Affine lines on \mathbb{Q}-homology planes

By

R. V. Gurjar and A. J. Parameswaran

1. Introduction

An algebraic surface X defined over \mathbb{C} is called a \mathbb{Q} (respectively \mathbb{Z}) homology plane if $H_i(X, \mathbb{Q}) = 0$ (resp. $H_i(X, \mathbb{Z}) = 0$) for all $i > 0$. By a result of T. Fujita, a \mathbb{Q}-homology plane is an affine surface. \mathbb{Q}-homology planes occur naturally and "abundantly" as follows. Let Z be a smooth rational surface and D a simply connected curve on Z whose irreducible components generate $H_2(Z; \mathbb{Q})$ freely. Then $X := Z - D$ is a \mathbb{Q}-homology plane (cf. Lemma 5).

Following results about the existence of contractible algebraic curves on \mathbb{Q}-homology planes are known.

(i) If $\kappa(X) = \infty$, then there is a morphism $\phi: X \to B$ where B is a nonsingular curve, such that a general fibre of ϕ is isomorphic to \mathbb{C}, and hence there are infinitely many contractible curves on X (cf. [M], Chapter I, Theorem 3.13).

(ii) If $\kappa(X) = 1$, then X contains at least one and at most two contractible curves (cf. [M-S], Lemma 2.15). If X is a \mathbb{Z}-homology plane with $\kappa(X) = 1$, then X contains a unique contractible curve and it is smooth (cf. [G-M]).

(iii) If $\kappa(X) = 2$, then X contains no contractible algebraic curve (cf. [M-T2]).

In this paper we complete the picture by proving the following (somewhat unexpected) result. For the terminology used in the statement of the theorem, see §1.

Theorem. Let X be a \mathbb{Q}-homology plane with $\kappa(X) = 0$. Then the following assertions are true.

(i) If X is not NC-minimal, then X contains a unique contractible curve C. Moreover C is smooth with $\kappa(X - C) = 0$.

(ii) If X is NC-minimal and not the surface $H[k, -k]$ in Fujita's classification, then X has no contractible curves.

(iii) If X is NC-minimal and is isomorphic to $H[k, -k]$ with $k \geq 2$, then there is a unique contractible curve C on X and it is smooth. Further, $\kappa(X - C) = 0$.

(iv) The surface $X = H[1, -1]$ has exactly two contractible curves, say C.
and \(L \). Further, both the curves are smooth, \(\bar{\kappa}(X-C) = 0 \) and \(\bar{\kappa}(X-L) = 1 \). The curves \(C \) and \(L \) intersect each other transversally in exactly two points.

It should be remarked that by a beautiful result of Fujita, there does not exist a \(\mathbb{Z} \)-homology plane \(X \) with \(\bar{\kappa}(X) = 0 \). This follows from the complete classification of NC-minimal \(\mathbb{Q} \)-homology planes with \(\bar{\kappa}(X) = 0 \) due to Fujita (cf. [F, §8.64]). A direct and short proof of this was recently found by the first author and M. Miyanishi. In this paper we use this classification of Fujita in a crucial way.

Combining the results in this paper with the earlier known results, we get the following.

Corollary. A \(\mathbb{Q} \)-homology plane with three contractible curves is of logarithmic Kodaira dimension \(-\infty\).

2. Notations and preliminaries

All algebraic varieties considered in this paper are defined over the field of complex numbers \(\mathbb{C} \).

For any topological space \(X \), \(e(X) \) denotes its topological Euler characteristic.

Given a connected, smooth, quasiprojective variety \(V \), \(\bar{\kappa}(V) \) denotes the logarithmic Kodaira dimension of \(V \) as defined by S. Iitaka (cf. [I]).

By a \((-n)\)-curve on a smooth algebraic surface we mean a smooth rational curve with self-intersection \(-n\). By a normal crossing divisor on a smooth algebraic surface we mean a reduced algebraic curve \(C \) such that every irreducible component of \(C \) is smooth, no three irreducible components pass through a common point and all intersections of the irreducible components of \(C \) are transverse. For brevity, we will call a normal crossing divisor an n.c. divisor. Let \(D \) be an n.c. divisor on a smooth surface. We say that \(D \) is a minimal normal crossing divisor if any \((-1)\)-curve in \(D \) intersects at least three other irreducible components of \(D \). A minimal normal crossing divisor will be called an m.n.c. divisor for brevity.

Following Fujita, we call a divisor \(D \) on a smooth projective surface \(Y \) pseudo-effective if \(H \cdot D \geq 0 \) for every ample divisor \(H \) on \(Y \).

For the convenience of the reader, we now recall some basic definitions which are used in the results about Zariski-Fujita decomposition of a pseudo-effective divisor (cf. [F], §6; [M-T], Chapter 1).

Let \((Y,D) \) be a pair of a nonsingular surface \(Y \) and a normal crossing divisor \(D \). A connected curve \(T \) consisting of irreducible curves in \(D \) (a connected curve in \(D \), for short) is a twig if the dual graph of \(T \) is a linear chain and \(T \) meets \(D-T \) in a single point at one of the end points of \(T \); the other end of \(T \) is called a tip of \(T \). A connected curve \(R \) (resp. \(F \)) in \(D \) is a club (resp. an abnormal club) if \(R \) (resp. \(F \)) is a connected component of \(D \) and the
homology planes

The dual graph of R (resp. F) is a linear chain (resp. the dual graph of the exceptional curves of a minimal resolution of singularities of a non-cyclic quotient singularity). A connected curve B in D is rational (resp. admissible) if each irreducible component of B is rational (resp. if none of the irreducible components of B is a (-1)-curve and the intersection matrix of B is negative definite). An admissible rational twig T is maximal if T is not contained in an admissible rational twig with more irreducible components.

