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1. Introduction.

The duality between large-N strongly coupled N' = 4 Yang-Mills theory in 3 + 1
dimensions and supergravity in a AdSs x S® background [l]] [] has served as an appropriate
setting for discussing holographic nature of theories of gravity. Traditionally this duality is
conjectured for the Higgs branch of the Yang-Mills theory, corresponding to a large number
of coincident three branes, though the possibility that this could be valid in the Coulomb
branch - corresponding to branes separated from each other - was suggested already in [I].
More recently, it has been argued by Douglas and Taylor [B] that the duality indeed holds
for the Coulomb branch with brane positions identified with Higgs vacuum expectation
values.

If the correspondence is valid for the Coulomb branch, one would be able to get new
insight into the description of local physics in the bulk in terms of Yang-Mills theory and
thus eventually understand black hole complementarity. Attempts to understand motion
of brane probes have been made in [J]. Some evidence for AdS/CFT correspondence in
the Coulomb branch has appeared in [[j] and a different point of view is discussed in [f]

Consider for example a Higgs vev in the N’ = 4 theory of the form

2 0 0
0 2z 0 (1.1)
0 0 Ow-2)x(n-2)

The proposal is to identify 2{ and 2% with the transverse positions of a pair of three branes
in the presence of (N — 2) other branes - with all the branes parallel to each other.

Now consider exciting this pair by turning on gauge fields F; and Fj respectively. At
strong 't Hooft coupling, the low energy effective action for these fields should then give
the interaction energy between the branes. Non-renormalization theorems [[]] may be then
used to calculate this energy by performing a one-loop computation for special brane waves

like those made of constant gauge fields. The general one-loop answer for the O(F*) term

is given by [§] [0] [H]

/Hd4pz‘[szt(pl)Fg(pz)ng(m)Fﬁ(m) - %Fﬁ(pl)F:(pz)F,f(ps)F;(m)]

4 (1.2)
0*(> _pi) [G(p1, p2, p3, pa) + permutations]
=1
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with F' = F1 — F2 and

G(pi) = /d4k[(p2 +5)(p* + (k —p1)?)(p® + (k —p1 —p2)?)(p* + (k +pa)®)] ™" (1.3)

and )
Z — 2})? (1.4)

We can expand G(p;) around p; = 0 and obtain the position space effective action in a

derivative expansion. The first term is

1 1
i / d*y [FLFYFLFS — ZF#F”F”F’””] (1.5)

This one loop contribution is exact for N = 2 [q]. It is also exact for SU(N) in the
Coulomb branch where all the higgs have nonzero expectation values in which case the
expression ([[.2)) should include a sum over all U(1) factors [[0] . In [B] it has been argued
that the nonrenormalization theorems should still hold for our case, where SU(N) —
SU(N —2) x [U(1)]?, by considering ([T as a limit from the Coulomb branch - though
there is no proof as yet. This situation could be therefore compared to a supergravity
calculation. In this limit, ([.J) leads to an effective potential which has the following

terms

1
ol
where for each i =1, 2

(0208 + OXO¥ + 2T Ty 11, + 204 Oy 1 |4] (1.6)

Of = Z(F)™ (F)
OF = (F)™ (Fi)
: X (1.7)
T = SIE(E)™ = 3 (B (Fi)a)
O = S[F)™ + (B (F)aa(F)™ = 7 (F)™ ()" (F)as)

In ([.6) the subscript |4 in the last term means that we retain terms containing four factors
of the gauge field in the product.

Let us first consider the case where the gauge fields on the branes are constants. Then
([F) is the only contribution to the effective action upto O(F?).

On the supergravity side, the force between the pair is due to the exchange of su-

pergravity modes. With only the gauge field excited these modes are the dilaton, axion,
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longitudinally polarized graviton and the longitudinally polarized 2-form fields. When
N = 2 this is propagation in flat space. In this case it is straightforward to understand the
terms in ([.§). The overall factor 1/p* comes from the static massless propagator in the
six transverse dimensions, which appears because the supergravity modes which couple to
constant gauge fields on the brane have zero momentum along the brane directions. The
first term is due to the exchange of a dilaton, which couples to TrF? on each of the branes
[[7]. The second term comes from axion exchanges which couples to Tr(FF). The third
term comes from the exchange of a longitudinally polarized graviton which couples to the
energy momentum tensor 7}, on the worldvolumes [LT]. The last term comes from the
exchange of a 2-form field, whose couplings have been obtained in [[2]. (Here the 2-form
couples to F),,, on one of the branes and to a cubic in the fields on the other one). Moreover,
the relative coeflicients between the various operators in ([[[6]) are exactly what is expected
from the couplings and propagators. The fact that the supergravity answer agrees with
the gauge theory truncation of the open string theory on the brane is well known in related
contexts [[J].

