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ON THE SPECTRUM OF ASYMPTOTIC SLOPES

A. J. PARAMESWARAN AND S. SUBRAMANIAN

Abstract. The slopes of maximal subbundles of rank s divided by the degree of the
map under various pull backs form a bounded collection of numbers called the s-spectrum
of the bundle. We study the supremum of the s-spectrum and determine it in terms of
the Harder Narasimhan filtration of the bundle.

1. Introduction

Line subbundles of maximal degree in a rank 2 bundle on a curve have been studied

in [LN] and many other subsequent papers. In [BP] it was shown that a vector bundle is

strongly semistable if and only if the slope of the maximal subbundle of a given rank in

a finite pull back is bounded by the slope of the pull back bundle.

In this note we study the behaviour of maximal subbundles of vector bundles on curves

after finite pull backs. These slopes of maximal subbundles of rank s divided by the

degree of the map under various pull backs form a bounded collection of numbers called

the s-spectrum of the bundle. We study the supremum of the s-spectrum and determine

it in terms of the Harder Narasimhan filtration of the bundle. We also give a criterion for

a spectrum value to be isolated.

2. Preliminaries

Let k be an algebraically closed field of arbitrary characteristic. Let C be an irreducible

smooth projective curve over k of genus g. For a vector bundle V over C we will denote by

Gr(s, V ) the Grassmann bundle over C defined by the space of all s dimensional quotients

of V . The tautological line bundle over Gr(s, V ) will be denoted by OGr(s,V )(1). This

is the determinant of the universal quotient bundle on Gr(s, V ). Tensor powers of this

tautological line bundle are denoted by OGr(s,V )(n). The slope of V is defined as

µ(V ) :=
deg(V )

rank(V )

V is called semistable if for all subbundles W ⊂ V of positive rank µ(W ) ≤ µ(V ). V is

called strongly semistable if the iterated Frobenius pull back, F n
C
∗(V ), is semistable for all

n > 0, where FC : C → C denotes the Frobenius morphism. If V is a strongly semistable

vector bundle of rank r, then for any representation of GLr into GLn, the induced rank

n vector bundle is strongly semistable (cf. [RR]).
1
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2 A. J. PARAMESWARAN AND S. SUBRAMANIAN

Given a vector bundle V , there is a unique filtration (the Harder Narasimhan filtration)

V• := {0 = V0 ⊂ · · · ⊂ Vl = V } such that each Vi/Vi−1 is semistable and the slopes of

successive quotients are strictly decreasing, i.e., µi := µ(Vi/Vi−1) > µi+1 := µ(Vi+1/Vi).

The subbundles Vi are defined inductively as the inverse image of the maximal subbundle

of maximal slope in V/Vi−1. We call the bundles Vi/Vi−1, the Harder Narasimhan factors

of the bundle V . The bundle V1 is called the maximal subbundle of V and denoted by

Vmax. It’s slope µ(V1) = µ(Vmax) is called the maximal slope of V and denoted by µmax(V ).

We recall the following result whose proof we will omit.

Lemma 2.1. If V and W are semistable vector bundles over a smooth curve C, with

µ(V ) > µ(W ), then HomC(V, W ) = H0(C, V ∗ ⊗ W ) = 0.

Now we have the following result which gives enough complete intersection curves in

the projective bundle.

Lemma 2.2. Let V be a strongly semistable vector bundle of rank r over C and L a line

bundle of degree > 2g − nsµ(V ) with n > 0. Then OGr(s,V )(n) ⊗ π∗L separates points on

Gr(s, V ).

Proof. Since π : Gr(s, V ) → C is a smooth fibration with Grassmann varieties as fibres

and higher cohomologies of ample bundles vanish on Grassmannians, it follows that

H1(Gr(s, V ) ,OGr(s,V )(n) ⊗ π∗L) ∼= H1(C, π∗(OGr(s,V )(n) ⊗ π∗L)) ∼= H1(C, Vs,n ⊗ L)

where Vs,n is the vector bundle associated to V by the Weyl module with highest weight

nωs with ωs as the fundamental weight corresponding to the s-th exterior power repre-

sentation. Notice that the slope of ∧sV is equal to sµ(V ).