Let $|T_d|$ (resp. $|R_d|$ and $|F_d|$) be the set of all admissible rational maximal twigs (resp. admissible rational maximal clubs and admissible rational maximal abnormal clubs). Then there exists a decomposition of D into a sum of effective \mathbb{Q}-divisors, $D = D^* + Bk(D)$, such that $\text{Supp}(Bk(D)) = \bigcup_i T_i \cup \bigcup_\mu R_\mu \cup \bigcup_\nu F_\nu$ and $(K_Y + D^*) \cdot Z = 0$ for every irreducible component Z of $\text{Supp}(Bk(D))$. The divisor $Bk(D)$ is called the bark of D, and we say that $K_Y + D^*$ is produced by the peeling of D. For details of how $Bk(D)$ is obtained from D, see [M-T].

The Zariski–Fujita decomposition of $K_Y + D$, in case $K_Y + D$ is pseudo-effective, is as follows:

There exist \mathbb{Q}-divisors P, N such that $K_Y + D \approx P + N$ where, \approx denotes numerical equivalence, and

(a) P is numerically effective (nef, for short). If $\kappa(Y - D) = 0$, then $P \approx 0$ by a fundamental result of Kawamata (cf. [Ka2]).

(b) N is effective and the intersection form on the irreducible components of N is negative definite

(c) $P \cdot D_i = 0$ for every irreducible component D_i of N.

N is unique and P is unique up to numerical equivalence. If some multiple of $K_Y + D$ is effective, then P is also effective.

The following result from [F, Lemma 6.20] is very useful.

Lemma 1. Let (Y, D) be as above. Assume that all the maximal rational twigs, maximal rational clubs and maximal abnormal rational clubs of D are admissible. Let $\kappa(Y - D) \geq 0$. As above, let $P + N$ be the Zariski decomposition of $K_Y + D$. If $N \neq Bk(D)$, then there exists a (-1)-curve L, not contained in D, such that one of the following holds:

(i) L is disjoint from D
(ii) $L \cdot D = 1$ and L meets an irreducible component of $Bk(D)$
(iii) $L \cdot D = 2$ and L meets two different connected components of D such that one of the connected components is a maximal rational club R_ν of D and L meets a tip of R_ν

Further, $\kappa(V - D - L) = \kappa(Y - D)$.

Following Fujita, we will say that a smooth affine surface V with $\kappa(V) \geq 0$ is NC-minimal if it has a smooth projective completion \bar{V} such that $D := \bar{V} - V$ is an m.n.c. divisor and $N = Bk(D)$, where $P + N$ is the Zariski–Fujita decomposition of $K_{\bar{V}} + D$.
The following results proved by Kawamata will be used frequently.

Lemma 2. (cf. [Ka1]). Let Y be a smooth quasi-projective algebraic surface and $f: Y \to B$ be a surjective morphism to a smooth algebraic curve such that a general fibre F of f is irreducible. Then $\kappa(Y) \geq \kappa(B) + \kappa(F)$.

Lemma 3. (cf. [Ka2]). Let Y be a smooth quasi-projective algebraic surface with $K(Y) = 1$. Then there is a Zariski-open subset U of Y which admits a morphism $f: U \to B$ onto a smooth algebraic curve B such that a general fibre of f is isomorphic to either \mathbb{C}^* or an elliptic curve.

We call such a fibration a \mathbb{C}^*-fibration or an elliptic fibration respectively.

Similarly, we can define a \mathbb{C}-fibration and a \mathbb{P}^1-fibration on a smooth projective surface.

As mentioned in the introduction, the next result follows from R. Kobayashi’s inequality and plays an important role in the proof of the theorem.

Lemma 4. (cf. [M-T2]). Let V be a smooth affine surface with $e(V) \leq 0$. Then $\kappa(V) \leq 1$.

We begin with some properties of \mathbb{Q}-homology planes.

Let X be a smooth affine surface and $X \subset Z$ be a smooth projective compactification with $D := Z - X$.

Lemma 5. Assume that the irregularity $q(Z) = 0$. Then X is a \mathbb{Q}-homology plane if and only if the irreducible components of D generate $H_2(Z; \mathbb{Q})$ freely and $H_1(D; \mathbb{Q}) = 0$.

Proof. We use the long exact cohomology sequence with \mathbb{Q}-coefficients of the pair (X, D). By Poincaré duality, $H^i(Z; D; \mathbb{Q}) = H_{4-i}(X)$. Hence $H_i(X) = 0$ for $i > 0$ if and only if the restriction map $H^i(Z; \mathbb{Q}) \to H^i(D; \mathbb{Q})$ is an isomorphism for $i < 4$. Since $H_1(Z; \mathbb{Q}) = H_3(Z; \mathbb{Q}) = 0$ by assumption, it follows that X is a \mathbb{Q}-homology plane if and only if $H_1(D; \mathbb{Q}) = 0$ and the irreducible components of D generate $H_2(Z; \mathbb{Q})$ freely.

