reversal, and positivity under partial transpose proves to
be a necessary and sufficient condition for separability for all two-mode Gaussian
states [8], but this is a result which holds only for Gaussian states.)

But this happy state of affairs with the Peres–Horodecki separability criterion
does not extend beyond these low dimensions. In higher dimensions there exist
states which are PPT, and yet are inseparable. The first examples of states of this
type were constructed by Horodecki [9]. We reproduce here his example in 3 × 3
dimensions:

ρ =
1

8a + 1




a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0
0 0 0 0 0 0 1+a

2 0
√

1−a2

2
0 0 0 0 0 0 0 a 0
a 0 0 0 a 0

√
1−a2

2 0 1+a
2




. (20)

Obviously, a is a positive scalar.
It should be added that the inseparability of this PPT entangled state was demon-

strated not by exhibiting a positive map which witnesses its inseparability, but
through what has come to be known as the range criterion [9]. Clearly, if a state
is separable, its partial transpose must also be a separable state. If ρAB is of
rank r and its partial transpose ρTB

AB is of rank r′, then a necessary condition for
separability is that ρAB should have at least r linearly independent product states
in its range, and its partial transpose should have at least r′ such states in its range.
Horodecki showed that his PPT state fails this range criterion, and thus established
its inseparability.

Several examples of PPT entangled states have been constructed since the work
of Horodecki [10,11]. Of particular interest are the states based on the notion of
unextendible product basis (UPB) [12]. In any Hilbert space, a given partial basis
can always be extended into a full basis. And in any bipartite Hilbert space there
exists a large supply of product bases. However, given a partial product basis,
there may not exist any product vector which is orthogonal to all product vectors
in the partial basis. Such partial bases cannot be extended, and hence are called
UPBs. Associated with every UPB there exists a PPT entangled state, and its
inseparability is easily established through the range criterion.

Because of the special status of the transpose map, those maps which are
manufactured from the transpose map and CP maps are called decomposable maps.
These maps are of the form C1 + C2T , where C1 and C2 are CP maps and T is the
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transpose map. Clearly, to witness PPT entanglement we need non-decomposable
maps. The first example of a non-decomposable map was constructed by Choi [13],
and Kossakowski has recently presented generalizations of this map [14]. Another
interesting non-decomposable map based on UPBs was constructed by Terhal [15].
In what follows we present a new class of PPT entangled states, and employ the
Choi map to witness their inseparability.

Trace preserving unital positive maps assume a particularly simple form [16] in
the Rd2−1 description we have been extensively using in this paper. It is clear from
the linearity of the association

ρ =
1
d


Id +

d2−1∑

k=1

nkJk


 (21)

between d× d Hermitian unit-trace matrices and points in Rd2−1 that linear maps
which preserve trace, Hermiticity, and unity are in one-to-one correspondence with
real linear homogeneous transformations in Rd2−1, represented by (d2−1)×(d2−1)
real matrices M :

M : n → n′ = Mn,

n′k =
d2−1∑

`=1

Mk`n`, k = 1, 2, . . . , d2 − 1. (22)

This is simply a transcription of eq. (17) to the present unit preserving (unital)
case. Unitary evolutions fit precisely into this form, with M ∈ SO(d2 − 1) being
the real matrix obtained from the given unitary matrix ∈ SU(d) in going over to
the adjoint representation. It is clear that M is a positive map if it images the state
space Ω ⊂ Rd2−1 into itself. Unitary evolutions correspond to rotations in Rd2−1.
Note that such rotations form a (d2 − 1)-parameter family, and hence is a proper
subset of O(d2 − 1), the (d2 − 1)(d2 − 1)/2-parameter orthogonal group, for d ≥ 3.
The transpose map simply inverts the signatures of the d(d − 1)/2 coordinates
corresponding to the σ2-like matrices, and hence is an element of O(d2−1). It is an
improper rotation for d = 2, 3, 6, 7, . . . and a proper rotation for d = 4, 5, 8, 9, . . ..

