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1. Introduction

Noncommutativity has provided important new insights into the nature of string
theory[]. In the presence of a 2-form B field, one has the option to describe effec-
tive actions for open strings in either commutative or noncommutative descriptions. Using
the continuous “description parameter” ® introduced in [P]], one can actually interpolate
between the two types of descriptions, with ® = B representing the commutative theory.
The other useful choices are ® = 0 (which arises naturally in the point-splitting regulariza-
tion) and ® = —B (which has been called the “background-independent” description[Qf],
closely related to matrix theory). Depending on the question that one wants to address,
one can choose any of these descriptions for convenience.

In different descriptions, the natural low-energy limits are also different. The param-
eter governing higher-derivative corrections in string theory is o, and one can take this to
zero keeping fixed various different quantities. An important limit in the noncommutative
description is the Seiberg-Witten limit, o’ — 0 keeping fixed the open-string metric G
along with the 2-form field B and the open-string coupling G. In this limit, derivative
corrections to the noncommutative actions (DBI and Chern-Simons) vanish.

It was shown in Ref.[] that the noncommutative DBI action is equivalent to the
commutative one upto total derivative terms. In recent times, it has been understood that
exact equivalence (not just upto total derivatives) of commutative and noncommutative
actions can be obtained if one additionally inserts an open Wilson line[d,5,8[]] on the

noncommutative side. This has been useful in writing down gauge-invariant couplings of
open string modes to closed-string NSNS fields[§fJ] and RR fields[[0,[T,I3,I3]. This has
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provided a powerful tool to extract new information. For example it allows one to obtain an
exact expression for the Seiberg-Witten map between commutative and noncommutative
gauge couplings in the abelian case.

In this note we exhibit a new application of the noncommutative description of string
theory. We start by assuming exact equivalence of the commutative and noncommutative
actions, including all derivative corrections on both sides. It is important to note that
terms which, for constant backgrounds, would have been total derivatives, are also re-
tained. Next we take the Seiberg-Witten limit, which sets to zero the o’ corrections on the
noncommmutative side, and reduces it to a sum of Yang-Mills and Chern-Simons actions.
Comparison of the two sides now yields definite predictions for the derivative corrections
on the commutative side, or at least those corrections (there are infinitely many) that
survive the Seiberg-Witten limit.

Earlier attempts to study derivative corrections to the DBI action using noncommu-
tativity can be found in Ref.[[4]. The principal new ingredient in our work is the fact
that with open Wilson lines, one has exact agreement between commutative and noncom-
mutative actions, including couplings to closed-string backgrounds at nonzero momentum.
This allows us to make very explicit predictions and compare them with perturbative string
amplitudes.

Some of the derivative corrections in open-string theory were computed explicitly in
recent times[[[J] in the boundary-state formalismll. We will show in a number of cases
that the numerical coefficients and index structures given by these computations can be
reproduced using our arguments, by expanding the n-ary product *, that has recently
played an important role in the noncommutative description of string effective actions.

The agreement between the predictions of noncommutativity and the computations
of Ref.[[J] might seem somewhat fortuitous, given that there is always a freedom of field

redefinitions. We will comment on this point in some detail in the Conclusions.

1 Earlier work on the computation of such corrections can be found in Ref. [L6]. We use the
results of Ref.[[(§] as they are the most complete to date, and also because the choice of field

variables turns out to have a special significance, as we will see.
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2. Background and Proposal

In what follows, we will always work with the BPS D9-branes of type IIB string
theory, though the discussion can in principle be extended to lower D-branes. The DBI

and Chern-Simons actions on the brane in the commutative description are:

1
SDBJZ—/\/9+27T0/(B+F)

SCS _ = /ZO(n) 2ra’(B+F)

(2.1)

In the latter expression, the exponential is to be expanded to keep the 10-form part.
The noncommutative description[f] is parametrized by the noncommutativity param-
eter 6, the open-string metric G5, the open-string coupling G, and a “description parame-

ter” @, in terms of which the relationship between closed-string and open-string parameters

is given by:
1 *J 0 1
NY= ——— = +
g+ 27a’B 2ra! G421’ P
(2.2)
Vdet(g+2ra/B)  1/det(G + 2w/ )
gs a G
In what follows, it is most convenient to work in the & = —B description, where the

contact with matrix theory is explicit. In this description, the DBI action can be written

equivalently in two convenient forms:

SDBIZL/\/G-FQ’/TO/(F—B)
PIQ o
Br g + 21’ @

(2.3)

Here, G4, G and 6 are the open-string coupling, metric and noncommutativity parameter

respectively, defined by

g . |det 2o’ B
QY = (B—l)lj, Gij — _<27T0/)2Bik: gkl Blj7 GS = gs % (24)

while Q¥ is given by
QY =0 — " Fy, Y (2.5)



and Pf denotes the Pfaffian or square root of the determinant. We also note the following

explicit expression for !, which will be useful later on:

-1

~1 ~1
=0+ F = 2.6
Q = (2.6)
As is well-known, the above relations also hold in the Seiberg-Witten limit[J]:
a' — 0, G, B, G, fixed (2.7)

regardless of the description parameter ®. Since we will be mainly working in this limit
in what follows, our results can also be interpreted as being valid in any description. In
particular, this observation explains the agreement of the ® = —B results of Refs.[J] with
the explicit string amplitude calculations of Refs.[[7[[§]. The latter of course involve the
point-splitting regularization and therefore they correspond to the ® = 0 description.

The noncommutative Chern-Simons action for constant fields can be written as
follows|[[L0]

U ”QZ (n) g2ma’ Q™"
—- % n uxe 9.
SC’S gS/PfQ E C (& ( 8)

where the exponential is to be expanded so that the total form has the rank of the brane
worldvolume, namely 10 in our case.
For nonconstant fields, the above actions are not gauge-invariant and one needs to

introduce an open Wilson line. This is defined as

W(z,C) = exp <—¢ /0 Cir 65;7) A (:z: + 5(7))) (2.9)

where the contour of the Wilson line is defined in terms of a fixed momentum k by £¥(7) =
0" k; T with 0 < 7 < 1. This operator must be inserted to make the coupling to a closed-
string mode of momentum k gauge-invariant. For example, if we consider the linearized

coupling to a dilaton ﬁ(k), the DBI action must be replaced by[Rd]

SDBI(k) = D(_k) /L* {@vg + 2ma’ Q_l W(k,C)} * eik.m (2.10)

Js pPfo

The operation L, consists of smearing all operators along the contour of the Wilson line

and path-ordering the resulting expression with respect to the noncommutative % product.
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In the same way, the coupling of open-string modes to a Ramond-Ramond form of

nonzero momentum is given by[@,@,@]

Zé(n)(_k)/ L. {% 277 (s, 0)} « ek (2.11)

where again we need to pick out the 10-form contributions in the above expression.

As explained in Refs.[[9,§], the expansion of the above expressions can be written in

terms of an n-ary product called *,,, which maps a collection of n functions fi, fo,..., fn
to a single function that we denote (f1, fo,..., fn)«,.- The definition of *o is relatively
simple:
— —
sin(5 0, 60719,)
(f(@),9(2))s, = fla)—E=—="9g(2) (2.12)
2 Oy 071 0,

More information about the role of *, products, and general formulae, can be found in
Refs. 20,00, 8A.21).

More specifically, expanding out an L, product leads to the Fourier transform of the
x, products. At this point it is often more convenient to go back to position space. Hence
in what follows, we will usually work in position space, but will be forced to use momentum
space whenever the L, product is yet to be expanded out. We hope this will be clear from
the context.

Now let us summarize the basic approach of this paper. The DBI and CS actions writ-
ten here will in general have corrections that involve higher powers of o/. Let us denote
these corrections by AS ppI and AS’CS respectively. The requirement that noncommuta-
tive and commutative actions are really the same means that

Spsr + ASpsr = Sppr + ASppr

i ) (2.13)
Scs + AScs = Scs + AScs

Here the terms on the left hand side are the open-string effective actions plus their deriva-
tive corrections in the usual commutative description.

Note that in AS pp1 and ASCS, indices are always contracted with the open string
metric G;;. Therefore in the Seiberg-Witten limit all these noncommutative corrections
vanish, and the identities in Eq.(R.13) reduce to

SDBI‘ + ASDBI‘ = SDBI’

SCS)SW + ASOS‘SVV - S'OS‘SW
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where the subscript SW indicates that the Seiberg-Witten limit has been taken.