Hence for any two points x, y ∈ C, Serre duality implies

H1(C, Vs,n ⊗ L(−x − y)) = H0(C, V ∗
s,n ⊗ L−1(x + y) ⊗ KC)∗

To show this cohomology group vanishes, it suffices to show the semistable bundle V ∗
s,n ⊗

L−1(x + y) ⊗ KC has negative slope. Now we have:

µ(V ∗
s,n ⊗ L−1(x + y) ⊗ KC) = µ(V ∗

s,n) − deg L + 2g = −nsµ(V ) − deg L + 2g

which is negative if and only if deg L > 2g − nsµ(V ). Hence for two distinct points

x, y ∈ C,

H0(C, Vs,n ⊗ L) → H0(C, Vs,n |x+y)

is surjective whenever deg L > 2g − nsµ(V ). This implies OGr(s,V )(n) ⊗ π∗L separate

points and surjects onto sections of OGr(Vx)(n) on the Grassmannian Gr(s, Vx). �

Consider the universal exact sequence on Gr(s, V ):

(2.1) 0 → S → π∗V → Q → 0
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Then det Q ∼= OGr(s,V )(1) is the tautological line bundle. For any line bundle on

Gr(s, V ) let [ - ] denote the corresponding cycle class. The Chow group of 0 cycles on

Gr(s, V ) is canonically isomorphic to the Chow group of 0 cycles of the curve C (cf. [F],

Prop. 14.6.5,). Then we have the following:

Lemma 2.3. Given any line bundle L on C and any fibre F of π : Gr(s, V ) → C we

have

(2.2) [OGr(s,V )(1)]s(r−s)+1 = (s(r − s) + 1)sµ(V )([OGr(s,V )(1)]s(r−s) · F )

(2.3) [OGr(s,V )(1)]s(r−s) · [π∗L] = degL([OGr(s,V )(1)]s(r−s) · F ) and [π∗L] · [π∗L] = 0

Proof. If we pull back the bundle under a finite map, both sides of the formulae gets

multiplied by the degree of the map. Hence we may assume, after a finite pull back if

necessary, that there exists a line bundle L such that L⊗r ∼= detV ., i.e., det V has an rth

root. Then ⊕r
1L

∼= O⊕r
C ⊗L. Let L−1 be a very ample line bundle on C such that V ⊗L−1

and L ⊗ L−1 are globally generated and have vanishing first cohomology.

Let QuotP (O⊕N
C ⊗L) denote the quot scheme over C of quotient of fixed Hilbert poly-

nomial P (the degree and rank determine the polynomial) of the trivial vector bundle

of rank N >> 0 twisted by the line bundle L. Let U ⊂ QuotP (O⊕N
C ⊗ L) be the open

set where the universal quotient sheaf is locally free and H0(C, V ⊗L−1) ∼= H0(C,O⊕N
C ).

Then by [Ne] (Remark 5.5, page 140) U is smooth and irreducible and hence connected.

Then ⊕r
1L

∼= O⊕r
C ⊗ L and V belong to the same quot scheme, in fact U .

Let V be the universal bundle over C × U and Gr(s,V) by the corresponding Grass-

mannian bundle over C × U . For each vector bundle W representing a closed point

[W ] ∈ U , the restriction V |C×[W ] is canonically isomorphic to W . Hence the restriction

of the Grassmannian bundle Gr(s,V) is canonically Gr(s, W ). Since the isomorphism of

CH0(Gr(s, V )) with CH0(C) is canonical, it suffices to check the formula for any closed

point (vector bundle) of the open subset U of the quot scheme QuotP (O⊕N
C ⊗L).