Now let X be an affine surface with either a \mathbb{C}-fibration or a \mathbb{C}^*-fibration, $\Phi: X \to B$. For a suitable smooth compactification $X \subset Z$ we get a \mathbb{P}^1-fibration $\Phi: Z \to \overline{B}$, where \overline{B} is a smooth compactification of B. We will need the following result due to Gizatullin.

Lemma 6. Let F be a scheme-theoretic fibre of Φ. Then we have:

1. F_{red} is a connected normal crossing divisor all whose irreducible components are isomorphic to \mathbb{P}^1.
2. If F is not isomorphic to \mathbb{P}^1, then F_{red} contains a (-1)-curve. If a (-1)-curve occurs with multiplicity 1 in F, then F_{red} contains another (-1)-curve.
Note that from (1) it follows that a \((-1)\)-curve in \(F_{\text{red}}\) meets at most two other irreducible components of \(F\).

Let \(\phi: X \rightarrow B\) be a \(\mathbb{C}^*\)-fibration and \(\Phi: Z \rightarrow \overline{B}\) be an extension as above. Then \(D\) contains either one or two irreducible components which map onto \(\overline{B}\) by \(\Phi\). We will call these components as horizontal. All other irreducible components of \(D\) are contained in the fibres of \(\Phi\). An irreducible component of \(D\) will be called a \(D\)-component for the sake of brevity. We say that \(\phi\) is twisted if there is only one horizontal \(D\)-component (in \([F]\), such a fibration is called a gyozâ). Otherwise we say that \(\phi\) is untwisted (in \([F]\), such a fibration is called a sandwich). In the untwisted case the horizontal \(D\)-components are cross-sections of \(\Phi\) and in the twisted case the horizontal \(D\)-component is a \(2\)-section.

The next result follows by an easy counting argument using the fact that the irreducible components of the divisor at infinity in a smooth compactification of a \(\mathbb{Q}\)-homology plane generate the Picard group, \(\text{Pic}(X)\), freely over \(\mathbb{Q}\).

Lemma 7. (cf. [G-M], Lemma 3.2). Let \(\phi: X \rightarrow B\) be a \(\mathbb{C}^*\)-fibration on a \(\mathbb{Q}\)-homology plane \(X\). Then we have:

1. If \(\phi\) is twisted, then \(B \cong \mathbb{C}\), all the fibres of \(\phi\) are irreducible, there is a unique fibre \(F_0\) of \(\phi\) such that \(F_{\text{red}}\) is isomorphic to \(\mathbb{C}\) and all other fibres are isomorphic to \(\mathbb{C}^*\), if taken with reduced structure.

2. If \(\phi\) is untwisted and \(B \cong \mathbb{P}^1\), then all the properties of the fibres of \(\phi\) are the same as (1) above.

3. If \(\phi\) is untwisted and \(B \cong \mathbb{C}\), then \(\phi\) has exactly one fibre \(F_0\) with two irreducible components and all the other fibres are isomorphic to \(\mathbb{C}^*\), if taken with reduced structure. Either both the components of \(F_0\) are isomorphic to \(\mathbb{C}\) which intersect transversally in one point or they are disjoint with one isomorphic to \(\mathbb{C}\) and the other one isomorphic to \(\mathbb{C}^*\).

In order to avoid repetitive arguments in the proof of the theorem, we give detailed proof of the next result and use such arguments without details later on.

Lemma 8. Let \(X\) be a \(\mathbb{Q}\)-homology plane with \(\kappa(X) = 0\) and \(\phi: X \rightarrow B\) be a \(\mathbb{C}^*\)-fibration. Let \(F_0\) be the reducible fibre of \(\phi\) (cf. lemma 7) which contains a contractible irreducible curve \(C\). Consider a smooth completion \(Z \supset X\) with \(D := Z - X\) an n.c. divisor and \(\Phi: Z \rightarrow \mathbb{P}^1\) a \(\mathbb{P}^1\)-fibration which extends \(\phi\).

1. Suppose \(\phi\) is twisted.

If \(\kappa(X - C) = 0\), then the morphism \(X - C \rightarrow \mathbb{C}^*\) has no singular fibres. If \(\kappa(X - C) = 1\), then the morphism \(X - C \rightarrow \mathbb{C}^*\) has at least one multiple fibre.

In both the cases, the fibre over the point \(p_\infty := \mathbb{P}^1 - B\) can be assumed to have the dual graph.
and the horizontal component D_h intersects the (-1)-curve transversally in a single point.

(2) Suppose ϕ is untwisted and $B \cong \mathbb{C}$.

Then the fibre F_∞ over p_∞ is a regular fibre of Φ and the two horizontal D-components meet this fibre in two distinct points. The morphism $X - C \to \mathbb{C}$ has at least one multiple fibre.

(3) Suppose ϕ is untwisted and $B \cong \mathbb{P}^1$.

If $\overline{k}(X - C) = 0$, then $\phi': X - C \to \mathbb{C}$ has at least one and at most two multiple fibres. If ϕ' has two multiple fibres, then their multiplicities are 2 each. If $\overline{k}(X - C) = 1$, then ϕ' has at least two multiple fibres.