In what follows, our strategy will be to derive information about ASppr < and
w

AScs o using the exact knowledge of the commutative and noncommutative DBI and
Chern-Simons actions. Some terms in ASppr and AScg have been computed in Ref. [[5]
and we will compare them in the SW limit with the prediction from the RHS, finding com-
plete agreement. We will discuss to what extent this allows us to recover full information

about these terms away from the SW limit.

3. The Dirac-Born-Infeld Action

In this section we wish to compare the sum of the commutative DBI action Spp; plus
the derivative corrections to it ASppr (some of which are computed in Ref.[IJ]) with the

noncommutative DBI action Spp 1, after taking the Seiberg-Witten limit on both sides.

3.1. Dilaton Coupling, Order F?

The dilaton couples to the entire Lagrangian density, so we need to consider the full

DBI action. We will start by restricting to terms quadratic in F'. To this order, we have:

9 'B / N2
Sppr = / \/det(g;r e )[1+ 2T (NF) — Q”j‘) tr (NFNF)

onay (3.1)

(trNF)2+...]

In the Seiberg-Witten limit we have N* — 2";—;, and therefore:

[ V/det(g + 2ma/B) 1 1 1 2
SDBI‘SW = / m [1 +5tr (OF) — Ztr(@F@F) - g(tr OF)" + .. } (3.2)

Note that, here and later in the paper, we insert this limit only in the bracketed series
expansion, leaving the prefactor untouched. This is because the prefactor will eventually
cancel with the corresponding prefactor on the noncommutative side when we compare the
two.

Let us now convert the commutative field strengths F' appearing in this expression
into noncommutative field strengths F, using the Seiberg-Witten map. To the order that

we need it, this map is:
Fup = Fup + 0™ <<Ak78lﬁab>*2 - (Fak,ﬁbz>*2> (3.3)
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where

Fop = 0gAp — 0y Aq + 0" (04 A, 0, )., (3.4)
Here we have used an identity relating the Moyal * commutator and the %o product:
—i[f, gl = 07(0if,8;9) (3.5)

Inserting the Seiberg-Witten map into Eq.(B-2), we find

det 2ra’ B A . .
SDBI’ = / Vdet(g +2ma’5) [1 +0Y0;A; + lQb“@kl(@kz‘la,3114b>*2
SW Js 2
1 N A A A 1 .. A A
+ §9ab9kl(<Ak,aZFab>*2 - <Fakanl>*2) - ZQZJQMijFli (3.6)
1 N 2
oiip .
+5(09F) ]

Some manipulation of the last few terms permits us to rewrite this as:

det 2ra’ B o 1 .. R .
SDBI‘ = / Vdet(g +2ra’B) [1 +090;A; + Z0Y0%(0; Ay, 01 A}).,
SW s 2

which is the form in which it will be useful.
Let us now turn to the noncommutative side. Here, we only need to keep the terms
arising from expansion of the Wilson line, since all other terms are suppressed by powers

of o’ in the Seiberg-Witten limit. The Wilson line gives us:

5 Vdet(G + 2ma/®) iia a1 -
Som|, = [ YRR 1k g0, A+ pov0 00 AL A (3)

After some rearrangements of terms, this can be written:

SpBI

[ V/det(G + 2w/ D) iin i 1 Yoijakiin g .
‘SW_/ o L+ 010, 4; + 50960, Ay, 01 Ay)..

1 N ~ 1 .. ~ ~
+ iebagkl<Ak7 8l}?ab)*z + geugkl<Fji7 ﬂk)*z




Now we can take the difference of Eqs.(B.9) and (B.7). The prefactor in front of each
expression is the same, by virtue of Eq.(2:3). Apart from this factor and the integral sign,

the result is:

SDBI‘SW - SDBI‘SW = ieijml <<ij,ﬁ’l¢>*2 - ijFli> - %eijekl<<Fji:Ek>*2 - ngFlk)
(3.10)
To the order in which we are working, we may replace F by F' everywhere in this expression.
This, then, is our prediction for the correction ASppy, to order (a’)? and to quadratic
order in the field strength F', after taking the Seiberg-Witten limit. We note that this is
manifestly a higher-derivative correction: it vanishes for constant F', for which the %o
product reduces to the ordinary product. Expanding the x5, product to 4-derivative order,
we find that

