A VARIANT OF NOETHER NORMALISATION

Dedicated to Professor Paolo Salmon on his sixtieth birthday

Abstract. Let \(X \) be an affine variety over an infinite field \(k \), together with a collection of finite morphisms \(f_i : X \to \mathbb{A}^{n_i} \). We prove that for the general 'product' linear projection \(\prod_i p_i : \prod_i \mathbb{A}^{n_i} \to \prod_i \mathbb{A}^{s_i} \), the composite \(p \circ (\prod_i f_i) : X \to \mathbb{A}^{\sum i s_i} \) is finite, provided \(\sum_i s_i \geq \dim X \). This generalizes the Noether Normalisation theorem, in a manner analogous to Nori's generalisation of the 'Whitney embedding theorem' for smooth affine varieties. It also extends Nori's theorem (and its generalisation to non-smooth varieties) to more than 2 factors.

The aim of this note is to prove the following variant of Noether normalization.

Theorem 1. Let \(X \) be an affine variety of dimension \(d \) over an infinite field \(k \). Let \(f_i : X \to \mathbb{A}^{n_i}, 1 \leq i \leq m \) be finite morphisms, and let \(h = (f_1, \ldots, f_m) : X \to \mathbb{A}^{n}, n = n_1 + \cdots + n_m \), be the product morphism. Let \(V_i, 1 \leq i \leq m \) respectively denote the \(k \)-vector spaces of linear homogeneous functions on \(\mathbb{A}^{n_i}, 1 \leq i \leq m \).

Suppose that \(r_i, 1 \leq i \leq m \), are chosen with \(0 < r_i \leq n_i \) and \(r_1 + \cdots + r_m = d \), and let \(G_i \) denote the Grassmannian of \(r_i \)-dimensional subspaces of \(V_i \); set \(G = G_1 \times \cdots \times G_m \). Then there exists a non-empty Zariski open subset \(U \subset G \) such that for \(x \in U(k) \), if \(W_i \subset V_i \) are the corresponding subspaces, and \(g_i : \mathbb{A}^{n_i} \to \mathbb{A}^{r_i} \) the projection determined by
This was motivated by an argument of Nori, used to compare two embeddings of a smooth, \(n \)-dimensional affine variety over an infinite field \(k \) in \(\mathbb{A}^{2n+2}_k \) (see [S] for an extension of Nori's result to the case of an arbitrary affine \(k \)-scheme of finite type). The above form of Noether normalisation implies a result about embeddings, generalising Theorem 1 of [S].

To state this generalisation, we recall some notation from [S]. If \(X = \text{Spec} \ A \) is an affine \(k \)-scheme of finite type, and \(M \) is a finite \(A \)-module, define

\[
\eta(M) = \dim \text{Spec} \ S_A(M),
\]

where \(S_A(M) \) is the symmetric algebra of \(M \) over \(A \). We then have an expression for \(\eta(M) \),

\[
\eta(M) = \sup_{P \in \text{Spec} \ R} \left\{ \mu_P(M) + \dim A/P \right\},
\]

here \(\mu_P(M) = \dim_{k(P)} M \otimes_A k(P) \), where \(k(P) \) is the residue field of \(A_P \). If \(M \) is supported at all minimal primes of \(A \), then the number \(\eta(M) \) may also be interpreted as the bound on the number of generators of \(M \) as an \(A \)-module given by Forster (see [F]). The above formula for \(\eta(M) \) is easily proved by considering the dimensions of fibres of the morphism \(\text{Spec} \ S_A(M) \to \text{Spec} A \) — indeed, for \(P \in \text{Spec} A \), the (scheme theoretic) fibre of \(\text{Spec} S_A(M) \to \text{Spec} A \) over the point \(P \) is the affine space of dimension \(\mu_P(M) \) over the residue field of \(P \), and hence the dimension of the Zariski closure in \(\text{Spec} S_A(M) \) of this fibre is \(\dim A/P + \mu_P(M) \). But clearly the dimension of \(\text{Spec} S_A(M) \) is the supremum of the dimensions of these Zariski closures. The above expression for \(\eta(M) \) has been obtained earlier by C. Huneke and M. Rossi [HR] (with fewer assumptions on the ring \(A \)); we rank the referee for providing us with this reference.
Theorem 2. Let $X = \text{Spec } A$ be an affine variety of dimension d over an infinite field k. Let $f_i : X \rightarrow \mathbb{A}^{n_i}, 1 \leq i \leq m$ be closed embeddings, and let $h = (f_1, \cdots, f_m) : X \rightarrow \mathbb{A}^n, n = n_1 + \cdots + n_m$, be the product embedding. Let $V_i, 1 \leq i \leq m$ respectively denote the k-vector spaces of linear homogeneous functions on $\mathbb{A}^{n_i}, 1 \leq i \leq m$.

