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We provide evidence for the validity of AdS/CFT correspondence in the Coulomb

branch by comparing the Yang-Mills effective action with the potential between waves

on two separated test 3-branes in the presence of a large number of other 3-branes. For

constant gauge fields excited on the branes, this requires that the supergravity potential

in a AdS5 × S5 background is the same as that in flat space, despite the fact that both

propagators and couplings of some relevant supergravity modes are different. We show

that this is indeed true, due to a subtle cancellation. With time-dependent gauge fields on

the test branes, the potential is sensitive to retardation effects of causal propagation in the

bulk. We argue that this is reflected in higher derivative (acceleration) terms in the Yang-

Mills effective action. We show that for two 3-branes separated in flat space the structure

of lowest order acceleration terms is in agreement with supergravity expectations.

December, 1998

1 E-mail: das@theory.tifr.res.in

http://arXiv.org/abs/hep-th/9901004v2


1. Introduction.

The duality between large-N strongly coupled N = 4 Yang-Mills theory in 3 + 1

dimensions and supergravity in a AdS5×S5 background [1] [2] has served as an appropriate

setting for discussing holographic nature of theories of gravity. Traditionally this duality is

conjectured for the Higgs branch of the Yang-Mills theory, corresponding to a large number

of coincident three branes, though the possibility that this could be valid in the Coulomb

branch - corresponding to branes separated from each other - was suggested already in [1].

More recently, it has been argued by Douglas and Taylor [3] that the duality indeed holds

for the Coulomb branch with brane positions identified with Higgs vacuum expectation

values.

If the correspondence is valid for the Coulomb branch, one would be able to get new

insight into the description of local physics in the bulk in terms of Yang-Mills theory and

thus eventually understand black hole complementarity. Attempts to understand motion

of brane probes have been made in [4]. Some evidence for AdS/CFT correspondence in

the Coulomb branch has appeared in [5] and a different point of view is discussed in [6]

Consider for example a Higgs vev in the N = 4 theory of the form





zi
1 0 0
0 zi

2 0
0 0 0(N−2)×(N−2)



 (1.1)

The proposal is to identify zi
1 and zi

2 with the transverse positions of a pair of three branes

in the presence of (N − 2) other branes - with all the branes parallel to each other.

Now consider exciting this pair by turning on gauge fields F1 and F2 respectively. At

strong ’t Hooft coupling, the low energy effective action for these fields should then give

the interaction energy between the branes. Non-renormalization theorems [7] may be then

used to calculate this energy by performing a one-loop computation for special brane waves

like those made of constant gauge fields. The general one-loop answer for the O(F 4) term

is given by [8] [9] [3]

∫

∏

i

d4pi[F
µ
ν (p1)F

ν
ρ (p2)F

ρ
κ (p3)F

κ
µ (p4) −

1

4
Fµ

ν (p1)F
ν
µ (p2)F

ρ
κ (p3)F

κ
ρ (p4)]

δ4(
4

∑

i=1

pi) [G(p1, p2, p3, p4) + permutations]

(1.2)
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with F = F1 − F2 and

G(pi) =

∫

d4k[(ρ2 + k2)(ρ2 + (k − p1)
2)(ρ2 + (k − p1 − p2)

2)(ρ2 + (k + p4)
2)]−1 (1.3)

and

ρ2 =

6
∑

i=1

(zi
1 − zi

2)
2 (1.4)

We can expand G(pi) around pi = 0 and obtain the position space effective action in a

derivative expansion. The first term is

1

ρ4

∫

d4y [Fµ
ν F ν

ρ F ρ
κFκ

µ − 1

4
Fµ

ν F ν
µ F ρ

κFκ
ρ ] (1.5)

This one loop contribution is exact for N = 2 [7]. It is also exact for SU(N) in the

Coulomb branch where all the higgs have nonzero expectation values in which case the

expression (1.2) should include a sum over all U(1) factors [10] . In [3] it has been argued

that the nonrenormalization theorems should still hold for our case, where SU(N) →
SU(N − 2) × [U(1)]2, by considering (1.1) as a limit from the Coulomb branch - though

there is no proof as yet. This situation could be therefore compared to a supergravity

calculation. In this limit, (1.2) leads to an effective potential which has the following

terms
1

ρ4
[Oφ

1 Oφ
2 + Oχ

1 Oχ
2 + 2Tµν

1 T2 µν + 2Oµν
1 O2 µν |4] (1.6)

where for each i = 1, 2

Oφ
i =

1

4
(Fi)

µν(Fi)µν

Oχ
i =

1

4
(Fi)

µν(F̃i)µν

Tµν
i =

1

2
[(Fi)

µ
α(Fi)

αν − 1

2
ηµν(Fi)

αβ(Fi)αβ]

Oµν
i =

1

2
[(Fi)

µν + (Fi)
µα(Fi)αβ(Fi)

βν − 1

4
(Fi)

µν(Fi)
αβ(Fi)αβ]

(1.7)

In (1.6) the subscript |4 in the last term means that we retain terms containing four factors

of the gauge field in the product.