For large N and in the scaling limit, however, the pair of branes are situated in the
AdS x S® produced by the N — 2 other branes and one has to use the couplings and
propagators in this space-time. It is puzzling how the same Yang-Mills answer in ([[.q)
could be reproduced by supergravity in a nontrivial space-time. In particular, the flat
space propagator 1/p* depends on the coordinate distance between the branes and not on
their individual locations - a feature which is not a priori expected in AdSs x S°.

Remarkably, as was shown in [J], the AdSs x S® propagator for fields which obey the
massless Klein-Gordon equation is identical to the flat space propagator when restricted
to the zero brane momentum sector. Examples of such fields are the dilaton and the
longitudinally polarized graviton. Moreover, as is clear from the analysis of [I3J], the
couplings of these fields to the individual branes are the same as that in flat space. Thus the
first three terms in (L) indeed follow from dilaton and graviton exchanges in AdS5 x S°.

In [B], it was claimed that the last term of (L) can be also explained by 2-form
exchange in AdS5 x S°. However, because of the presence of a nonzero 5-form field strength
in the AdSs x S° background , the NS-NS and the R-R 2-forms mix with each other
through a Chern-Simons term in IIB supergravity [[[4], leading to two independent branches
and these branches behave as massive fields. Various other supergravity modes mix with
each other in a similar fashion. This phenomenon is crucial in a supression of the classical

s-wave absorption cross-section of the 2-form field by three branes [[J]. Consequently, as
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will be shown below, this leads to rather different propagators which reflect the mixings
and also depend on individual brane locations. Moreover, as shown in [[Z], the coupling of
the 2-form fields to the brane are different in AdSs x S° and flat space. It would be rather
miraculous if inspite of such differences, the supergravity calculation is able to reproduce
(L.9).

In this paper we show that this miracle indeed happens. The difference in couplings
and the propagators conspire to reproduce the exact form of the two-form mediated po-
tential expected from Yang-Mills theory. We conjecture that this mechanism is quite
general and would be manifest in the interaction between other brane waves which involve
exchange of other supergravity modes displaying a similar mixing. Our results provide
strong evidence for the validity of Maldacena conjecture in the Coulomb branch.

Finally we address the question of causality in the bulk and its manifestation in the
Yang-Mills effective action. In supergravity, the interaction between test branes occurs
through retarded potentials arising from causal propagation of supergravity modes. For
constant gauge fields on the branes, retardation effects are invisible and static propagators
in transverse space are relevant. However, for nonconstant waves, causality manifests itself
by producing an interaction energy which is bi-local on the brane E From the point of view
of the AdS/CFT correspondence, it may appear puzzling how the boundary Yang-Mills
theory “knows” about causality in the bulk. In particular when the two test branes are
separated only in the radial direction, the two locations map into the same point on the
boundary and causality in the boundary theory does not impose any restriction. In fact,
the Yang-Mills effective action is usually written as a sum of local terms.

We will argue that bulk causality is reflected in the Yang-Mills theory in terms involv-
ing derivative of the fields. Supergravity then predicts a specific structure of these terms.
We show this explicitly for the lowest order acceleration terms involving gauge fields in
the case of two test branes in flat space by comparing the result with the effective action
of SU(2) Yang-Mills theory. Fortunately this term is not renormalized, thus a comparison
with supergravity is allowed. We expect that this will continue to hold in AdSs x S°, which
we will discuss in a future publication [[[f]. In general such considerations may lead to a

supergravity understanding of the “acceleration” terms in the Yang-Mills effective action.