Let $s_i, 1 \leq i \leq r$ be non-negative integers such that $s_i \leq n_i$, and $N = \sum_i s_i \geq s$, where

$$s = \sup\{2d + 1, \eta(\Omega^1_{A/k})\}.$$

Let G_i be the Grassmannian of s_i dimensional subspaces in V_i; set $G = G_1 \times \cdots \times G_r$. Then there is a non-empty Zariski open set $U \subset G$ such that if $x \in U$ is a k-rational point, $W_i \subset V_i$ are the corresponding subspaces, and $g_i : X \rightarrow A^{s_i}$ is the projection determined by W_i, then

$$(g_1 \times \cdots \times g_m) \circ h : X \rightarrow \prod_{i=1}^m A^{s_i} = A^N$$

is a closed embedding.

This result was proved in [S] with the additional hypothesis that $\sup_i s_i \geq d$, using the standard Noether Normalisation lemma. If instead we use Theorem 1, we obtain a proof of Theorem 2. The details are left to the reader.

1. **Proof of Theorem 1**

By the standard Noether normalisation lemma, we reduce easily to the special case when $n_i = d$ for all $1 \leq i \leq m$, and the product map $h : X \rightarrow \mathbb{A}^{md}$ is an embedding. Let $\overline{X} \subset \mathbb{P}^{md}$ denote the Zariski closure of X in the corresponding projective space. Let $H \cong \mathbb{P}^{md-1}$ be the hyperplane at infinity in \mathbb{P}^{md}, and let $Y = \overline{X} \cap H$.

Any linear projection $p : \mathbb{A}^{md} \rightarrow A^{s}$ extends uniquely to a linear projection $\mathbb{P}^{md} - L \rightarrow \mathbb{P}^{s}$ for a linear subspace $L \subset H$ of dimension $md - s - 1$; this restricts to the linear projection $H - L \rightarrow H'$ where $H' = \mathbb{P}^{s} - A^{s} \cong \mathbb{P}^{s-1}$ is the hyperplane at infinity in \mathbb{P}^{s}.
If \(\{L_j\}_{j=1}^r \) is any finite collection of linear subspaces of \(\mathbb{P}^{md} \), we denote their span by \(<L_1, \ldots, L_r> \) (the span is the smallest linear subspace containing the union \(\bigcup_{j=1}^r L_j \)).

Let \(A_i \subseteq \mathbb{A}^{md} \) be the affine subspace defined by

\[
A_i = \{(x_1, \ldots, x_m) \in (\mathbb{A}^d)^m = A^{md} | x_j = 0 \text{ for } j \neq i\},
\]

and let \(H_i \subseteq H \) be the hyperplane at infinity of \(A_i \); thus \(H_i \cong \mathbb{P}^{d-1} \). Let \(H^i \) be the span of \(\{H_j\}_{j \neq i} \). Then \(H_i, H^i \) are disjoint linear subspaces of \(H \) of dimensions \(d - 1 \) and \((m-1)d - 1 \) respectively, which span \(H \). We are given that the projections \(\mathbb{P}^{md} - H^i \rightarrow \mathbb{P}^d \) restrict to finite morphisms on \(X \) for \(1 \leq i \leq m \), since the linear projection from \(H^i \) restricts to the morphism \(f_i : X \rightarrow \mathbb{A}^d \).