Let us first consider the case where the gauge fields on the branes are constants. Then

(1.5) is the only contribution to the effective action upto O(F 4).

On the supergravity side, the force between the pair is due to the exchange of su-

pergravity modes. With only the gauge field excited these modes are the dilaton, axion,
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longitudinally polarized graviton and the longitudinally polarized 2-form fields. When

N = 2 this is propagation in flat space. In this case it is straightforward to understand the

terms in (1.6). The overall factor 1/ρ4 comes from the static massless propagator in the

six transverse dimensions, which appears because the supergravity modes which couple to

constant gauge fields on the brane have zero momentum along the brane directions. The

first term is due to the exchange of a dilaton, which couples to TrF 2 on each of the branes

[11]. The second term comes from axion exchanges which couples to Tr(FF̃ ). The third

term comes from the exchange of a longitudinally polarized graviton which couples to the

energy momentum tensor Tµν on the worldvolumes [11]. The last term comes from the

exchange of a 2-form field, whose couplings have been obtained in [12]. (Here the 2-form

couples to Fµν on one of the branes and to a cubic in the fields on the other one). Moreover,

the relative coefficients between the various operators in (1.6) are exactly what is expected

from the couplings and propagators. The fact that the supergravity answer agrees with

the gauge theory truncation of the open string theory on the brane is well known in related

contexts [13].

For large N and in the scaling limit, however, the pair of branes are situated in the

AdS × S5 produced by the N − 2 other branes and one has to use the couplings and

propagators in this space-time. It is puzzling how the same Yang-Mills answer in (1.6)

could be reproduced by supergravity in a nontrivial space-time. In particular, the flat

space propagator 1/ρ4 depends on the coordinate distance between the branes and not on

their individual locations - a feature which is not a priori expected in AdS5 × S5.

Remarkably, as was shown in [3], the AdS5 × S5 propagator for fields which obey the

massless Klein-Gordon equation is identical to the flat space propagator when restricted

to the zero brane momentum sector. Examples of such fields are the dilaton and the

longitudinally polarized graviton. Moreover, as is clear from the analysis of [12], the

couplings of these fields to the individual branes are the same as that in flat space. Thus the

first three terms in (1.6) indeed follow from dilaton and graviton exchanges in AdS5 × S5.

In [3], it was claimed that the last term of (1.6) can be also explained by 2-form

exchange in AdS5 × S5. However, because of the presence of a nonzero 5-form field strength

in the AdS5 × S5 background , the NS-NS and the R-R 2-forms mix with each other

through a Chern-Simons term in IIB supergravity [14], leading to two independent branches

and these branches behave as massive fields. Various other supergravity modes mix with

each other in a similar fashion. This phenomenon is crucial in a supression of the classical

s-wave absorption cross-section of the 2-form field by three branes [15]. Consequently, as
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will be shown below, this leads to rather different propagators which reflect the mixings

and also depend on individual brane locations. Moreover, as shown in [12], the coupling of

the 2-form fields to the brane are different in AdS5 × S5 and flat space. It would be rather

miraculous if inspite of such differences, the supergravity calculation is able to reproduce

(1.6).

In this paper we show that this miracle indeed happens. The difference in couplings

and the propagators conspire to reproduce the exact form of the two-form mediated po-

tential expected from Yang-Mills theory. We conjecture that this mechanism is quite

general and would be manifest in the interaction between other brane waves which involve

exchange of other supergravity modes displaying a similar mixing. Our results provide

strong evidence for the validity of Maldacena conjecture in the Coulomb branch.

Finally we address the question of causality in the bulk and its manifestation in the

Yang-Mills effective action. In supergravity, the interaction between test branes occurs

through retarded potentials arising from causal propagation of supergravity modes. For

constant gauge fields on the branes, retardation effects are invisible and static propagators

in transverse space are relevant. However, for nonconstant waves, causality manifests itself

by producing an interaction energy which is bi-local on the brane 2. From the point of view

of the AdS/CFT correspondence, it may appear puzzling how the boundary Yang-Mills

theory “knows” about causality in the bulk. In particular when the two test branes are

separated only in the radial direction, the two locations map into the same point on the

boundary and causality in the boundary theory does not impose any restriction. In fact,

the Yang-Mills effective action is usually written as a sum of local terms.

We will argue that bulk causality is reflected in the Yang-Mills theory in terms involv-

ing derivative of the fields. Supergravity then predicts a specific structure of these terms.

We show this explicitly for the lowest order acceleration terms involving gauge fields in

the case of two test branes in flat space by comparing the result with the effective action

of SU(2) Yang-Mills theory. Fortunately this term is not renormalized, thus a comparison

with supergravity is allowed. We expect that this will continue to hold in AdS5×S5, which

we will discuss in a future publication [16]. In general such considerations may lead to a

supergravity understanding of the “acceleration” terms in the Yang-Mills effective action.