2 This point has been emphasized to me by S. Mathur
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2. Propagators at zero brane momentum

Consider the following metric in AdSs x S°

r

ds® =
s (R

5
ldy - dy] + (0 21dr? 7 D (6 (00 (2.1)
i=1
We will use the following conventions. The ten dimensional coordinates will be denoted
by y*,a = 0,---9. Out of these we continue to denote the brane worldvolume directions
by y*, 1 = 0,---3. The remaining six transverse coordinates y° - - - will be relabelled as
2i=1,---6. r = Z?Zl(zi)Q is the radial coordinate in the transverse space and 6;
are angles on the S°. (r,0;) are related to the cartesian coordinates z' in the transverse
space by the standard transformations and the metric coefficients f;(6;) are determined
from these transformations.
In the following we will set R = 1 without loss of generality, and restore them using
dimensional analysis when required.
The action for a minimally coupled massless scalar in this background may be easily

seen to be
1

Ss 5

/dt 3z d%[%(@mugb)z + (0,:0)?] (2.2)

Thus when the fields do not depend on the brane worldvolume coordinates, the action
is in fact identical to that of a massless scalar field in flat space. This means that the

propagator with zero worldvolume momentum is the flat space propagator and given by

1

—_— 2.3
477'3‘21 —22‘4 ( )

Go(21,22) =

The dilaton and the longitudinally polarized gravitonﬁ behave like massless minimally
coupled scalars from the point of view of the six dimensional transverse space and therefore
has propagators given by (P-J). This is the result used in [f].
The longitudinally polarized 2-form field is also a scalar from the point of view of the
transverse space, but it is not a minimally coupled scalar. More significantly, there are
two such 2-form fields, the NS-NS field which we denote by b,;, and the R-R field which we

will denote by a4,. These two fields are coupled with each other through the background

3 Longitudinal polarization means that the tensor indices of the fields are along the 3-brane

worldvolume.



five form field strength. It is conveninent to combine these two fields into a single complex
field

Bab = bab + 2.aab (24)

the relevant part of the supergravity action fis given by
1 10 * abc - rhabede *
Sp = E dzx \/g[ abcH + i F (Hachde — Hachde — (CC))] (25)

where

Habc - aaBbc + abBca + acBotb (26>

The last term is a Chern-Simons term which couples the two types of fields. This leads to

the well known equations of motion

21
ac(\/chab> — _gFadeeHcde (27>

L
NG

In the AdSs x S° background the five form field has a value

12103 _ Ti?) (2.8)
the other nonzero components being determined by antisymmetry and self-duality in the
usual fashion.

We are interested in the longitudinal components of the 2-form field, so that in By
the indices (a,b) take values a,b =0, ---3. The equations (-6) and (B-7) then show that
a given component B, mixes only with its dual %ewagBo‘ﬁ. It is therefore convenient to
define three pairs of complex fields (¢!, ¢3'), A = 1---3 denoting the electric and magnetic
parts of B,

1

e 2€ABCBBC $3 = Boa (2.9)

We fix a gauge in which the fields are independent of the coordinates y*, u = 0,---3. We

also introduce a coordinate

x =logr (2.10)

4 In this paper we do not consider fluctuations of the five form field strength, so that usual

problems of writing an action for a self dual five form gauge field are not relevant.
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The action (B-J) for fields which depend only on the transverse coordinates 2z’ in the
background given by (B.])) and (B.§) then becomes

3 5
_ 1 A x A 1 A x A
Sn= 5 [ do 095] S ono "0u0f + 3 700t 00
5
§ 1 . (2.11)
— 9,05 mé—zfamé 05
i=1""
+4i(¢ “0005 + 03 “0aet)]
Here the measure on S° is given by
> 1
ds = ([Jd6:) n(6:) — h(6:) = (f)? (2.12)
i=1

The negative signs in the kinetic terms of ¢3' come from lowering a timelike index.
Clearly the action (2I7]) is not the same as that in flat space, unlike the minimally
coupled scalar discussed above. This, together with the mixing between ¢{ and ¢35 makes
the propagator nontrivial. Furthermore the different pairs ¢ are independent of each
other and may be treated separately.
The propagators for these fields may be obtained by performing a standard mode
decomposition to diagonalize the action. The details are given in Appendix B. The final

result for the propagator is, after restoring factors of R

5AB (7,4+7,4) —i(?‘4 _7,4)
AB/=> =2\ __ 1 2 1 2
N 2) = gapam (—z'(r;* S N S ) (2.13)

The propagator may be, of course, expressed in terms of geodesic distances. However that
will not be necessary for our present purposes.