Proof. (1) Let $\phi = \phi|_{X - C}$. Suppose ϕ' has a multiple fibre, say $m_1 F_1$, with $m_1 \geq 2$. Denote by p_0, p_1 the points $\phi(C), \phi(F_1)$ respectively. Using lemma 9, we can construct a finite ramified covering $\tau: A \to \mathbb{C}$, ramified only over p_0, p_1 such that the ramification index over p_i is m_i for $i = 0, 1$, where m_0 is a large integer. Then the normalization of the fibre product $A \times C$ contains a Zariski-open subset U which is a finite étale covering of $X - C$. Since $\overline{k}(A) = 1$ for large m_0, by lemma 2, $\overline{k}(U) = 1$. But then $\overline{k}(X - C) = 1$, since \overline{k} does not change under finite étale coverings by a result of Iitaka (cf. [1]). This contradiction shows that ϕ' has no multiple fibre, if $\overline{k}(X - C) = 0$. Hence ϕ' has no singular fibre.

If ϕ' has no multiple fibre, then $X - C$ has a 2-sheeted étale cover which is isomorphic to $\mathbb{C}^* \times \mathbb{C}^*$. Hence $\overline{k}(X - C) = 0$.

The assertion about the fibre F_∞ is proved by Fujita in [F], lemma 7.5(2).

(2) The assertion about F_∞ is proved in [F], lemma 7.6(1). If ϕ' has no multiple fibre, then $X - C$ is isomorphic to $\mathbb{C} \times \mathbb{C}^*$, contradicting the assumption that $\overline{k}(X) = 0$.

(3) Suppose $\overline{k}(X - C) = 0$. If ϕ' has no multiple fibre, then $X - C$ is isomorphic to $\mathbb{C} \times \mathbb{C}^*$, a contradiction. If ϕ' has two multiple fibres $m_1 F_1, m_2 F_2$, then letting p_i be the points $\phi(F_i)$ for $i = 0, 1, 2$, we can construct a finite galois covering $\tau: A \to \mathbb{P}^1$ which is ramified only over p_i and the ramification index at any point over p_i is m_i for $i = 0, 1, 2$. If one of the m_1, m_2 is strictly bigger than 2, then for large m_0, A is non-rational. But then we see that $\overline{k}(X - C) \geq 1$. Hence $m_1 = m_2 = 2$.

The proof for the case $\overline{k}(X - C) = 1$ is similar.

The next result follows from R. H. Fox's solution of Fenchel's conjecture (cf. [Fo] and [C]).

Lemma 9. Let a_1, \ldots, a_r be distinct points in \mathbb{P}^1 with $r \geq 3$ and m_1, \ldots, m_r be integers ≥ 2. Then there is a finite Galois covering $\tau: B \to \mathbb{P}^1$ such that the rami-
Lemma 10. Let C_1, C_2 be two distinct contractible curves on a \mathbb{Q}-homology plane X with $\kappa(X) \geq 0$. Then $C_1 \cap C_2 \neq \emptyset$ and if the intersection is a single point then it is transverse.

Proof. Since $e(X - C_1) = 0$, by lemma 4, $\kappa(X - C_1) \leq 1$. Clearly, $\kappa(X - C_1) \geq 0$.

Consider the case $\kappa(X - C_1) = 0$. Since $\text{Pic}(X)$ is finite, there exists a regular function f of X such that $(f) = mC_1$ for some integer m. We can assume that the morphism given by $f: X - C_1 \to \mathbb{C}^*$ has connected general fibres. Then by lemma 2, a general fibre of this morphism is isomorphic to \mathbb{C}^*. Thus, X has a \mathbb{C}^*-fibration such that C_1 is contained in a fibre. Suppose $C_1 \cap C_2 = \emptyset$. Since C_2 does not contain any non-constant units, the image of C_2 is a point. This contradicts lemma 7.

Suppose $\kappa(X - C_1) = 1$. If $C_1 \cap C_2 = \emptyset$, then $e(X - (C_1 \cup C_2)) = -1$ and hence by lemma 4, $\kappa(X - (C_1 \cup C_2)) = 1$. Then by lemma 3 we see that $X - (C_1 \cup C_2)$ has a \mathbb{C}^*-fibration. Since X does not contain any complete curves, this morphism extends to a \mathbb{C}^*-fibration on X. Then C_1 and C_2 are mapped to points, otherwise the fibration is a \mathbb{C}-fibration. Again by lemma 7, both C_1, C_2 lie in the same fibre and hence C_1, C_2 intersect transversally in a single point by part (3) of lemma 7.

Now we know that $C_1 \cap C_2 \neq \emptyset$. Suppose $C_1 \cap C_2$ is a single point. Then $e(C_1 \cup C_2) = 1$, $e(X - C_1 \cup C_2) = 0$, and hence $\kappa(X - (C_1 \cup C_2) \leq 1$ by lemma 4. Arguing as above, we see that X admits a \mathbb{C}^*-fibration such that $C_1 \cup C_2$ is contained in a single fibre and hence they intersect transversally in a single point, again by lemma 7.

3. Fujita's classification

In this section we describe the classification of NC-minimal \mathbb{Q}-homology planes with $\kappa = 0$ due to Fujita (cf. [F], 8.64). There are four types of such surfaces. We also describe Fujita's surfaces $H[-1, 0, -1]$, which are NC-minimal surfaces with $\kappa = 0, e = 0$ and $b_1 = 1$.