Hence we obtain,

[OGr(s,V )(1)]s(r−s)+1 ∼= [OGr(s,⊕L)(1)]s(r−s)+1 ∼= [OGr(s,⊕OC⊗L)(1)]s(r−s)+1

∼= {[OGr(s,⊕OC)(1)] + [L]⊗s}s(r−s)+1 = (s(r − s) + 1)sdegL(OGr(s,⊕OC)(1).F )

= (s(r − s) + 1)sµ(V )(OGr(s,⊕L)(1).F ) = (s(r − s) + 1)sµ(V )(OGr(s,V )(1).F ) �

Choose constants 0 < ǫn ≤ 1 and line bundles Ln on C such that deg Ln = 2g −

nsµ(V ) + ǫn. Then OGr(s,V )(n) ⊗ π∗Ln separates points by Lemma 2.2 and hence defines

enough smooth complete intersection curves in Gr(s, V ) by Bertini’s theorem. Now we

have the following result.
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Lemma 2.4. Let D be an irreducible complete intersection curve in Gr(s, V ) defined by

sections of OGr(s,V )(n) ⊗ π∗Ln. Then

µ(S |D) = ns(r−s)([OGr(s,V )(1)]s(r−s) · F )(µ(V ) −
s(2g + ǫn)

n
)

Proof. Since D is a complete intersection, the degree of OGr(s,V )(1) on D can be calcu-

lated as the cup product (denoted by · in the Chow ring) of the cycle classes of the cor-

responding divisors (line bundles) with the class of OGr(s,V )(1). Note that [OGr(s,V )(n)] =

n[OGr(s,V )(1)] as the tensor product of line bundles gives the sum of the corresponding

classes. Hence we can interpret deg OGr(s,V )(1) |D as

deg OGr(s,V )(1) |D = [D] · [OGr(s,V )(1)] = ([OGr(s,V )(n)] + [π∗Ln])s(r−s) · [OGr(s,V )(1)]

= {[OGr(s,V )(n)]s(r−s) + s(r − s)[OGr(s,V )(n)]s(r−s)−1 · [π∗Ln]} · [OGr(s,V )(1)]

= ns(r−s)[OGr(s,V )(1)]s(r−s)+1 + s(r − s)ns(r−s)−1[OGr(s,V )(1)]s(r−s) · [π∗Ln]

Now the degree of the universal subbundle on D,

deg S |D= deg π∗V |D − deg Q |D

= ns(r−s)([OGr(s,V )(1)]s(r−s) ·F ) deg V − ns(r−s)(s(r− s)+1)sµ(V )([OGr(s,V )(1)]s(r−s) ·F )

−ns(r−s)−1s(r − s)deg Ln ([OGr(s,V )(1)]s(r−s) · F )

Now by substituting for deg Ln in the above and simplifying this expression we get

µ(S |D) = ns(r−s)([OGr(s,V )(1)]s(r−s) · F )(µ(V ) −
s(2g + ǫn)

n
)

�

Note that the degree of πD : D → C is equal to cardinality of a general fibre of πD over

x which equals [OGr(s,Vx)(n)]s(r−s) · F = ns(r−s)([OGr(s,V )(1)]s(r−s) · F ).

3. Genuinely ramified maps

Let us begin with the following definition.

Definition 3.1. Let f : D → C be a finite morphism of integral curves. Then f is said

to be genuinely ramified if f is separable and does not factor through an étale cover of C.

Lemma 3.2. A separable morphism f : D → C is genuinely ramified if and only if

(f∗OD)max
∼= OC.

Proof. By projection formula we have

H0(D, f ∗W ) = H0(C, W ⊗ f∗OD)

Hence for a semistable bundle S on C of positive slope

Hom(S, f∗OD) = Hom(f ∗S,OD) = 0
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because f ∗S remains semistable of positive slope as f is separable. This shows that

µmaxf∗OD = 0.

If rank (f∗OD)max > 1, then it forms a sheaf of subalgebras of f∗OD on C. Hence by

taking the spectrum of f∗ODmax we obtain an étale cover of C factoring f : D → C.