It may be easily checked that the propagators for the 2-form fields in flat space is

5P 1 0
NP = — — 2.14
flat ™ 47312 — 2|4 (O —1) (2.14)
in sharp contrast with (B.I3). The relative factor of 2 in the overall normalizations in
(R.13) and (R.14) will be crucial in what follows.

Finally let us consider current couplings in the supergravity theory with currents

J(x,0;) which depend only on the transverse directions

1 [ s ST 0907w, 00) + T 69 (0%); 0,6 (2.15)

4
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Integrating out the fields one gets the current-current coupling
i / ddQs / da dQL[(JA): (2, 0)NAB(, 0: 2/ 6/) T (', 0/)] (2.16)
Note that reality requires
(NABY: (x,0;2',0") = NBA (2’ 0'; 2, 0) (2.17)

which is satisfied by our propagator (R.13).

3. Couplings in the Dirac-Born-Infeld-Wess-Zumino action

The couplings of the relevant supergravity modes to a single brane in AdSs x S° may
be obtained from the Dirac-Born-Infeld-Wess-Zumino (DBI-WZ) action, and have been
studied in [[J. The action for a D3-brane in a general background of dilaton, graviton
and rank-2 fields is given by [[L[7]

S =— /d4£\/_det(Guy + Fuw) + /(0(4) +FANA+ C’(mf/\ F) (3.1)

[[§] The two terms above correspond to the DBI action and the WZ term respectively.
G v refers to the induced world-volume metric, obtained as the pull-back of the spacetime
metric. Similarly,

A

Fuw=F, —B,, (3.2)

where F),, stands for the gauge field on the D3-brane and BW is the pullback of the NS-NS
two form potential. In the W-Z term 6’(4), A and é’(o) refer to the pullback of the R-R four
form, two form and zero form fields respectively. The DBI-WZ action may be viewed as the
effective action of the Yang-Mills theory with SU(N) — SU(N —1)xU (1), with derivatives
on gauge fields ignored. The diagonal Higgs which breaks the symmetry interpreted as
the position of a 3-brane probe. Conformal transformations of the Higgs fields in the
Yang-Mills description are “metamorphosed” into those of the transverse coordinates in
AdSs x S® due to modifications of Ward identities in the gauge fixed theory [I9].

We fix a static gauge, setting the four worldvolume parameters to be equal to the
coordinates y* in the metric and also fix the kappa symmetry following [[§ by setting
half of the fermionic fields in the brane action to zero. The couplings of the various

supergravity modes may be then obtained by performing an expansion around background
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values (given by the AdSs x S° solution and the five form background field strength) and
then expanding the determinant to the required order.

We will consider the case when only the bosonic gauge fields are excited on the brane.
Then the operator on the worldvolume which couples to the dilaton obtained by the above
procedure is

Op = _iFWFW (3.3)
where indices of worldvolume fields are raised and lowered using the flat metric. The
same operator couples to a brane in flat space [[I]]. Similarly the operator coupling to the

longitudinal components of the metric is also of the same form as in flat space

1% 1 (e% 1% 1 1%
(Og)# = i[Fu Fa - Z”uu(Fu Fyu)] (34)
In contrast the operator coupling to the antisymmetric tensor fields a,, and b,, differ in
important detail from their form in flat space. The operator for the NS-NS form comes

from the DBI term and is given by [

1 1
Op)'H = —=[F"F 4 —GVH 3.5
(O = =S [F"" + =G (3.5)
where
14 14 K 1 K 14
GYF = [Fp FPE"H — Z(F” Fp,{)F o (3.6)

while that for the R-R field comes from the WZ term

v 1 VPR
(Oa) M= ZG e Fpn (37)

In (B.3) 7 is the location of the brane in question.

If the brane was located in flat space one would simply have
v 1 v v
(Op) lfae = —5 [F" + G™] (3.8)

The factor of 1/r% in front of G** is now absent.