Type 1 (cf. [F], §8.26). $H[k, -k]$ with $k \geq 1$

The dual graph of the divisor D at infinity for an m.n.c. compactification is given by

\[\begin{array}{c}
T_1 & \bullet \\
B_1 & \bullet \\
T_3 & \bullet \\
T_2 & \bullet \\
B_2 & \bullet \\
T_4 & \bullet \\
\end{array} \]
Here \(B_i^2 = k, B_i^3 = -k \) and \(T_i^2 = -2 \) for all \(i \). There is a \((-1)\)-curve \(E_1 \) meeting the tips \(T_1, T_2 \) transversally in a single point and no other point of \(D \). Similarly, there is a \((-1)\)-curve \(E_2 \) meeting \(T_3, T_4 \) transversally in a single point and no other point of \(D \). The divisor \(F_1 = T_1 + 2E_1 + T_2 \) is a fibre of a \(\mathbb{P}^1 \)-fibration \(\Phi \) on \(X \) and \(F_2 = T_3 + 2E_2 + T_4 \) is another fibre of \(\Phi \). The curves \(B_1 \) and \(B_2 \) are cross sections of \(\Phi \). Let \(F_0 \) be the fibre of \(\Phi \) through \(B_1 \cap B_2 \). Clearly \(C = F_0 - (B_1 \cap B_2) \cong \mathbb{C} \), hence \(C \) is a contractible curve in \(X \).

Lemma 11. \(\kappa (X-C) = 0 \).

Proof. The \(\mathbb{C}^* \)-fibration \(\phi : X-C \to \mathbb{C} \) has exactly two multiple fibres corresponding to \(2E_1 \) and \(2E_2 \). Let \(p_i = \phi (F_i) \) for \(i = 0, 1, 2 \). Using lemma 9 we can construct a degree 2 galois covering \(\tau : B \to \mathbb{P}^1 \) such that the ramification index over \(p_i \) is 2 for each \(i \). By Riemann–Hurwitz formula, \(B \cong \mathbb{P}^1 \). Then \(X \times \tau B \to B \) is a \(\mathbb{C}^* \)-fibration and \(X \times \tau B - \tau^{-1} (C) \) is an étale cover of \(X-C \) isomorphic to \(\mathbb{C}^* \times \mathbb{C}^* \). Hence \(\kappa (X-C) = 0 \).

Types 2, 3 and 4 are denoted by \(Y[3, 3, 3], Y[2, 4, 4] \) and \(Y[2, 3, 6] \) respectively by Fujita (§8.37, 8.53, 8.54, 8.59, 8.61). The dual graphs of each of these have a unique branch point. There are three maximal twigs \(T_1, T_2 \) and \(T_3 \) for each of them and \(\sum_1^3 1/d (T_i) = 1 \), where \(d (T_i) \) is the absolute value of the determinant of the intersection matrix of \(T_i \).

Fujita has shown that \(\pi_1 (X) \) is a finite cyclic group for any NC-minimal \(\mathbb{Q} \)-homology plane with \(\kappa (X) = 0 \). This result will be used effectively in the next section.

Now we will describe the surfaces \(H[-1, 0, -1] \) (cf. [F], §8.5).

The dual graph of an m.n.c. divisor at infinity is given by

![Diagram](image)

Here, \(B_1^2 = B_2^3 = -1, D_0^2 = 0 \) and \(T_i^2 = -2 \).

4. Proof of the Theorem (Non NC-minimal case)

Let \(X \) be a \(\mathbb{Q} \)-homology plane with \(\kappa (X) = 0 \). In this section we prove the following.

Proposition. Suppose \(X \) does not have an NC-minimal compactification, then \(X \) contains a unique contractible curve.

Proof. Suppose \(L \) is a contractible curve in \(X \). Then \(\kappa (X-L) \leq 1 \) and there is a \(\mathbb{C}^* \)-fibration \(\phi' : X-L \to \mathbb{P}^1 \) which extends to a \(\mathbb{C}^* \)-fibration \(\phi : X \to \mathbb{P}^1 \).
and $\phi(L)$ is a point (cf. proof of lemma 10). We choose a smooth compactification $X \subset \mathbb{Z}$ such that $D = Z - X$ is a normal crossing divisor and ϕ extends to a \mathbb{P}^1-fibration $\Phi: Z \to \mathbb{P}^1$. We now consider the three cases given by lemma 7.

Case 1. ϕ is twisted. By lemma 7 (1), $B \cong \mathbb{C}$ and every fibre of ϕ is irreducible. The fibre $F_\infty = \Phi^{-1}(p_\infty)$ has the dual graph as described in lemma 8 (1) and the 2-section D_h meets the (-1)-curve in F_∞ transversally in a single point.

First consider the case $\kappa(X - L) = 0$. The surface $X - L$ has the following properties.

(i) $X - L$ is affine
(ii) $\kappa(X - L) = 0$
(iii) $e(X - L) = b_g(X - L) = 0$ and $b_1(X - L) = 1$
(iv) $X - L$ is NC-minimal.

The property (iii) follows from the long exact cohomology sequence with compact support of the pair (X, L) and duality. The property (iv) follows from the observation that if $X - L$ is not NC-minimal, then by lemma 1, $X - L$ contains a curve $C \cong \mathbb{C}$. But then C is closed in X and disjoint from L, contradicting lemma 10.