Hence f is not genuinely ramified. �

In [N], Madhav Nori has constructed the fundamental group scheme π(X) of any com-

plete variety X. This is constructed as a Tannaka category whose objects are essentially

finite vector bundles on X. Further he has also constructed a principal π(X) bundle

X̃ → X. Let πalg
1 (X) denote the étale fundamental group of a complete scheme X. Then

one can show that πalg
1 (X) is a quotient of π(X) whose objects in the Tannaka category

are the vector bundles that are trivial on a finite étale cover of X. This quotient morphism

induces a πalg
1 (X)-bundle X → X over X.

Lemma 3.3. A separable morphism of curves D → C is genuinely ramified if and only

if the induced map πalg
1 (D) → πalg

1 (C) is an epimorphism.

Proof. Clearly an epimorphism on the fundamental group implies genuine ramification.

This follows from the fact that for any finite étale morphism f : D → C of degree d the

index of the image of the étale fundamental group is equal to d.

Any finite morphism f : D → C induces the map on étale fundamental groups whose

image f∗(π
alg
1 (D)) = Γ is of finite index. Define D̃ := C/Γ. Then the induced map D̃ → C

is étale such that f : D → C factors through this. This proves the converse. �

Lemma 3.4. If D is a general complete intersection curve in Gr(s, V ) defined by an

ample line bundle, then the induced projection D → C is genuinely ramified

Proof. Notice that the algebraic fundamental group of Gr(s, V ) is naturally isomorphic

to the algebraic fundamental group of C as Grassmannians are algebraically simply con-

nected. If D is a complete intersection curve in Gr(s, V ), then the algebraic fundamental

group of D surject onto the algebraic fundamental group of Gr(s, V ) by the algebraic

analogue of Lefshetz Theorem. Hence πalg
1 (D) → πalg

1 (C) is surjective. Now the result

follows from Lemma 3.3. �

Lemma 3.5. Let f : D → C be genuinely ramified morphism of smooth projective curves.

Then

(a) If V and W are two semistable bundles on C of same slope, then

HomC(V, W ) ∼= HomD(f ∗V, f ∗W )

(b) If V is a stable bundle on C, then f ∗V is stable on D.

(c) If V is a semistable bundle on C and F ⊂ f ∗V is a subbundle of same slope as f ∗V ,

then F is isomorphic to the pull back of a subbundle of V .
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Proof. (a) Given two semistable bundles V, W of same slope on C, we have

HomD(f ∗V, f ∗W ) ∼= HomC(V, f∗f
∗W ) ∼= HomC(V, W ⊗ f∗OD) ∼= HomC(V, W )

The last equality follows from the fact that HomC(F, f∗OD/OC) = 0 for any semistable

bundle F of slope ≥ 0 as genuine ramification of f implies that f∗OD/OC has negative

maximal slope (see Lemma 3.2).

(b) Since the socle (maximal subbundle that is a direct sum stable bundles (cf. [MR]))

is unique, it follows that the socle of f ∗V descends to the socle of V when f is separable.

Since V is stable, this descended bundle has to be V itself. This shows that the pull back

of a stable bundle is polystable under any finite separable map. Now the stability of f ∗V

for genuinely ramified maps follows from (a) since projections to direct summands are

endomorphisms which do not come from below.

(c) Let V be a semistable bundle over C. Let F ⊂ f ∗V be a subbundle of same slope.

Then the socle SF of F is contained in the socle Sf∗V of f ∗V and hence a direct summand

of Sf∗V . But by uniqueness of the socle, Sf∗V is f ∗(SV ). Since stable bundles pull back to

stable bundles, SF coincides with some factors of f ∗(SV ) and hence is a pull back. Now

the assertion follows by induction on the rank applied to the bundle F/SF ⊂ f ∗V /SF . �

Corollary 3.6. Let f : D → C be a finite separable morphism of smooth projective

irreducible curves. Then for any semistable vector bundle W on D we have

(a) µmax(f∗W ) ≤ µ(W )
deg f

(b) If µmax(f∗W ) = µ(W )
deg f

, then rank(f∗W )max ≤ rank W · rank(f∗OD)max

Proof. First assertion follows from the fact that HomC(F, f∗W ) ∼= HomD(f ∗F, W ). Hence

semistable bundles of slope > µ(W )
deg f

have no morphism to f∗W .