Given a (d2 − 1) × (d2 − 1) real matrix M , testing if M maps Ω into itself is in
general non-trivial. However, for a particular class of matrices such a test is quite
simple [16]:

Theorem 4. Every map represented by a matrix of the form M = (d − 1)−1R,
where R ∈ O(d2 − 1), the orthogonal group of proper and improper rotations in
Rd2−1, is positive.

Proof. R ∈ O(d2 − 1) images the out-sphere of Ω into itself, and the scale factor
(d− 1) images the out-sphere into the in-sphere. This completes the proof in view
of the following facts: (1) There is no state outside the out-sphere and (2) every
point in the in-sphere is a valid state.

It is seen that the reduction map is precisely a map of this type, with R ∈ Od2−1

representing inversion about the origin in Rd2−1, this inversion being a proper or
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improper rotation depending on whether d is odd or even. The point being made is
that the price one pays in terms of the contraction factor (d−1) with respect to the
reduction map is high enough that one has earned, through it, the freedom to do
any proper or improper O(d2 − 1) rotation. In particular, this scale factor allows
one to perform any permutation of the diagonal elements of the density matrix,
since such a permutation corresponds to a proper or improper rotation among the
σ3-like coordinates. We shall demonstrate presently the usefulness of precisely such
permutations [16].

4. A new class of inseparable PPT states and associated
indecomposable maps

Let us specialize our considerations to the case d = 3. Consider the following
bipartite density operator in 3× 3 dimensions [16]:

ρ = ρ0 + εId,

ρ0 =




1 0 0 0 1 0 0 0 1
0 a 0 1 0 0 0 0 0
0 0 a−1 0 0 0 1 0 0
0 1 0 a−1 0 0 0 0 0
1 0 0 0 1 0 0 0 1
0 0 0 0 0 a 0 1 0
0 0 1 0 0 0 a 0 0
0 0 0 0 0 1 0 a−1 0
1 0 0 0 1 0 0 0 1




, (23)

where ε is a small positive parameter. We have suppressed a normalization constant
3(1 + a + a−1) in the definition of ρ0, and this does not affect our considerations
below.

It is readily seen that rank of ρ0 is 4. Further, ρ0 is symmetric under partial
transpose, and hence ρ0 is either separable or PPT entangled. Peres–Horodecki
criterion cannot distinguish between these two possibilities. And the reduc-
tion criterion of separability is known to be subordinate to the Peres–Horodecki
criterion [17].

Closer examination shows that there is no product state in the range of ρ0, if
a 6= 1. The range criterion thus establishes the inseparability of ρ0 for a 6= 1. But
our ultimate interest is in ρ; it has full rank, and hence the range criterion offers
no help in deciding its separability property.

We are thus forced to look for a suitable non-decomposable map. Consider the
following map on the space of density operators of a system whose Hilbert space
dimension is 3:

M :




ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33


 → 1

2




ρ11 + ρ22 − ρ12 − ρ13

− ρ21 ρ22 + ρ33 − ρ23

− ρ31 − ρ32 ρ33 + ρ11


 .

(24)
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This corresponds to the reduction map followed by 2π/3 rotation in the (λ3, λ8)
plane, and hence is a positive map in view of Theorem 4.

We will now let the extension Id3 ⊗M , where Id3 is the three-dimensional unit
map, act on ρ0:

(Id3 ⊗M)ρ0 =




1 + a 0 0 0 −1 0 0 0 −1
0 a + 1

a 0 −1 0 0 0 0 0
0 0 1

a + 1 0 0 0 −1 0 0
0 −1 0 1

a + 1 0 0 0 0 0
−1 0 0 0 1 + a 0 0 0 −1
0 0 0 0 0 a + 1

a 0 −1 0
0 0 −1 0 0 0 a + 1

a 0 0
0 0 0 0 0 −1 0 1

a + 1 0
−1 0 0 0 −1 0 0 0 1 + a




.