Now the surface $X - L$ is isomorphic to $H[-1, 0, -1]$. Let F_0 be the fibre of Φ containing L. We may assume that any (-1)-curve in D contained in F_0 meets at least two other D-components in F_0. Since D is a connected tree of \mathbb{P}^1's, either $F_{\text{red}} = \overline{L}$ or the horizontal component D_h meets an irreducible component D_0 of D which occurs with multiplicity 2 in F_0 (observe that $F_0 - \overline{L}$ is connected). Suppose $D_1 \subset D$ is a (-1)-curve in F_0 which is disjoint from D_h. Then by lemma 6 (1), D_1 meets at most two other D-components contained in F_0. Hence we can contract D_1 to a smooth point and get another compactification Z_1 which satisfies the same properties as Z.

Repeating this argument we can assume that \overline{L} and D_0 are the only possible (-1)-curves in F_0. Moreover, if D_0 is a (-1)-curve then it meets two other D-components. We claim that D_h is not a (-1)-curve. Otherwise, the m.n.c. divisor obtained from $D \cup \overline{L}$ by succession of contractions of (-1)-curves cannot be of the type described by Fujita. Now we see that D is an m.n.c. divisor.

Since X is not NC-minimal and D is m.n.c., there exists a (-1)-curve \overline{C} given by lemma 1. Let $C = \overline{C} \cap X$. If $\overline{C} \neq \overline{L}$ then \overline{C} is horizontal as it has to meet L. Hence \overline{C} meets one of the tip components T_i of F_∞. As above, $X - C$ is also of the type $H[-1, 0, -1]$. By contracting C and then the image of T_i, we obtain a compactification divisor of $X - C$ which is not of type $H[-1, 0, -1]$. Hence $C = L$.

By lemma 8 (1), $\kappa(X - L) = 1$ if and only if ϕ has at least one multiple fibre other than L. Now assume that $\kappa(X - L) = 1$. Then we can see that D_h
meets at least three D-components and hence D can be assumed to be m.n.c. as above. By lemma 1, there is a (-1)-curve \tilde{C} in Z satisfying the properties stated there. We arrive at a contradiction as above by first contracting C and then T_i.

Case 2. ϕ is untwisted and $B \cong \mathbb{C}$. Now ϕ has a unique fibre which contains two irreducible components, say L and L'. Any other fibre of ϕ is isomorphic to C^*, if taken with reduced structure. The fibre F_∞ is a smooth fibre of ϕ and the two horizontal components of D meet F_∞ in distinct points. The divisor D may not be m.n.c., but it is obtained from an m.n.c. divisor by successive blow-ups. By lemma 8(2), the morphism $X \to \mathbb{C}$ has at least one multiple fibre. From this we can see as above that D can be assumed to be m.n.c. Again since X is not NC-minimal, we get a (-1)-curve $\tilde{C} \cong \mathbb{P}^1$ on Z which meets only a twig component of D. If $\tilde{C} \neq L$, then we get a contradiction as above.

Case 3. ϕ is untwisted and $B \cong \mathbb{P}^1$. Then every fibre of ϕ is irreducible. Any fibre of ϕ other than L is isomorphic to C^*, if taken with reduced structure. By lemma 7.6 of [F], we can assume that every fibre of Φ other than the fibre F_0 containing L is a linear chain such that the two horizontal components of D meet the tip components of the fibre. From the connectivity of D we see that the union of D-components in F_0 is connected. Denote by D_1, D_2 the horizontal components. Let D_0 be a D-component contained in F_0 which meets D_1 or D_2. Then D_0 occurs with multiplicity 1 in F_0. If D_0 is a (-1)-curve it can meet at most one more D-componet in F_0. Hence we can contract D_0 to get a smaller compactification of X. Consequently we can assume that L is the unique (-1)-curve in F_0.

Now $(K_Z + D) \cdot \tilde{L} = 0$. On the other hand, if $K_Z + D \cong P + N$ is the Zariski-Fujita decomposition then $P \cong 0$ by the properties of the Zariski decomposition. Hence $N \cdot L = 0$. From the assumption that X is not NC-minimal, we know that there exists a curve $C \subset X$ such that $C \cong \mathbb{C}$ and its closure \bar{C} occurs in N. But by lemma 10 if $L \neq C$ then $L \cdot C > 0$.

If $\kappa(X-L) = 1$, then by lemma 8, the morphism $X \to \mathbb{C}$ has at least two multipie fibres. Then both D_1 and D_2 are branch points for the dual graph of D and hence D is m.n.c. The curve \bar{C} above can be assumed to be a (-1)-curve. Since $\bar{C} \cdot \tilde{L} > 0$, the intersection form on the subspace of Pic $Z \otimes \mathcal{O}$ generated by \bar{C} and \tilde{L} is not negative definite. Hence \tilde{L} does not occur in N and $N \cdot \tilde{L} > 0$ as $\bar{C} \subset N$, a contradiction. If $\kappa(X-L) = 0$, then we have a morphism $X \to \mathbb{C}$ with one fibre mL and general fibre isomorphic to C^*, as in the proof of lemma 10. This is a twisted fibration by lemma 7. Then we are reduced to the case 1 and hence L is the unique contractible curve. This completes the proof of the proposition.
5. Proof of the Theorem (NC-minimal case)

We begin with the following general result.

Lemma 12. Let Γ be a connected normal crossing divisor on a smooth projective surface Y. Assume the following conditions.

(i) Every irreducible component of Γ is isomorphic to \mathbb{P}^1.