In [IJ] it was shown that the operator (B.5), modified by the prescription of [B(], for
the nonabelian analog, represents the 2-form field in the dual description in terms of a
Yang-Mills theory. Note that for this to hold the supergravity modes to which they couple
have to be on shell. This played a crucial role in cancellation of dimension four fermionic

operators, which would have jeopardazied the AdS/CFT connection.
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For our purposes such an interpretation is not necessary - we will simply consider
these operators for what they stand : coupling of individual branes to supergravity modes.
By the same token we remain off-shell.

The presence of the factor of 1/r* (which is actually (R/r)* once the R is restored)
in front of the dimension six term is related to the relationship between the infrared cutoff
in AdS space and the ultraviolet cutoff in the dual gauge theory - a fact that is crucial
for holography [I,[BT],[@]. When the dual theory is considered to live on the boundary
at large r this term may be thought of providing the ultraviolet cutoff necessary to write
down a higher dimension operator in the gauge theory. The presence of this factor of 1/r*
in (B-H) will turn out to be crucial in what follows.

Note the asymmetry between the NS-NS and R-R fields in the couplings. The 3-brane
is of course self-dual. In the dual formulation, the NS-NS fields are interchanged with the
R-R fields and the field strength is replaced by its dual as well [PZ],[[§].

Because of the presence of the €,,,, in (B.7), it is natural to rewrite the coupling
Lr=0bu,(0p)" 4+ a,,(Of)"" (3.9)

in terms of the fields ¢ introduced in the previous sections.

1

_ A xpA
Lr=3 ;[gbn PA 4 c.cl] (3.10)

where we have

1.1 1 .

| ) . (3.11)
[(FOA + T_4G0A) + §€ABCFBC]

Pt =

O |

In the full ten dimensional theory, the interaction of the 2-form field with a pair of

branes located at 2= 2| and Z = 25 may be then written as
[ty [ a3l w702 + el (3.12)
An

where
j,f(y, z) = [56(2 —21) +0%(z — zz)]P;:‘(y, 2) (3.13)

We are interested in the situation where the brane waves are constant along the brane, so
that the operators P are independent of y. In that case the y integration in (B-13) projects
out the zero brane momentum part of the fields ¢7' and one is left with an expression of
the form (R:15). Since the measure in (R.15) is dxd€Q25 while that in (B.12) it is dr dQ5 r°
one has

JA(z,0) = r®J(z,0) (3.14)
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4. Interaction Energy of constant field brane waves

We can now use the formulae in Section 2. to derive the interaction energy between
brane waves due to 2-form exchange. This is the connected piece in (B.16), where we
substitute (B:I4) and (B:I3). Note the additional factor of r® present in (B:I4) can be
absorbed by changing the measure in (P-10) to yield

/d6z/d6z'[56(z—zl)+56(z—22)][66(2'—21)+56(z'—22)]73£ “(2)NAB (2, YPB(2) (4.1)

where NAZ is the zero momentum propagator which has been calculated above. The

interaction energy is given by the connected piece
= Pi “(21)Nins (21, 22) P (22) + Pr *(22) Ny (22, 21) Py (21) (4.2)

Evaluating (£.2) using (B.I1) and (P-I3) is straightforward. The final result is

b= 47:),[) [(F1)5 (F2), (F2) R (F2)) — i(Fl) (Fo) (F2)l (Fo)f + (1 — 2)] (4.3)

Using (B.§) and (B.19) it is easily seen that we get an identical result for just two three
branes located in flat space. The relative factor of two in the overall normalizations of the
flat space and AdS propagators is crucial for this agreement.

Two sets of important cancellations happened for each term over the indices (A, B)

1. Terms quadratic in F’s, like (Fy)}(Fz);,, which could have been present because of
terms in P4 linear in F, cancelled. If this did not happen, there would be no cor-
respondence with Yang-Mills. These would be loop corrections to the kinetic energy
terms, which cannot be present in this N = 4 theory.

2. Both the propagator and the couplings depend on the individual brane locations zj
and 2z5. However these translation-noninvariant terms conspire to cancel each other
leaving with an answer which depends only on |z} — Z5].

The structure in (f.3) is in precise agreement with the result of Yang-Mills theory given
in the last line ([L.6).
Since the couplings and zero momentum propagators for the dilaton and the graviton

are identical in AdSs x S° and flat space we would trivially reproduce the first two lines

of ([.9).
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5. Other brane waves

Even for the simple brane waves considered above, i.e. constant gauge fields, the
agreement of Yang-Mills effective action in Coulomb branch and the interaction between
branes in supergravity through single mode exchange depends on the non-trivial cancella-
tion demonstrated above. It is certainly worth understanding this mechanism by studying
other kinds of brane waves, e.g. excitations of fermions or Higgs fields on the worldvolume.