2 This point has been emphasized to me by S. Mathur
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2. Propagators at zero brane momentum

Consider the following metric in AdS5 × S5

ds2 = (
r

R
)2[dy · dy] + (

R

r
)2[dr2 + r2

5
∑

i=1

fi(θi)(dθi)
2] (2.1)

We will use the following conventions. The ten dimensional coordinates will be denoted

by ya, a = 0, · · ·9. Out of these we continue to denote the brane worldvolume directions

by yµ, µ = 0, · · ·3. The remaining six transverse coordinates y5 · · · y9 will be relabelled as

zi, i = 1, · · ·6. r =
√

∑6
i=1(z

i)2 is the radial coordinate in the transverse space and θi

are angles on the S5. (r, θi) are related to the cartesian coordinates zi in the transverse

space by the standard transformations and the metric coefficients fi(θi) are determined

from these transformations.

In the following we will set R = 1 without loss of generality, and restore them using

dimensional analysis when required.

The action for a minimally coupled massless scalar in this background may be easily

seen to be

Sφ =
1

2

∫

dt d3x d6z[
1

r4
(∂xµφ)2 + (∂ziφ)2] (2.2)

Thus when the fields do not depend on the brane worldvolume coordinates, the action

is in fact identical to that of a massless scalar field in flat space. This means that the

propagator with zero worldvolume momentum is the flat space propagator and given by

Gφ(z1, z2) =
1

4π3|z1 − z2|4
(2.3)

The dilaton and the longitudinally polarized graviton 3 behave like massless minimally

coupled scalars from the point of view of the six dimensional transverse space and therefore

has propagators given by (2.3). This is the result used in [3].

The longitudinally polarized 2-form field is also a scalar from the point of view of the

transverse space, but it is not a minimally coupled scalar. More significantly, there are

two such 2-form fields, the NS-NS field which we denote by bab and the R-R field which we

will denote by aab. These two fields are coupled with each other through the background

3 Longitudinal polarization means that the tensor indices of the fields are along the 3-brane

worldvolume.
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five form field strength. It is conveninent to combine these two fields into a single complex

field

Bab = bab + iaab (2.4)

the relevant part of the supergravity action 4 is given by

SB =
1

12

∫

d10x
√

g[H∗

abcH
abc + iF abcde(HabcBde − H∗

abcBde − (c.c.))] (2.5)

where

Habc = ∂aBbc + ∂bBca + ∂cBab (2.6)

The last term is a Chern-Simons term which couples the two types of fields. This leads to

the well known equations of motion

1√
g
∂c(

√
gHcab) = −2i

3
F abcdeHcde (2.7)

In the AdS5 × S5 background the five form field has a value

F 12r03 =
1

r3
(2.8)

the other nonzero components being determined by antisymmetry and self-duality in the

usual fashion.

We are interested in the longitudinal components of the 2-form field, so that in Bab

the indices (a, b) take values a, b = 0, · · ·3. The equations (2.6) and (2.7) then show that

a given component Bµν mixes only with its dual 1
2 ǫµναβBαβ. It is therefore convenient to

define three pairs of complex fields (φA
1 , φA

2 ), A = 1 · · · 3 denoting the electric and magnetic

parts of Bµν

φA
1 =

1

2
ǫABCBBC φA

2 = B0A (2.9)

We fix a gauge in which the fields are independent of the coordinates yµ, µ = 0, · · ·3. We

also introduce a coordinate

x = log r (2.10)

4 In this paper we do not consider fluctuations of the five form field strength, so that usual

problems of writing an action for a self dual five form gauge field are not relevant.
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The action (2.5) for fields which depend only on the transverse coordinates zi in the

background given by (2.1) and (2.8) then becomes

SB =
1

2

∫

dx [dΩ5]
3

∑

A=1

[∂xφA ∗

1 ∂xφA
1 +

5
∑

i=1

1

fi

∂iφ
A ∗

1 ∂iφ
A
1

− ∂xφA ∗

2 ∂xφA
2 −

5
∑

i=1

1

fi

∂iφ
A ∗

2 ∂iφ
A
2

+ 4i(φA ∗

1 ∂xφA
2 + φA ∗

2 ∂xφA
1 )]

(2.11)

Here the measure on S5 is given by

dΩ5 = (

5
∏

i=1

dθi) h(θi) h(θi) = (fi)
1

2 (2.12)

The negative signs in the kinetic terms of φA
2 come from lowering a timelike index.

Clearly the action (2.11) is not the same as that in flat space, unlike the minimally

coupled scalar discussed above. This, together with the mixing between φA
1 and φA

2 makes

the propagator nontrivial. Furthermore the different pairs φA
n are independent of each

other and may be treated separately.