(ii) The dual graph of Γ has at most one branch point.

(iii) If the dual graph has a branch point, then Γ has exactly three maximal twigs T_1, T_2 and T_3 and $\sum 1/d(T_i) > 1$.

(iv) Γ supports a divisor G with $G \cdot G > 0$.

Then $\overline{K}(Y-\Gamma) = -\infty$.

Proof. Suppose that $\overline{K}(Y-\Gamma) \geq 0$. We will give the proof when Γ has a branch point. Then $K_Y + \Gamma$ has a Zariski-decomposition $P + N$. First assume that (Y, Γ) is NC-minimal. Then $N = B_k(\Gamma)$. Let C_1, C_2 and C_3 be the irreducible components of the maximal twigs T_1, T_2 and T_3 respectively meeting C_0, the Γ-component corresponding to the branch point. By lemma 6.16 of [F], the coefficients of C_i in $B_k(\Gamma)$ are $1/d(T_i)$. Hence $P = K_Y + C_0 + \sum_{i=1}^{3} (1 - \frac{1}{d(T_i)}) C_i + \cdots$. But then $P \cdot C_0 = -2 + \sum (1 - 1/d(T_i)) < 0$, contradicting the fact that P is nef.

If (Y, Γ) is not NC-minimal, by lemma 1 we can reduce to the case when there is a (-1)-curve E on Y which occurs in N, E is not contained in Γ and $E \cdot \Gamma = 1$, where E meets a component of $B_k(\Gamma)$. Then $\overline{K}(Y-\Gamma) = \overline{K}(Y-\Gamma \cup E)$. By contracting E and any (-1)-curves in the maximal twigs successively we reduce to the situation when either the image of Γ becomes linear or a maximal twig has a vertex with non-negative weight or the NC-minimal case occurs. If a maximal twig has a vertex with non-negative weight then by lemma 6.13 of [F], we get $\overline{K}(Y-\Gamma) = -\infty$, a contradiction. This proves the result.

Let X be an NC-minimal \mathbb{Q}-homology plane with $\overline{K}(X) = 0$. Then $\pi_1(X)$ is a finite cyclic group by Fujita.

Lemma 13. Assume that X contains a contractible curve C. Then X is of type $H[k, -k], k \geq 1$.

Proof. As before, there is a \mathbb{C}^* fibration $\phi: X \rightarrow B$ with $\phi(C)$ a point and $B \cong \mathbb{C}$ or \mathbb{P}^1. We consider the three cases depending on the type of ϕ.

Case 1. ϕ is twisted.

Then $B \cong \mathbb{C}$ and all the fibres of ϕ are irreducible. We claim that ϕ has at most one multiple fibre. Let p_1, \ldots, p_r be the points in B corresponding to the multiple fibres and $p_\infty = \mathbb{P}^1 - B$. If $r \geq 2$, then we can construct a suitable non-cyclic covering $A \rightarrow \mathbb{P}^1$, ramified over $p_1, \ldots, p_r, p_\infty$. Then we get a connected étale cover $\widetilde{X} \rightarrow X$ with non-cyclic galois group. This is not possible.
Hence $r \leq 1$.

As before, ϕ extends to a \mathbb{P}^1-fibration $\Phi: Z \rightarrow \mathbb{P}^1$ on a smooth compatification Z of X. Let $D = Z - X$. As in lemma 8, we see that $\overline{\kappa}(X - C) = 0$ if the morphism $X - C \rightarrow \mathbb{C}^*$ has no multiple fibre. Let F_0 be the fibre of Φ containing C.

Using the lemma 12, we now see that the dual graph of D has at least one branch point. But the fibre F_∞ has the form

```
-2 -1 -2
```

by lemma 8 (1). Hence by lemma 12 again D has at least two branch points and D is obtained from an NC-minimal divisor of the form $H[k, -k]$ for $k \geq 1$.

If the morphism $X - C \rightarrow \mathbb{C}^*$ has a multiple fibre with multiplicity $m > 1$ and $F_0 \neq C$ then the divisor D is m.n.c and the 2-section D_h meets at least four other curves in D. This contradicts Fujita’s classification. Hence either the morphism $X - C \rightarrow \mathbb{C}^*$ has no multiple fibre or $C = F_0$. In the later case, $X - C \rightarrow \mathbb{C}^*$ has one multiple fibre by lemma 12 and $\overline{\kappa}(X - C) = 1$. Further, D_h is a branch point of D.

Case 2. ϕ is untwisted and $B = \mathbb{C}$.

We claim that this case does not occur. First we observe that the fibre F_∞ is a regular fibre of Φ and the two horizontal components meet F_∞ in two distinct points. It is easy to see that D cannot be obtained from any of the surfaces Fujita has described by a finite succession of blowing-ups.

Case 3. ϕ is untwisted and $B \cong \mathbb{P}^1$

The fibration ϕ has at most two multiple fibres by lemma 8. The curve $F_0 - C$ is connected. The morphism $\phi': X - C \rightarrow \mathbb{C}$ has at least one multiple fibre by lemma 8 (3). If ϕ' has only one multiple fibre, then $X - C$ contains $\mathbb{C}^* \times \mathbb{C}^*$ as a Zariski open subset and hence $\overline{\kappa}(X - C) = 0$. Suppose ϕ' has two multiple fibres. Then D is m.n.c. and we see that the horizontal D-components D_1 and D_2 intersect in a point on \overline{C}. This shows that X is of type $H[k, -k]$. Further, the multiple fibres have multiplicity 2 each (otherwise D cannot be of type $H[-1, 0, -1]$) and $\overline{\kappa}(X - C) = 0$, as in the proof of lemma 8 (3).