If rank(f∗OD)max > 1, then the morphism f : D → C factors through an étale morphism

π : C̃ → C such that f̃ : D → C̃ satisfies f̃∗OD = OC̃ (see Lemma 3.2).

If W ′ is any semistable bundle on C̃, then χ(W ′) = χ(π∗W
′) as the cohomologies do

not change by taking direct images under finite maps. By Riemann-Roch theorem we get

χ(W ′) = (rank (W ′))(1 − gC̃ + µ(W ′)) = (rank (W ′))(deg (π)(1 − gC) + µ(W ′))

and

χ(π∗(W
′)) = rank (π∗(W

′))(1−gC +µ(π∗(W
′))) = (deg (π)rank (W ′))(1−gC +µ(π∗(W

′)))

since π is étale, 1 − gC̃ = (deg π)(1 − gC). Hence by comparing the terms above we

conclude that µ(W ′) = (deg (π))(µ(π∗(W
′))). That π∗W

′ is semistable of slope µ(W ′)
deg π

follows from (a).

Hence it suffices to prove (b) for the case when f is genuinely ramified.

On the contrary, assume there is a semistable bundle W with µmax(f∗W ) = µ(W )
deg f

and

rank(f∗W )max > rankW , then consider the natural map, f ∗(f∗W )max → Q ⊂ W with



ON THE SPECTRUM OF ASYMPTOTIC SLOPES 7

image Q. By taking direct image we obtain (f∗Q)max = (f∗W )max. Since f ∗(f∗W )max and

W are semistable of same slope, Q is a semistable vector bundle of same slope µ(W )
deg f

. By

Lemma 3.5(c), Q ∼= f ∗Q′ is itself a pull back. Then (f∗Q)max = (f∗f
∗Q′)max = Q′, hence

has the same rank as Q, which is at most rank W , a contradiction. �

4. Asymptotic Slopes and Strong Semistability

Let C be a smooth curve defined over an algebraically closed field k of arbitrary char-

acteristic. Let V be a vector bundle of rank r over C. For each 1 ≤ s < r, we denote the

slope of maximal subbundle by es(V ).

es(V ) := Max {
deg(W )

s
| W ⊂ V is a subbundle of rank s }

Define the asymptotic s-spectrum ASs(V ) and the asymptotic s-slope νs(V ) as follows:

ASs(V ) := {
es(f

∗(V ))

deg f
}

νs(V ) := Limsup
es(f

∗(V ))

deg f
= Limsup ASs(V )

where the supremum is taken over all finite morphisms f : D → C. Now we have the

following criterion for strong semistability in terms of the asymptotic slopes.

Theorem 4.1. A vector bundle V is strongly semistable if and only if νs(V ) = µ(V ) for

some s. Then the asymptotic s-slopes νs(V ) are equal to the usual slope µ(V ) for all s.

Proof. Let s be a given integer such that 1 ≤ s < r. In [BP], it is proved that a vector

bundle is strongly semistable if and only if for every morphism f : D → C, and for every

subbundle W ⊂ f ∗V of rank s, the slope of W is at most the slope of f ∗V . Hence if V is

not strongly semistable then there exists a finite morphism f : D → C and a subbundle

W ⊂ f ∗V of rank s such that µ(W ) > µ(f ∗(V )). Hence νs(V ) > µ(V ).

Assume V is strongly semistable. Then for any given finite map f : D → C, f ∗V is

semistable and hence for every subbundle W ⊂ f ∗V of rank s, the slope of W is at most

the slope of f ∗V . Hence νs(V ) ≤ µ(V ).