The propagators for these fields may be obtained by performing a standard mode

decomposition to diagonalize the action. The details are given in Appendix B. The final

result for the propagator is, after restoring factors of R

NAB(~z1, ~z2) =
δAB

8π3R4|~z1 − ~z2|4
(

(r4
1 + r4

2) −i(r4
1 − r4

2)
−i(r4

1 − r4
2) −(r4

1 + r4
2)

)

(2.13)

The propagator may be, of course, expressed in terms of geodesic distances. However that

will not be necessary for our present purposes.

It may be easily checked that the propagators for the 2-form fields in flat space is

NAB
flat =

δAB

4π3|~z1 − ~z2|4
(

1 0
0 −1

)

(2.14)

in sharp contrast with (2.13). The relative factor of 2 in the overall normalizations in

(2.13) and (2.14) will be crucial in what follows.

Finally let us consider current couplings in the supergravity theory with currents

J(x, θi) which depend only on the transverse directions

1

4

∫

dxdΩ5

∑

A,n

[(JA)∗n(x, θi)φ
A
n (x, θi) + JA

n (x, θi)(φ
A)∗n(x, θi)] (2.15)
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Integrating out the fields one gets the current-current coupling

1

4

∫

dxdΩ5

∫

dx′dΩ′

5[(J
A)∗n(x, θ)NAB

nm (x, θ; x′, θ′)JB
m(x′, θ′)] (2.16)

Note that reality requires

(NAB)∗mn(x, θ; x′, θ′) = NBA
nm (x′, θ′; x, θ) (2.17)

which is satisfied by our propagator (2.13).

3. Couplings in the Dirac-Born-Infeld-Wess-Zumino action

The couplings of the relevant supergravity modes to a single brane in AdS5 × S5 may

be obtained from the Dirac-Born-Infeld-Wess-Zumino (DBI-WZ) action, and have been

studied in [12]. The action for a D3-brane in a general background of dilaton, graviton

and rank-2 fields is given by [17]

S = −
∫

d4ξ
√

−det(Gµν + Fµν) +

∫

(Ĉ(4) + F ∧ Â + Ĉ(0)F ∧ F) (3.1)

[18] The two terms above correspond to the DBI action and the WZ term respectively.

Gµν refers to the induced world-volume metric, obtained as the pull-back of the spacetime

metric. Similarly,

Fµν = Fµν − B̂µν (3.2)

where Fµν stands for the gauge field on the D3-brane and B̂µν is the pullback of the NS-NS

two form potential. In the W-Z term Ĉ(4), Â and Ĉ(0) refer to the pullback of the R-R four

form, two form and zero form fields respectively. The DBI-WZ action may be viewed as the

effective action of the Yang-Mills theory with SU(N) → SU(N−1)×U(1), with derivatives

on gauge fields ignored. The diagonal Higgs which breaks the symmetry interpreted as

the position of a 3-brane probe. Conformal transformations of the Higgs fields in the

Yang-Mills description are “metamorphosed” into those of the transverse coordinates in

AdS5 × S5 due to modifications of Ward identities in the gauge fixed theory [19].

We fix a static gauge, setting the four worldvolume parameters to be equal to the

coordinates yµ in the metric and also fix the kappa symmetry following [18] by setting

half of the fermionic fields in the brane action to zero. The couplings of the various

supergravity modes may be then obtained by performing an expansion around background
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values (given by the AdS5 × S5 solution and the five form background field strength) and

then expanding the determinant to the required order.

We will consider the case when only the bosonic gauge fields are excited on the brane.

Then the operator on the worldvolume which couples to the dilaton obtained by the above

procedure is

Oφ = −1

4
FµνFµν (3.3)

where indices of worldvolume fields are raised and lowered using the flat metric. The

same operator couples to a brane in flat space [11]. Similarly the operator coupling to the

longitudinal components of the metric is also of the same form as in flat space

(Og)
µν =

1

2
[FµαF ν

α − 1

4
ηµν(FµνFνµ)] (3.4)

In contrast the operator coupling to the antisymmetric tensor fields aµν and bµν differ in

important detail from their form in flat space. The operator for the NS-NS form comes

from the DBI term and is given by [12]

(Ob)
νµ = −1

2
[F νµ +

1

r4
Gνµ] (3.5)

where

Gνµ = [F ν
ρ F ρ

κFκµ − 1

4
(F ρκFρκ)F νµ] (3.6)

while that for the R-R field comes from the WZ term

(Oa)νµ =
1

4
ǫνµρκFρκ (3.7)

In (3.5) r is the location of the brane in question.

If the brane was located in flat space one would simply have

(Ob)
νµ|flat = −1

2
[F νµ + Gνµ] (3.8)

The factor of 1/r4 in front of Gνµ is now absent.