Of particular interest are fermionic operators. These would couple to the gravitons via
their contribution to the energy momentum tensor and to the two-form field via operators
which have been derived in [[J]. It may be easily verified, using the nature of the 2-form
propagators derived above, that the fermionic operators do not have a net contribution
from 2-form exchange both in AdSs x S° as well as in flat space. This again is due to
cancellations, but now the contributions from the diagonal and the off-diagonal parts of
the propagators cancel separately E The Yang-Mills contributions may be read off from
the results of [§],[[and [23].

When other brane waves are excited, various other supergravity modes will contribute
to the exchange and a priori their propagators would not be the same as in flat space. For
example, with the Higgs field excited, there is a coupling with the trace of the S° metric
which mixes with the rank-4 gauge field polarized along S5 [[4]. It would be interesting

to see whether similar cancellations hold in this case as well.

6. Time dependent brane waves and causality in the bulk

So far we have restricted our attention to interactions mediated by supergravity modes
with zero brane momentum. This restriction hides an important piece of physics in the
bulk : causality. The point is that the force between any two objects is mediated by
retarded propagators reflecting causal propagation and not by instantaneous action. This
does not have an obvious meaning in the Yang-Mills description. The base space-time of
Yang-Mills theory is identified with the directions y in the bulk, but there is no analog of
the radial distance r. Consider for example two points which are separated in the AdSs
space along the radial direction. A physical signal takes a finite time to travel between

these points. However in the Yang-Mills description these points are in fact the same

5 The same mechanism is responsible for the on shell cancellation of dimension four fermionic

operators required for AdS/CFT correspondence to hold [[[2].
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point in the boundary space. It seems rather mysterious as to how the Yang-Mills theory
encodes this finite time lag.

In the following we will argue that the supergravity prediction for force between branes
due to causal propagation of massless modes leads to a precise prediction for the structure
of higher derivative operators in the effective action in the Yang-Mills theory.

Consider a general coupling to the test branes of the form given by (B.12) and (B.13).
For an arbitrary supergravity field ®,, this is given by

dty [ d®z[®%,(y, 2)Ja(y, 2) + c.c] (6.1)
%:/ y/ m\Y M\Y

where

Ta(y, 2) = [0°(z = 21) + 8°(2 — )| P (y, 2) (6.2)

where indices M label various supergravity fields. The currents Pj; are made out of fields
on the brane. To illustrate the point, we will consider currents P,; which depend only
on time. This, in fact, highlights the issue since the coupling of the fields in (B.13) are to
currents on the two branes which are at the same spatial position on the brane. Then the

interaction energy is given by the expression
o Z/dt/dt’ Pt o) AR (E— 1 21, 29) Py (t', 22) (6.3)
MN

where AIJ\Z n denotes the retarded propagator, and we have assumed time translation in-
variance. In the special case considered in the previous sections, i.e. with time independent
Prr , the time integrals pass through the currents and convert the retarded propagator
into a static propagator in transverse space. For general time dependence, this does not
happen and one is left with a bilocal expression for the interaction energy, given above.

The Yang-Mills effective action, however, is given as a sum of various terms which are
integrals of local densities on the brane worldvolume. In our example this involves a single
integral over time since the fields are assumed to be constant in space.

Our proposal for comparing the supergravity and Yang-Mills expressions is to expand

the currents in (f.3) around the average time. Introducing

1
to = 5(zt +1t') ft=t—1t (6.4)
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we find from this Taylor expansion

E = Z[/dtolp&(to,zl)NMN(Zl,ZQ)PN(t0,2’2>
MN (6.5)

+5 [ dto@Pit)@Px(t) [(d(60)] (60 A0t 52) + -+

where the dots denote higher order terms in d¢. The first term involves the static propagator

Nun
NMN(Zl,ZQ) = /th]I\%/[N(t; 21,22) (66)

which we considered in the previous sections. However the currents Py, (t) are general
functions of time. In the general case they may be considered as general functions of the
brane worldvolume coordinates. This explains how supergravity generates F* terms in the
effective action, as in ([.5), even when the fields are not constant.