Next we prove the following.

Lemma 14. Let X be of type $H[k, -k]$ and X contains a contractible curve L with $\overline{\kappa}(X - L) = 1$. Then $k = 1$.

Proof. From the proof of lemma 10, we know that there is a twisted \mathbb{C}^*-fibration $\phi: X \rightarrow \mathbb{C}$ with $\phi(L)$ a point. Further, ϕ' has exactly one multiple fibre, where $\phi': X - L \rightarrow \mathbb{C}^*$ is the restriction. The horizontal component D_h is a branch point for D and the fibre F_∞ has the dual graph.
\(Q \)-homology planes

\[
\begin{array}{c}
-2 & -1 & -2
\end{array}
\]

\(\tilde{L} \) is a reduced fibre of \(\phi \) by the proof of case 1 of lemma 13. Using lemma 6 repeatedly we see that \(\tilde{L} \) can be assumed to be the full fibre of \(\phi \). From Fujita's description of \(D \), we see that \(k=1 \) because the branch points intersect and one of them is a \((-1)\)-curve.

To complete the proof of the theorem, it remains to prove the following result.

Lemma 15. (1) On the surface \(X \) of type \(H[k, -k] \), there is a unique contractible curve \(C \) with \(\kappa(X-C)=0 \).

(2) On \(H[1, -1] \) there is a unique contractible curve \(L \) with \(\kappa(X-L)=1 \).

(3) If \(k=1 \) and \(C \) and \(L \) are the contractible curves as above then \(C \cdot L = 2 \) and they meet transversally.

Proof. (1) Let \(C \) be a contractible curve on \(X \) with \(\kappa(X-C)=0 \). There is a \(C^* \)-fibration \(\phi: X \to C \) such that for some \(m \geq 1 \), \(mC \) is a fibre of \(\phi \). Then \(\phi \) is a twisted fibration. Let \(X \subset Z \) be a smooth projective compactification such that \(\phi \) extends to a \(\mathbb{P}^1 \)-fibration \(\Phi: Z \to \mathbb{P}^1 \). By lemma 8 (1) there is no multiple fibre for the map \(X \to C \to C^* \). The fibre \(F_\infty \) has the dual graph,

\[
\begin{array}{c}
\vdots &
\vdots &
\vdots
\end{array}
\]

and \(D_h \) meets the \((-1)\)-curve in \(F_\infty \). Let \(F_0 \) be the fibre of \(\phi \) containing \(\tilde{C} \) and \(D_0 \) be the \(D \)-component of \(F_0 \) that meets \(D_h \). We claim that \(D_0 \) meets only one other \(D \)-component in \(F_0 \). If not, \(D_0 \) is a branch point of \(D \) and from Fujita's classification, we deduce that \(D_h \) is a \((-1)\)-curve and after contracting \(D_h \), we get an NC-minimal completion of \(X \). But this is not of type \(H[k, -k] \) with \(k \geq 1 \). Hence we may even assume that \(D_0 \) is not a \((-1)\)-curve.

As before, we may assume that \(\tilde{C} \) is the only \((-1)\)-curve in \(F_0 \). Since an NC-minimal completion of \(X \) is obtained from contracting suitable \((-1)\)-curves in \(D \), we conclude that \(D_h \) is a \((-1)\)-curve. Then \(D_0 \) is a \((-2)\)-curve. By repeating this argument, we infer that the dual graph of \(\tilde{C} \cup D \) is

\[
\begin{array}{c}
\vdots &
\vdots &
\vdots &
\vdots
\end{array}
\]
By successive contractions of \((-1)\)-curves starting with \(D_h\), we get an m.n.c. compactification divisor of \(X\) such that the dual graph of the image of \(\bar{C} \cup D\) looks like \(H[k, -k]\), with the image of \(\bar{C}\) passing through the intersection of the two branching curves. From this it is easy to see that the curve \(\bar{C}\) is unique.

(2) Let \(L\) be a contractible curve on \(X\) with \(\bar{\kappa}(X-L) = 1\). By the proof of case 1 of lemma 13 and lemma 14, we can assume that \(\bar{L} \cup D\) looks like

```
  1  \(\bar{L}\)  \(-2\)
    \(-2\)
    \(-2\)  \(-1\)  \(-2\)
```

Clearly, \(\bar{L}\) is a full fibre of the \(\mathbb{P}^1\)-fibration on \(Z\) given by the linear system \([T_2+2B_2+T_4]\). Therefore \(L\) is unique.

(3) We have seen that \(\bar{C}\) passes through the intersection of \(B_1\) and \(B_2\) and meets transversally with both. Hence \(\bar{C} \cdot \bar{L} = 2\). Now by lemma 10, \(C \cap L\) consists of 2 distinct points as \(\bar{L}\) does not pass through \(B_1 \cap B_2\). This completes the proof of the theorem.

School of Mathematics,
Tata Institute of Fundamental Research,
Homi Bhabha Road,
Bombay 400 005, India

E-Mail: gurjar@tifrvax.bitnet
param@tifrvax.bitnet

References