In [12] it was shown that the operator (3.5), modified by the prescription of [20], for

the nonabelian analog, represents the 2-form field in the dual description in terms of a

Yang-Mills theory. Note that for this to hold the supergravity modes to which they couple

have to be on shell. This played a crucial role in cancellation of dimension four fermionic

operators, which would have jeopardazied the AdS/CFT connection.
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For our purposes such an interpretation is not necessary - we will simply consider

these operators for what they stand : coupling of individual branes to supergravity modes.

By the same token we remain off-shell.

The presence of the factor of 1/r4 (which is actually (R/r)4 once the R is restored)

in front of the dimension six term is related to the relationship between the infrared cutoff

in AdS space and the ultraviolet cutoff in the dual gauge theory - a fact that is crucial

for holography [1],[21],[4]. When the dual theory is considered to live on the boundary

at large r this term may be thought of providing the ultraviolet cutoff necessary to write

down a higher dimension operator in the gauge theory. The presence of this factor of 1/r4

in (3.5) will turn out to be crucial in what follows.

Note the asymmetry between the NS-NS and R-R fields in the couplings. The 3-brane

is of course self-dual. In the dual formulation, the NS-NS fields are interchanged with the

R-R fields and the field strength is replaced by its dual as well [22],[18].

Because of the presence of the ǫµνρκ in (3.7), it is natural to rewrite the coupling

LI = bµν(Ob)
νµ + aµν(Oa)νµ (3.9)

in terms of the fields φA
n introduced in the previous sections.

LI =
1

2

∑

A,n

[φA ∗

n PA
n + c.c.] (3.10)

where we have

PA
1 =

1

2
[
1

2
ǫABC(FBC +

1

r4
GBC) + iF 0A]

PA
2 =

1

2
[(F 0A +

1

r4
G0A) +

i

2
ǫABCFBC ]

(3.11)

In the full ten dimensional theory, the interaction of the 2-form field with a pair of

branes located at ~z = ~z1 and ~z = ~z2 may be then written as
∫

d4y

∫

d6z
∑

A,n

[φA ∗

n (y, z)J̃A
n (y, z) + c.c.] (3.12)

where

J̃A
n (y, z) = [δ6(z − z1) + δ6(z − z2)]PA

n (y, z) (3.13)

We are interested in the situation where the brane waves are constant along the brane, so

that the operators P are independent of y. In that case the y integration in (3.12) projects

out the zero brane momentum part of the fields φA
n and one is left with an expression of

the form (2.15). Since the measure in (2.15) is dxdΩ5 while that in (3.12) it is dr dΩ5 r5

one has

JA
n (x, θ) = r6J̃A

n (x, θ) (3.14)
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4. Interaction Energy of constant field brane waves

We can now use the formulae in Section 2. to derive the interaction energy between

brane waves due to 2-form exchange. This is the connected piece in (2.16), where we

substitute (3.14) and (3.13). Note the additional factor of r6 present in (3.14) can be

absorbed by changing the measure in (2.16) to yield

∫

d6z

∫

d6z′[δ6(z−z1)+δ6(z−z2)][δ
6(z′−z1)+δ6(z′−z2)]PA ∗

m (z)NAB
mn (z, z′)PB

n (z′) (4.1)

where NAB
mn is the zero momentum propagator which has been calculated above. The

interaction energy is given by the connected piece

E = PA ∗

m (z1)N
AB
mn (z1, z2)PB

n (z2) + PA ∗

m (z2)N
AB
mn (z2, z1)PB

n (z1) (4.2)

Evaluating (4.2) using (3.11) and (2.13) is straightforward. The final result is

E =
1

4π3ρ4
[(F1)

µ
ν (F2)

ν
ρ(F2)

ρ
κ(F2)

κ
µ − 1

4
(F1)

µ
ν (F2)

ν
µ(F2)

ρ
κ(F2)

κ
ρ + (1 → 2)] (4.3)

Using (3.8) and (2.14) it is easily seen that we get an identical result for just two three

branes located in flat space. The relative factor of two in the overall normalizations of the

flat space and AdS propagators is crucial for this agreement.

Two sets of important cancellations happened for each term over the indices (A, B)

1. Terms quadratic in F ’s, like (F1)
µ
ν (F2)

ν
µ, which could have been present because of

terms in PA
n linear in F , cancelled. If this did not happen, there would be no cor-

respondence with Yang-Mills. These would be loop corrections to the kinetic energy

terms, which cannot be present in this N = 4 theory.

2. Both the propagator and the couplings depend on the individual brane locations ~z1

and ~z2. However these translation-noninvariant terms conspire to cancel each other

leaving with an answer which depends only on |~z1 − ~z2|.
The structure in (4.3) is in precise agreement with the result of Yang-Mills theory given

in the last line (1.6).

Since the couplings and zero momentum propagators for the dilaton and the graviton

are identical in AdS5 × S5 and flat space we would trivially reproduce the first two lines

of (1.6).
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5. Other brane waves

Even for the simple brane waves considered above, i.e. constant gauge fields, the

agreement of Yang-Mills effective action in Coulomb branch and the interaction between

branes in supergravity through single mode exchange depends on the non-trivial cancella-

tion demonstrated above. It is certainly worth understanding this mechanism by studying

other kinds of brane waves, e.g. excitations of fermions or Higgs fields on the worldvolume.