We may identify \(G_i \) with the Grassmannian of \(d - r_i - 1 \)-dimensional linear subspaces of \(H^i \), i.e., of linear subspaces of codimension \(r_i \). The theorem amounts to the following statement: there is a non-empty Zariski open set \(U \subseteq G_i = G_1 \times \cdots \times G_m \) such that for \(x = (x_1, \ldots, x_m) \in U(k) \), if \(L_i \subseteq H_i \) are the linear subspaces corresponding to \(x_i \in G_i \), then the projection \(p_L \) from \(L = <L_1, \ldots, L_m> \), the span of the \(L_i \), restricts to a finite morphism on \(X \). Observe that if \(L^i \) is the span of \(\bigcup_{j \neq i} L_j \), then \(L_i \cap L^i \subseteq H_i \cap H^i = \emptyset \). This implies that \(L \) has dimension \((m-1)d - 1 \); also, since each \(L_i \subseteq H, L \) is contained in \(H \). Further, \(\dim L^i = (m-2)d + r_i - 1 \).

In the following two lemmas, fix linear subspaces \(L_i \subseteq H_i \) as above. Let \(\overline{L_i} = p_L(L_i) \subseteq \mathbb{P}^{2d-r_i} \), where \(p_L : \mathbb{P}^{md} - L_i \rightarrow \mathbb{P}^{2d-r_i} \) is the projection from \(L^i \). Then \(p_L \) restricts to an isomorphism \(\overline{L_i} \cong \overline{L_i} \).

Lemma 1. Let \(\overline{\mathbb{P}^{md}} \) be the Zariski closure in \(\mathbb{P}^{md} \times \prod_{i=1}^m \mathbb{P}^{2d-r_i} \) of the graph of the product linear projection

\[
(p_{L1}, \ldots, p_{Lm}) : \mathbb{P}^{md} - \bigcup_i L^i \rightarrow \prod_{i=1}^m \mathbb{P}^{2d-r_i},
\]

and let \(\overline{\gamma} : \overline{\mathbb{P}^{md}} \rightarrow \prod_{i=1}^m \mathbb{P}^{2d-r_i} \) be the induced morphism. Let \(\overline{X} \subseteq \overline{\mathbb{P}^{md}} \) be the strict transform of \(\overline{X} \). Suppose that

\[
\overline{p(\overline{X})} \cap (\overline{L_1} \times \cdots \times \overline{L_m}) = \emptyset.
\]

Then the linear projection \(p_L : \mathbb{P}^{md} - L \rightarrow \mathbb{P}^d \) restricts to a finite morphism on \(X \).
Proof. Let \(p_i \) be the composite

\[
p_i : \mathbb{P}^{md} \xrightarrow{\tilde{\rho}} \prod_{i=1}^{m} \mathbb{P}^{2d-r_i} \xrightarrow{\pi_i} \mathbb{P}^{2d-r_i}
\]

where \(\pi_i \) is the projection onto the \(i \)th factor. Let

\[
U_i = \mathbb{P}^{md} - \tilde{\rho}^{-1}(L_i).
\]

We claim that the linear projection \(p_L : \mathbb{P}^{md} - L \to \mathbb{P}^d \), regarded as a rational map \(\tilde{\rho}_L : \mathbb{P}^{md} \to \mathbb{P}^d \), is actually a morphism on

\[
\bigcup_{i=1}^{m} U_i = \mathbb{P}^{md} - \tilde{\rho}^{-1}(L_1 \times \cdots \times L_i).
\]

By hypothesis, \(\tilde{X} \subset \bigcup U_i \). Hence, granting the above claim, \(\tilde{\rho}_L \) yields a morphism defined in a Zariski open neighbourhood of \(\tilde{X} \).