Given ǫ > 0, choose n ≫ 0 such that s(2g + ǫn) < nǫ. Then for the line bundle Ln,

OGr(s,V )(n) ⊗ π∗L separate points by Lemma 2.2. The kernel of the universal sequence

on a general complete intersection D on Gr(s, V ) defined by OGr(s,V )(n) ⊗ π∗L (which

exists as it separates points) has slope ns(r−s)([OGr(s,V )(1)]s(r−s) · F )(µ(V ) − s(2g+ǫn)
n

), by

Lemma 2.4. The degree of πD : D → C is ns(r−s)([OGr(s,V )(1)]s(r−s) · F ). Hence dividing

by the degree of D → C, we obtain a number whose difference with µ(V ) is less than ǫ.

Hence νr−s(V ) = µ(V ) for semistable bundles. �
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Remark 4.2. Let V be a strongly semistable vector bundle over a smooth curve C. Then

there is a sequence of genuinely ramified maps fi : Di → C such that

Lim
es(f

∗
i (V ))

deg fi

= µ(V )

follows from Lemma 3.4.

Let V• := {0 = V0 ⊂ · · · ⊂ Vl = V } be the Harder Narasimhan filtration of V . Let di, ri

denote the degree and rank of Vi for i = 0, 1, 2, · · · l. Assume that the Harder Narasimhan

factors Vi/Vi−1 are strongly semistable if the characteristic is positive. By [La], any vector

bundle on a curve in positive characteristic has such a Harder Narasimhan Filtration after

a finite number of Frobenius pull backs. Now we can determine the asymptotic slopes of

V for each s.

Theorem 4.3. sνs = di + (s − ri)µi+1 where ri < s ≤ ri+1

Proof. First we note that if L is any line bundle, then es(V ⊗L) = es(V )+deg L and the

spectrum ASs(V ⊗ L) = ASs(V ) + degL. Hence νs(V ⊗ L) = νs(V ) + degL. Since the

Harder-Narasimhan filtration of V ⊗ L is given by Vi ⊗ L, di(V ⊗ L) = di(V ) + ri · degL.

Now assuming the formula for V ⊗ L, we get:

s(νs(V ⊗ L)) = di(V ⊗ L) + (s − ri)µi+1(V ⊗ L)

s(νs(V )) + s(deg L) = di(V ) + ri(deg L) + (s − ri)(µi+1(V )) + (s − ri)(deg L)

By simplifying, we obtain the formula for V .

Hence by taking deg L to be sufficiently large we may assume that all µi’s are positive.

Let f : D → C be any finite map and W ⊂ f ∗(V ) be a subbundle of rank s. Let

Wj ⊂ f ∗(Vj/Vj−1) be the saturation of the image of W ∩ f ∗Vj in f ∗(Vj/Vj−1). Let

sj be the rank of Wj and δj be equal to
deg Wj

deg f
. Then we have sj ≤ rj − rj−1, ri <

∑
sj = s ≤ ri+1 and degree W

deg f
≤

∑
δj . Since Vj/Vj−1 is strongly semistable, we also have

δj ≤ sjµj ≤ (rj − rj−1)µj for all j ≥ 1. Now by comparing the first i terms and the rest

of the terms we get the inequality:

deg W

deg f
≤

l∑

j=1

sjµj =

i∑

j=1

sjµj+

l∑

j=i+1

sjµj ≤

i∑

j=1

(rj−rj−1)µj+

l∑

j=i+1

sjµi+1 ≤ di+(s−ri)µi+1

To show the equality we produce subbundles of rank s in coverings with degree divided

by the degree of the covering arbitrarily close to di + (s− ri)µi+1 where ri < s ≤ ri+1. By

Theorem 4.1, we can find a covering f : D → C and a subbundle Wi ⊂ f ∗(Vi/Vi−1) of

rank s− ri such that µ(Vi/Vi−1)− µ(Wi) < ǫ. Let W := π−1(Wi) be the inverse image of

Wi in Vi ⊂ V by the projection π : Vi → Vi/Vi−1. Then it shows that di + (s − ri)µi+1 −

µ(W )/deg f < ǫ. Hence the theorem. �
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Theorem 4.4. Let f : Y → X be a morphism and W ⊂ f ∗V be a subbundle of rank s

with ri < s ≤ ri+1, such that

deg (W )

deg f
> di + (s − ri)µi+1 − (µ(Vi) − µi+1)

Then f ∗Vi ⊂ W ⊂ f ∗Vi+1.