Of particular interest are fermionic operators. These would couple to the gravitons via

their contribution to the energy momentum tensor and to the two-form field via operators

which have been derived in [12]. It may be easily verified, using the nature of the 2-form

propagators derived above, that the fermionic operators do not have a net contribution

from 2-form exchange both in AdS5 × S5 as well as in flat space. This again is due to

cancellations, but now the contributions from the diagonal and the off-diagonal parts of

the propagators cancel separately 5. The Yang-Mills contributions may be read off from

the results of [8],[7]and [23].

When other brane waves are excited, various other supergravity modes will contribute

to the exchange and a priori their propagators would not be the same as in flat space. For

example, with the Higgs field excited, there is a coupling with the trace of the S5 metric

which mixes with the rank-4 gauge field polarized along S5 [14]. It would be interesting

to see whether similar cancellations hold in this case as well.

6. Time dependent brane waves and causality in the bulk

So far we have restricted our attention to interactions mediated by supergravity modes

with zero brane momentum. This restriction hides an important piece of physics in the

bulk : causality. The point is that the force between any two objects is mediated by

retarded propagators reflecting causal propagation and not by instantaneous action. This

does not have an obvious meaning in the Yang-Mills description. The base space-time of

Yang-Mills theory is identified with the directions y in the bulk, but there is no analog of

the radial distance r. Consider for example two points which are separated in the AdS5

space along the radial direction. A physical signal takes a finite time to travel between

these points. However in the Yang-Mills description these points are in fact the same

5 The same mechanism is responsible for the on shell cancellation of dimension four fermionic

operators required for AdS/CFT correspondence to hold [12].
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point in the boundary space. It seems rather mysterious as to how the Yang-Mills theory

encodes this finite time lag.

In the following we will argue that the supergravity prediction for force between branes

due to causal propagation of massless modes leads to a precise prediction for the structure

of higher derivative operators in the effective action in the Yang-Mills theory.

Consider a general coupling to the test branes of the form given by (3.12) and (3.13).

For an arbitrary supergravity field ΦM this is given by

∑

M

∫

d4y

∫

d6z[Φ∗

M (y, z)J̃M(y, z) + c.c.] (6.1)

where

J̃M (y, z) = [δ6(z − z1) + δ6(z − z2)]PM (y, z) (6.2)

where indices M label various supergravity fields. The currents PM are made out of fields

on the brane. To illustrate the point, we will consider currents PM which depend only

on time. This, in fact, highlights the issue since the coupling of the fields in (3.12) are to

currents on the two branes which are at the same spatial position on the brane. Then the

interaction energy is given by the expression

E =
∑

MN

∫

dt

∫

dt′ P∗

M (t, z1) ∆R
MN (t − t′; z1, z2) PN (t′, z2) (6.3)

where ∆R
MN denotes the retarded propagator, and we have assumed time translation in-

variance. In the special case considered in the previous sections, i.e. with time independent

PM , the time integrals pass through the currents and convert the retarded propagator

into a static propagator in transverse space. For general time dependence, this does not

happen and one is left with a bilocal expression for the interaction energy, given above.

The Yang-Mills effective action, however, is given as a sum of various terms which are

integrals of local densities on the brane worldvolume. In our example this involves a single

integral over time since the fields are assumed to be constant in space.

Our proposal for comparing the supergravity and Yang-Mills expressions is to expand

the currents in (6.3) around the average time. Introducing

t0 =
1

2
(t + t′) δt = t − t′ (6.4)
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we find from this Taylor expansion

E =
∑

MN

[

∫

dt0P∗

M (t0, z1)NMN (z1, z2)PN (t0, z2)

+
1

2

∫

dt0(∂0P∗

M (t0))(∂0PN (t0))

∫

[d(δt)] (δt)2 ∆R
MN (δt; z1, z2) + · · ·]

(6.5)

where the dots denote higher order terms in δt. The first term involves the static propagator

NMN

NMN (z1, z2) =

∫

dt∆R
MN (t; z1, z2) (6.6)

which we considered in the previous sections. However the currents PM (t) are general

functions of time. In the general case they may be considered as general functions of the

brane worldvolume coordinates. This explains how supergravity generates F 4 terms in the

effective action, as in (1.5), even when the fields are not constant.

Since the currents PN are composite operators involving gauge fields, the successive

terms in (6.5) should corrrespond to terms in the Yang-Mills effective action which are

higher order in a time derivative expansion. Moreover, as we will see shortly, the integral

over δt converts the expansion in terms of the time lag into an expansion in terms of the

magntitude of the transverse distance. The latter is, however, the magnitude of the Higgs

expectation value and hence the scale below which the low energy effective action is valid.