Since the currents Py are composite operators involving gauge fields, the successive
terms in (.§) should corrrespond to terms in the Yang-Mills effective action which are
higher order in a time derivative expansion. Moreover, as we will see shortly, the integral
over 0t converts the expansion in terms of the time lag into an expansion in terms of the
magntitude of the transverse distance. The latter is, however, the magnitude of the Higgs
expectation value and hence the scale below which the low energy effective action is valid.
This is a direct manifestation of the IR-UV correspondence. This has played a role in
earlier discussions of bulk causality [24].

Causality in the bulk therefore provides a specific structure for these higher derivative
terms for the strongly coupled Yang-Mills theory, strong coupling being required for the
validity of the supergravity approximation of IIB string theory. To check this proposal we
need to find such operators which are protected by non-renormalization theorems, so that
we can perform a weak coupling calculation in the gauge theory.

In fact the simplest test involves currents which are linear in the gauge fields, which

couples to the 2-form field in the bulk. In terms of the notation introduced above we then

have 1
Pt z) = =e*BCFpa(t) + iF(t)
2
X (6.7)
Pil(t, z) = FOA(t) + i=e*BC Fpa(t)

2
The first term in (f-5) then involves two powers of the gauge field and no derivatives -

these cancel as shown in section 4. The second term in ([.5) is of the form (9F)2, which
is of “weight” four and hence protected by nonrenormalization theorems of [[{]. We will

show soon that there is a net contribution to these derivative terms.
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6.1. Branes in flat space and SU(2)

The considerations of causality are equally relevant to the situation with two separated
three branes, with no other branes present. In supergravity, these are then located in flat
space and we can evaluate the expressions easily. The Yang-Mills description is then in
terms of a SU(2) gauge theory.

As before we deal with the 2-form fields with polarizations along the brane worldvol-
ume. The fields are assumed to depend on time and the transverse directions. We will
work in a gauge 0“B,, = 0. The action for these modes in a flat background can be easily

worked out to be
1
= §Z/dt/462[—|0t¢1“|2+ 0.7 ” = |0.05 ] (6.8)
A

where the fields ¢ have been defined in (2.9). Note that the action does not involve time
derivatives of the “electric” components ¢4, so that the propagator for this is essentially
the static propagator in transverse space. The contributions of ¢{ and ¢3' to the first term
in (6.5) cancel, essentially due to the negative sign of the kinetic term for ¢3' - as has been
shown in the previous sections. In the second term, only ¢f* contributes and one is thus

left with a term
Z / dto (9 PA (1)) (B PE (1)) / dst (562 ARAB (5t 2 29) (6.9)

where the retarded propagator for ¢4' can be read off from the action (5.8)

dpo d6p e —ipodt+ip-(Z1—Z22)
AAB (5t —5AB/ / 6.10
e on A 5 (o T i€ — B2 (010

The integral in (B.9) may be easily seen to be

AB
/ dot (5t)% AAB(5t: 21, 2) ~ ‘5’7 (6.11)

where p is the transverse distance defined in ([4). Inserting the expressions for P4 we get

a contribution for the interaction energy of the form
1 v

This is precisely a term of weight four in the effective action of SU(2) gauge theory, as may

be seen in [23]. This term is not renormalized since it is of weight four [[]]. Note that this
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term has two less powers of p in the denominator compared to the F* terms which appear
in the zero momentum potential. This reflects the IR-UV connection : an expansion in
the time interval gets translated into an expansion in the transverse distance, which is the
magnitude of the Higgs and hence a scale in the effective Yang-Mills theory. Also note
that this is the only term of weight four other than the F* terms when fields other than
the gauge field are set to zero.

Terms with higher weight will come from the higher terms of the Taylor series, from the
F3 terms in the 2-form coupling, and from exchange of other supergravity modes. It would
be interesting to see whether the corresponding operators also obey nonrenormalization
theorems.

When the brane waves depend on the spatial coordinates on the branes we expect the
time derivatives in (.13) to be converted into space-time derivatives on the brane.

Finally, we note that the calculation described above does not really probe the retarded
nature of the propagator - an advanced propagator would lead to the same result. Strictly
speaking we have been investigating consequences of the finite speed of light rather than
causality. However, we expect that at higher orders the difference of retarded and advanced

propagators will play a role.