Again we have suppressed an inessential multiplicative factor of 1/2. We see that
(Id3 ⊗M)ρ0 is not positive. Indeed, the column vector (1, 0, 0, 0, 1, 0, 0, 0, 1)T is an
eigenvector of (Id3⊗M)ρ0 with eigenvalue (a−1), which is negative for a < 1. This
establishes the inseparability of ρ0 for a < 1. Since no decomposable map could
witness the inseparability of the PPT state ρ0, we have the following theorem.

Theorem 5. The positive map M described in eq. (24) is indecomposable.

In the case a > 1, inseparability of ρ0 is not witnessed by the map M in eq. (24).
We may use in its place the positive map

M ′ :




ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33


 → 1

2




ρ11 + ρ33 − ρ12 − ρ13

− ρ21 ρ22 + ρ11 − ρ23

− ρ31 − ρ32 ρ33 + ρ22


 ,

(25)

corresponding to the reduction map followed by −2π/3 rotation in the (λ3, λ8)
plane, to witness the inseparability of ρ0. We will thus find that (Id3 ⊗M ′)ρ0 has
a negative eigenvalue (a−1 − 1). Thus we conclude with the following theorem.

Theorem 6. The positive map M ′ described in eq. (25) is indecomposable.

Now we turn our attention to ρ = ρ0 + εId, a mixture of ρ0 with the maximally
mixed state. Since ρ0 is PPT, so is ρ. Indeed, the eigenvalues of the partial
transpose of ρ are bounded from below by the positive constant ε. We consider the
case a > 0; the case a < 0 can be handled through a similar procedure.

The fact that (Id3⊗M)ρ0 has an eigenvalue (a− 1) implies that (Id3⊗M)ρ has
an eigenvalue (a − 1) + 2ε, which is negative for sufficiently small values of ε, and
hence the PPT state ρ is inseparable for such values of ε.

We may proceed one step further and explore a neighbourhood of ρ. Let Q be an
arbitrary Hermitian traceless d2 × d2 matrix, with tr Q2 ≤ 1. That is, Q is in the
unit ball in Rd4−1 = R80. Its eigenvalues λ are necessarily in the range −1 < λ < 1.
Tighter bounds, with ±1 replaced by ±1/

√
2, are possible, but are not required for
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our purpose. Let QTB be the partial transpose of Q. Clearly, tr (QTB)2 = tr Q2 and
hence the eigenvalues of QTB obey similar bounds.

Now consider ρ′ = ρ + ε′Q, where ε′ is a positive number. Since the smallest
eigenvalue of the partial transpose of ρ is ε, the smallest eigenvalue of the partial
transpose of ρ + ε′Q is not less than ε − ε′, and hence ρ′ is PPT for ε′ < ε. The
fact that (Id3 ⊗M)ρ has an eigenvalue (a − 1) + 2ε implies that (Id3 ⊗M)ρ′ has
an eigenvalue ≤(a − 1) + 2ε + ε′, and we can thus choose ε ≥ ε′ > 0 such that
this eigenvalue is negative for all Q in the unit ball. We have thus established the
following fact.

Theorem 7. The state ρ = ρ0 + εId, for sufficiently small ε > 0, has a neigh-
bourhood of states all of which are PPT and inseparable. Their inseparability is
witnessed by the indecomposable map M or M ′ depending on whether a < 1 or
a > 1.

Finally, we may turn this argument inside out. Staying with the expression
(Id3 ⊗ M)ρ′, instead of examining it over a neighbourhood of ρ, for fixed M , we
can explore a small neighbourhood of M in the convex set of positive maps, with
ρ′ fixed at ρ′ = ρ. We will find, by virtue of continuity, that (Id3 ⊗ M)ρ has a
negative eigenvalue for this entire neighbourhood of positive maps. Thus we arrive
at the following theorem.

Theorem 8. The indecomposable map M (and similarly M ′) has a neighbourhood
consisting of indecomposable positive maps.
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