This is a direct manifestation of the IR-UV correspondence. This has played a role in

earlier discussions of bulk causality [24].

Causality in the bulk therefore provides a specific structure for these higher derivative

terms for the strongly coupled Yang-Mills theory, strong coupling being required for the

validity of the supergravity approximation of IIB string theory. To check this proposal we

need to find such operators which are protected by non-renormalization theorems, so that

we can perform a weak coupling calculation in the gauge theory.

In fact the simplest test involves currents which are linear in the gauge fields, which

couples to the 2-form field in the bulk. In terms of the notation introduced above we then

have

PA
1 (t, z) =

1

2
ǫABCFBC(t) + iF 0A(t)

PA
2 (t, z) = F 0A(t) + i

1

2
ǫABCFBC(t)

(6.7)

The first term in (6.5) then involves two powers of the gauge field and no derivatives -

these cancel as shown in section 4. The second term in (6.5) is of the form (∂F )2, which

is of “weight” four and hence protected by nonrenormalization theorems of [7]. We will

show soon that there is a net contribution to these derivative terms.
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6.1. Branes in flat space and SU(2)

The considerations of causality are equally relevant to the situation with two separated

three branes, with no other branes present. In supergravity, these are then located in flat

space and we can evaluate the expressions easily. The Yang-Mills description is then in

terms of a SU(2) gauge theory.

As before we deal with the 2-form fields with polarizations along the brane worldvol-

ume. The fields are assumed to depend on time and the transverse directions. We will

work in a gauge ∂aBab = 0. The action for these modes in a flat background can be easily

worked out to be

S =
1

2

∑

A

∫

dt

∫

d6z[−|∂tφ
A
1 |2 + |∂zφ

A
1 |2 − |∂zφ

A
2 |2] (6.8)

where the fields φA
n have been defined in (2.9). Note that the action does not involve time

derivatives of the “electric” components φA
2 , so that the propagator for this is essentially

the static propagator in transverse space. The contributions of φA
1 and φA

2 to the first term

in (6.5) cancel, essentially due to the negative sign of the kinetic term for φA
2 - as has been

shown in the previous sections. In the second term, only φA
1 contributes and one is thus

left with a term

∑

A

∫

dt0(∂tPA
1 (t0))

∗(∂tPB
1 (t0))

∫

dδt (δt)2 ∆R,AB
11 (δt; z1, z2) (6.9)

where the retarded propagator for φA
1 can be read off from the action (6.8)

∆R,AB
11 (δt, z1, z2) = δAB

∫

dp0

2π

∫

d6p

(2π)6
e−ip0δt+i~p·(~z1−~z2)

(p0 + iǫ)2 − (~p)2
(6.10)

The integral in (6.9) may be easily seen to be

∫

dδt (δt)2 ∆R,AB
11 (δt; z1, z2) ∼

δAB

ρ2
(6.11)

where ρ is the transverse distance defined in (1.4). Inserting the expressions for PA we get

a contribution for the interaction energy of the form

E ∼ 1

ρ2

∫

dt0 (∂tF1 µν)(∂tF
µν
2 ) (6.12)

This is precisely a term of weight four in the effective action of SU(2) gauge theory, as may

be seen in [23]. This term is not renormalized since it is of weight four [7]. Note that this
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term has two less powers of ρ in the denominator compared to the F 4 terms which appear

in the zero momentum potential. This reflects the IR-UV connection : an expansion in

the time interval gets translated into an expansion in the transverse distance, which is the

magnitude of the Higgs and hence a scale in the effective Yang-Mills theory. Also note

that this is the only term of weight four other than the F 4 terms when fields other than

the gauge field are set to zero.

Terms with higher weight will come from the higher terms of the Taylor series, from the

F 3 terms in the 2-form coupling, and from exchange of other supergravity modes. It would

be interesting to see whether the corresponding operators also obey nonrenormalization

theorems.

When the brane waves depend on the spatial coordinates on the branes we expect the

time derivatives in (6.12) to be converted into space-time derivatives on the brane.

Finally, we note that the calculation described above does not really probe the retarded

nature of the propagator - an advanced propagator would lead to the same result. Strictly

speaking we have been investigating consequences of the finite speed of light rather than

causality. However, we expect that at higher orders the difference of retarded and advanced

propagators will play a role.

6.2. Branes in AdS5 × S5

The calculation outined above is a test for our proposal in the simplest possible setting.

A test of the proposal in the context of the AdS/CFT correspondence requires an analysis

which involves propagators of fields in the AdS5 × S5 background with nonzero brane

momentum. These propagators have been obtained in full generality [25]. We expect

that the signature of causal propagation in the AdS5 × S5 background in terms of the

higher derivative operators in the Yang-Mills effective action would hold in this case as

well. For this to work the cancellation which made the constant field interaction energy in

AdS5 × S5 equal to the flat space result should continue to work for non-constant fields.