Proof. From the proof of Theorem 4.3, sνs = di + (s − ri)µi+1, the inequalities becomes

equality if and only if sj = rj −rj−1 for all j, and hence W ∩Vi = Vi, proving Vi ⊂ W . �

5. The geometry of the spectrum

Notice that the s-spectrum ASs(V ) ⊂ [es(V ), µmax(V )] ⊂ R is a subset of the bounded

interval. Hence it has maximum, minimum, and cluster points. We have described the

supremum (asymptotic slopes) of the spectrum for each s. This leads to the following

natural question.

Question: Are asymptotic s-slopes the only limit points of the spectrum? Or is it likely

to be dense in the interval [es(V ), µmax(V )]?

Now we give a criterion for the asymptotic slopes to be an isolated value for strongly

semistable vector bundles.

Lemma 5.1. Let V be a strongly semistable vector bundle. Then µ(V ) is an isolated

point of the asymptotic s-spectrum ASs(V ) if and only if ASs(V ) = { µ(V ) }, i.e., there

exists a subbundle W ⊂ V of rank s such that µ(W ) = µ(V ).

Proof. Assume W ⊂ V is a subbundle of slope µ(V ). Then for any map f : D → C,

f ∗(W ) ⊂ f ∗(V ) is a maximal subbundle and hence µ(f∗W )
deg f

= µ(W ) = µ(V ). Hence the

spectrum is a singleton, proving ASs(V ) = { µ(V ) }.

Let V be a strongly semistable vector bundle such that µ(V ) is isolated in the spectrum

ASs(V ).

From Remark 4.2 and the hypothesis that µ(V ) is isolated, it follows that there is a

genuinely ramified map such that the pull back of V has a subbundle of same slope. By

Lemma 3.5 (c), this subbundle descends to a subbundle of same slope as V . �

References

[BP] I. Biswas and A. J. Parameswaran, A criterion for strongly semistable principal bundles over a curve

in positive characteristic, Bull. Sci. Math. 128(9), 761-773.
[F] W. Fulton, Intersection Theory, Springer Verlag, New York (1984)
[L] A. Langer, Semistable sheaves in positive characteristic, Ann. of Math. 159 (2004), 251–276.
[LN] H. Lange and M.S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math.

Ann. 266 (1983), 55-72.
[MR] V. B. Mehta and A. Ramanathan, Restriction of stable sheaves and representations of the funda-

mental group, Inv. Math. 77 (1984), 163-172.



10 A. J. PARAMESWARAN AND S. SUBRAMANIAN

[M] J. P. Murre, Lectures on an introduction to Grothendieck’s theory of the fundamental group, T.I.F.R.
Lecture notes (1967).

[Ne] Newstead, Lectures on Introduction to moduli problems and orbit spaces, TIFR Lecture notes,
Narosa Publishing House, New Delhi (1978).

[N] M. V. Nori, The fundamental group scheme, Proc. Indian Acad. Sci. (Math. Sci.) 91 (1982), 73-122.
[RR] S, Ramanan and A. Ramanathan, Some remarks on the instability flag, Tohoku Math. Jour.

36(1984), 269-291.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,

Mumbai 400005, India

E-mail address : param@math.tifr.res.in

E-mail address : subramnn@math.tifr.res.in


	1. Introduction
	2. Preliminaries
	3. Genuinely ramified maps
	4. Asymptotic Slopes and Strong Semistability
	5. The geometry of the spectrum
	References