To prove the claim, note that there is a composite morphism

\[
\theta_i : U_i \xrightarrow{\tilde{\rho}} \prod_{i=1}^{m} \mathbb{P}^{2d-r_i} - \pi_i^{-1}(L_i) \xrightarrow{\theta_i} \mathbb{P}^{2d-r_i} - L_i \xrightarrow{\rho_{L_i}} \mathbb{P}^d
\]

such that the restriction to \(\mathbb{A}^{md} \subset U_i \subset \mathbb{P}^{md} \) is just the linear projection \(p_L : \mathbb{A}^{md} \to \mathbb{A}^d \). Hence the maps \(\theta_i \) and \(\theta_j \) agree on a dense open subset of \(U_i \cap U_j \) for all \(i,j \). By separatedness, \(\theta_i \) and \(\theta_j \) agree on \(U_i \cap U_j \) for all \(i,j \), and hence determine a well defined morphism \(\tilde{\rho}_L \) on \(\bigcup_{i=1}^{m} U_i \) as claimed.

Now \(X \subset \mathbb{A}^{md} \subset \mathbb{P}^{md} \). Let \(\tilde{Y} = \tilde{X} - X \). To prove the lemma, it suffices to show that

\[
\tilde{\rho}_L(\tilde{Y}) \subset M = \mathbb{P}^{d-1},
\]

where \(M \) is the hyperplane at infinity in \(\mathbb{P}^d \) (\(M \) is the image of \(H - L \) under \(p_L \)). To verify this inclusion, it suffices to show that

\[
\theta_i(\tilde{Y} \cap U_i) \subset M
\]

for all \(i \). If \(x \in \tilde{Y} \cap U_i \), then

\[
\pi_i \circ \tilde{\rho}(x) = y \in \mathbb{P}^{md} - L_i.
\]
Since the projection $p_{H^i} : \mathbb{P}^{md} - H^i \rightarrow \mathbb{P}^d$ restricts to a finite morphism on X, and p_{H^i} factors through $p_{L^i} : \mathbb{P}^{md} - H^i$, we see that p_{L^i} restricts to a finite morphism on X. Hence $y \in M_i \approx \mathbb{P}^{2d-r_i-1}$, the hyperplane at infinity in \mathbb{P}^{2d-r_i}. Thus

$$y \in M_i - L_i \subset \mathbb{P}^{2d-r_i} - L_i.$$

The projection $p_{L_i} : \mathbb{P}^{2d-r_i} - L_i \rightarrow \mathbb{P}^d$ evidently maps $M_i - L_i$ onto the hyperplane at infinity $M \subset \mathbb{P}^d$. Hence $\theta_i(x) = p_{L_i}(y) \in M$, as desired.

Lemma 2. Let \widehat{P}^{md} be the Zariski closure in $\mathbb{P}^{md} \times \prod_{i=1}^m \mathbb{P}^d$ of the graph of the product linear projection

$$(p_{H^1}, \ldots, p_{H^m}) : \mathbb{P}^{md} - \cup H^i \rightarrow \prod_{i=1}^m \mathbb{P}^d,$$

and let $\widehat{p} : \mathbb{P}^{md} \rightarrow \prod_{i=1}^m \mathbb{P}^d$ be the induced morphism. Let $\widehat{X} \subset \mathbb{P}^{md}$ be the strict transform of X, and let $\widehat{L_i} = p_{H^i}(L_i)$ so that $\widehat{L_i} \cong L_i$. Suppose that

$$\widehat{p}(\widehat{X}) \cap (\widehat{L_1} \times \cdots \times \widehat{L_m}) = \phi.$$

Then the linear projection $p_L : \mathbb{P}^{md} - L \rightarrow \mathbb{P}^d$ restricts to a finite morphism on X.