Our results in this direction will appear in a future publication [16].
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8. Appendix A : The scalar propagator in flat 6d space

Consider flat six dimensional (euclidean) space with the metric

dr2 + r2
5

∑

i=1

fi(θi)(dθi)
2 (8.1)

The action of a complex massless scalar field is

Sφ =
1

2

∫

dr dΩ5 r5 φ∗[
1

r5
∂r(r

5∂rφ) +

5
∑

i=1

1

h r2
∂i(hf−1

i ∂iφ)] (8.2)

The relevant mode decomposition for this action is

φ(r, θi) =

∫

dβ

2π

∑

k~m

1

r2
riβ Zk,~m(θi) φβ,k,~m (8.3)

where the S5 (scalar) spherical harmonics Zk,~m(θi) satisfy [14], [26]

1

h
∂i(

1

fi

h∂i)Zk,~m(θi) = −k(k + 4) Zkm(θi) (8.4)

with integer k and are chosen to be orthornormal with the measure [dΩ5]. The action then

becomes

Sφ =

∫

dβ

2π

∑

k,~m

[β2 + (k + 2)2]φ∗

β,k,~mφβ,k,~m (8.5)

Thus the propagator is

G(~z1, ~z2) =

∫

dβ

2π

∑

k,~m

1

(r1r2)2
(
r1

r2
)iβ 1

β2 + (k + 2)2
Z∗

k,~m(θ1)Zk,~m(θ2) (8.6)

Integrating over β for r1 > r2 now gives

G(~z1, ~z2) =
π

r4
1

∑

k,~m

1

2(k + 2)
(
r2

r1
)k Z∗

k,~m(θ1)Zk,~m(θ2) (8.7)

However we know that the position space propagator in six dimensions is

G(~z1, ~z2) =
1

4π3|~z1 − ~z2|4
(8.8)

Comparing (8.8) and (8.7) we get

1

2π3|~z1 − ~z2|4
=

1

r4
1

∑

km

1

k + 2
(
r2

r1
)k Z∗

km(θ1) Zkm(θ2) (r1 > r2) (8.9)

This equation can be also proved by using explcit properties of the S5 spherical harmonics.
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9. Appendix B : Propagator for 2-forms in AdS5 × S5

The mode decomposition which diagonalizes the action (2.11) is

φA
n (x, θi) =

∫ ∞

−∞

dβ

2π

∑

k,~m

e−iβxZk,~m(θi) φA
n,(β,k,~m) n = 1, 2 (9.1)

With this mode decomposition and a partial integration the action SB may be diag-

onalized to yield

SB =
1

2

∑

A

∫

dβ

2π

∑

k~m

( φA ∗
1 φA ∗

2 )

(

(β2 + k(k + 4)) −4β
−4β −(β2 + k(k + 4))

) (

φA
1

φA
2

)

(9.2)

In (9.2) φA stands for φA
(β,k,~m).

The eigenvalues of the kinetic energy matrix may be easily seen to be

λ± = ±
√

(β2 + k2)(β2 + (k + 4)2) (9.3)

This clearly shows the two branches of this field found in [14]. These have masses k and

(k + 4) respectively.

The propagator may be now found by inverting the matrix. The result is

NAB(βk) =
δAB

(β2 + k2)(β2 + (k + 4)2)

(

β2 + k(k + 4) −4β
−4β −(β2 + k(k + 4))

)

(9.4)

The nature of the propagator may be made more transparent by rewriting the matrix

elements of N as

NAB
11 (β, k) = −NAB

22 (β, k) =
δAB

2k + 4
[

k

β2 + k2
+

k + 4

β2 + (k + 4)2
]

NAB
12 (β, k) = NAB

21 (β, k) = − δAB

2k + 4
[

β

β2 + k2
− β

β2 + (k + 4)2
]

(9.5)

The position space propagators may be now easily calculated

NAB
mn (~z1, ~z2) = δAB

∫

dβ

2π

∑

km

eiβ(x1−x2) Z∗

km(θ1) Zkm(θ2) NAB
mn (β, k) (9.6)

The integral over β may be now performed to get, for x1 > x2

NAB
11 (~z1, ~z2) = δAB

∑

km

1

4(k + 2)
[(

r2

r1
)k + (

r2

r1
)k+4] Z∗

km(θ1) Zkm(θ2)

NAB
12 (~z1, ~z2) = −iδABπ

∑

km

1

4(k + 2)
[(

r2

r1
)k − (

r2

r1
)k+4] Z∗

km(θ1) Zkm(θ2)

(9.7)

where we have used (2.10). Using the relation (8.9) in Appendix A, we get the final answer

for the propagator matrix

NAB(~z1, ~z2) =
δAB

8π3|~z1 − ~z2|4
(

(r4
1 + r4

2) −i(r4
1 − r4

2)
−i(r4

1 − r4
2) −(r4

1 + r4
2)

)

(9.8)

Restoring powers of R yields (2.13).
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