6.2. Branes in AdSs x S°

The calculation outined above is a test for our proposal in the simplest possible setting.
A test of the proposal in the context of the AdS/CFT correspondence requires an analysis
which involves propagators of fields in the AdSs x S° background with nonzero brane
momentum. These propagators have been obtained in full generality [2H3]. We expect
that the signature of causal propagation in the AdSs x S° background in terms of the
higher derivative operators in the Yang-Mills effective action would hold in this case as
well. For this to work the cancellation which made the constant field interaction energy in
AdSs x S° equal to the flat space result should continue to work for non-constant fields.

Our results in this direction will appear in a future publication [Lg].
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8. Appendix A : The scalar propagator in flat 6d space

Consider flat six dimensional (euclidean) space with the metric

5
dr® + 12" fi(6;)(d6;)? (8.1)
i=1
The action of a complex massless scalar field is
1 1 °L 1
5 1
So =5 / dr ds 1 6" (150n(r°0,0) + 32 1 OH S 00 (8.2)
The relevant mode decomposition for this action is
g L i
:/%;T—QT Zk,m(gi) b km (8.3)
where the S° (scalar) spherical harmonics Zj, 7 (0;) satisfy [[4], [2G]
1
(9 (f ho;) Zy i (0;) = —k(k +4) Zim(6:) (8.4)
with integer k and are chosen to be orthornormal with the measure [d25]. The action then
becomes 45
So= [ o2 S0 + (6 + 22005k 00 (85
k1
Thus the propagator is
d Tl 6 ]_
21, 29) = VP77 - (01) 2. (0 .
G(ZDZQ) /2 Z T17’2 2 7’2 52+(1€+2)2 k,m( 1) k, ( 2) (8 6)
Integrating over 3 for r; > ry now gives
T 1 T2\ ke
= — —— (=) Z} 5 (01) Zg.5 (0 .
T2 s ) G020 (5.7)

However we know that the position space propagator in six dimensions is
1

- 47T3|51 — 52|4 (88)

Comparing (B-§) and (B7) we get

SR 5 kaH V Zi(02) Zim2)  (ri>72)  (89)

This equation can be also proved by using explcit properties of the S spherical harmonics.
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9. Appendix B : Propagator for 2-forms in AdSs x S°

The mode decomposition which diagonalizes the action (B.I1]) is
> dg .
A R iBx . ) A _
¢ (x,0;) = /_ 5 kgq e " Zm(0:) bp gy  m=1,2 (9.1)

With this mode decomposition and a partial integration the action Sy may be diag-

onalized to yield

Z/dﬂz phe gh (<52+_kf1];+4)) —(ﬁ%f(i%)))(i?) (9.2)

In (p-3) ¢* stands for ¢(ﬁ,k,m)'
The eigenvalues of the kinetic energy matrix may be easily seen to be
Ap = £V (8% + £2) (6% + (k + 4)?) (9:3)
This clearly shows the two branches of this field found in [[[4]. These have masses k and
(k 4 4) respectively.

The propagator may be now found by inverting the matrix. The result is

675 8 + k(k + 4) 48
(B2 + Kk2)(B%2 + (k+4)?) ( —48 —(52-1-/6(]6-1—4))) (9.4)

The nature of the propagator may be made more transparent by rewriting the matrix

NAZ(3k) =

elements of N as

548 k k+4
o (9.5)
0 g g

N{P(8,k) = N3P (B, k) = —

FIAP IR kT DY
The position space propagators may be now easily calculated

- o d iB(x1—x *
Ny (1, 22) = 647 / %Zeﬁ“ Y Zim(01) Zim(02) Nzl (B, k) (9:6)
km

The integral over 8 may be now performed to get, for x1 > 9

NiPE, R =0 k+2) (G2 G2 2 (61) Zim(62)
. . (9.7)
NE L B) = i) Tl = Y Zia(01) Zin (62

where we have used (-I0). Usmg the relation (B.9) in Appendix A, we get the final answer
for the propagator matrix
§AB (rt+r3)  —i(rf —r3)
NAB > , 7 = - o1 2 1 2 9.8
%) = ez (e h b )

Restoring powers of R yields (B.I3).
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