Proof. Let $\overline{H_i} = p_{L_i}(H^i - L^i) \subset \mathbb{P}^{2d-r_i}$. Let

$$Z_i = (\pi_i \circ \widehat{p})^{-1}(\overline{H^i}) \subset \mathbb{P}^{md}.$$

The composite morphism

$$\overline{\mathbb{P}^{md}} - Z_i \xrightarrow{\overline{\pi_i \circ \widehat{p}}} \mathbb{P}^{2d-r_i} - H_i \xrightarrow{p_{H^i}} \mathbb{P}^d$$

restricts to the linear projection p_{H^i} on $\mathbb{A}^{md} \subset \mathbb{P}^{md}$. Hence there is a natural morphism $\mu : \overline{\mathbb{P}^{md}} - \bigcup_{i=1}^m Z_i \rightarrow \mathbb{P}^{md}$, and a commutative diagram
Further, \(A^{md} \subset \widetilde{\mathbb{P}}^{md} - \cup_i Z_i \) maps isomorphically to its image in \(\widetilde{\mathbb{P}}^{md} \), so that \(\mu|_X \) is an isomorphism onto its image. Hence \(\mu(\tilde{X} - \cup_i Z_i) \subset \hat{X} \).

Since \(L^i \subset H^i \), and \(H^i \cap L_i = \phi \), we have \(\overline{L_i} \cap \overline{H_i} = \phi \). Hence \(Z_i \subset U_i \), and so \(\mu \) is defined in a Zariski open neighbourhood of \(T = \mathbb{P}^{md} - \cup_{i=1}^m U_i \). If \(\tilde{T} = \tilde{p}^{-1}(\prod_{i=1}^m \overline{L_i}) \), then there is a commutative diagram

\[
\begin{array}{ccc}
T \cap \tilde{X} & \xrightarrow{\mu} & \tilde{T} \cap \hat{X} \\
\downarrow \tilde{p} & & \downarrow \hat{p} \\
(\prod_i \overline{L_i}) \cap \tilde{p}(\tilde{X}) & \xrightarrow{\prod \overline{H_i}} & (\prod_i \overline{L_i}) \cap \hat{p}(\hat{X}).
\end{array}
\]

By hypothesis, \((\prod_i \overline{L_i}) \cap \tilde{p}(\tilde{X}) = \phi \). Hence \((\prod_i \overline{L_i}) \cap \hat{p}(\hat{X}) = \phi \), and by lemma 1, \(p_L \) restricts to a finite morphism on \(X \).

We now complete the proof of the theorem. Let \(\tilde{M}_i \approx \mathbb{P}^{d-1} \) be the hyperplane at infinity in the \(i^{th} \) factor of \(\prod_{i=1}^m \mathbb{P}^d \), the target of \(\tilde{p} \). Then \(\overline{L_i} \subset \tilde{M}_i \). Clearly \(\tilde{p}(\tilde{X}) \cap (\prod \tilde{M}_i) = \phi \) (where \(X \) regarded as an open subset of \(\hat{X} \)). Hence to verify the condition

\[
\tilde{p}(\tilde{X}) \cap \left(\prod_{i=1}^m \overline{L_i} \right) = \phi,
\]

it suffices to verify that

\[
\tilde{p}(\tilde{X} - X) \cap \left(\prod_{i=1}^m \overline{L_i} \right) = \phi.
\]

Let \(S = \tilde{p}(\tilde{X} - X) \subset \prod_{i=1}^m \tilde{M}_i \). Then \(\dim S \leq d - 1 \). Let

\[
\Gamma = \{ (x_1, \ldots, x_m, t_1, \ldots, t_m) \in G \times S | t_i \in \overline{L_i} \text{ for all } i \}.
\]
where \(L_i \) is the subspace associated to \(x_i \in G_i \). Then each fibre of \(\Gamma \rightarrow S \) is a product of sub-Grassmannians of \(G \) of codimension \(\sum_{i=1}^{m} r_i = d > \dim S \). Hence the projection \(\Gamma \rightarrow G \) is not dominant. By lemma 2, the Zariski open set \(U = G - \overline{\text{im}\Gamma} \) has the property described in the statement of the theorem. ■

REFERENCES

A.J. Parameswaran, V. Srinivas, School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay-400005, India.

Lavoro pervenuto in redazione il 20.10.1990.