1 ..
ASDBI) - [eweklemnem OOy oy 020, Fs
Sw 96 X (3.11)
— 5096590 0,00, On s Fi|

This prediction may now be compared with the computation reported in Eq.(4.1) of

Ref.[[J], which gives:

ASpsi|, = —% [hﬂ W RS 9,00y Fie 005 Fig 1o
= %hiﬂ‘ RIS 0,0, i 00 Fi|
where the matrix h% is defined as:
| 1 K
h= ( g+ 2ma/ (B F)) (3.13)

Taking the Seiberg-Witten limit, which amounts to the replacement 2wa’h — (1+60F) 716,
and further restricting to terms quadratic in F', we find exact agreement with Eq.(B-11))

above.

3.2. Graviton Coupling, Order F?

In this subsection, we will compare the coupling of the bulk graviton to the energy-

momentum tensor on the commutative and noncommutative sides. On the commutative



side, we start again with the expression in Eq.(B.T), but this time we use the full form of
N as defined in Eq.(2.2):

g 1 *J 0t iy
NY = = M"Y 3.14
<g+27ro/(B-|—F)) 27ro/+ (3:14)

where

ij 1 Y
MY = (m) (3.15)

As the linear coupling to the graviton starts at order (a/)?, we now have to go beyond the
leading term in the Seiberg-Witten limit. Hence we will keep terms up to order M?2.
Expanding Sppgr around this limit and keeping terms to order (a’)?, and using the

Seiberg-Witten map, we find:

1+

/ V/det(g + 27’ B)
Sppr =

2o/ {
s

MI(Fyj 4 0 Ay, 0, Fij) s, + 0 (Fyy, Fli>*2>}

(2ma’)? { 2 2} (27ro/)2{ 2 }
g 27m,(trMF)(tr9F)—|—(trMF) trMFMF+27m,trMF9F
+ terms not involving M + order F*
(3.16)

Turning now to the noncommutative action, the graviton coupling is obtained by
expanding the DBI action around the Seiberg-Witten limit to order (a/)2. There could in
principle have been other relevant o/ corrections to the DBI action, but these are absent
by virtue of the result in Refs.[[7,[§] that the energy-momentum tensor as calculated from
string amplitudes agrees with the one obtained by just expanding the DBI action to this

order. Thus we have, in momentum space:

. 1 - ‘
Sppr = a. /L* {\/det(G + 2w/ (F + @)) W(as,C’)} * eth-e

= Gi/vdetGL*

(1 - i(27r0/)2tr G Y F+®)G Y (F+ @)) W (z, C)] * €'

+...
(3.17)

The piece of the above expression that is order 1 in o’ has already been computed earlier
for the dilaton coupling. It contributes to the coupling of the trace of the graviton. The

new nontrivial coupling is given by the order (o/)? term.
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To compare with the commutative side, it is convenient to expand the above action

differently, in terms of M rather than G. We get:

2o/

ng[: Gi/\/det(G—f—QWO/q)) L*(W(aj,C))—i—

{tr MF + M*91(9, Fyy,, A;).,

(2ma’)?
4

2ral)?
N (2ra’)

tr (MF, MF),, +

(tr MF, tr 9F>*2} - (tr MF,tr MF),, + ...

N =

(3.1

Now taking the difference of the noncommutative and commutative actions in Egs.(B

oo

)
)

0.8

and (B.Iq), and expanding the result to 4-derivative order, we get the prediction:

ASDBI‘ - —2”—0‘/{1\42179’“9”1"9”3 0, F:0, 0. Fli — Mg gmngrsg, o F..8. 0 Flk}
SW 48 mUrdj nUsdL'[y 2 mUrl jiUnUg
9 N2 B 1 N
= %{M”M’flem”e”amaerkanasFli - §M”M’ﬂlemnersamaerianasFlk}

(3.19)
Note that contrary to appearances, both of the above terms are of order (o/)2. This is
because if one inserts G in place of M in the first line, the result vanishes.

The above can now be compared with the result of Ref.[I§] quoted above in Eq.(B.19).
Here one has to insert h ~ % + M which is true after we neglect the F' in the denominator
of h (see Egs.(B.13),(B.9)). We see that Eq.(B.19) is reproduced perfectly if one retains
only the term proportional to 6™"0"% from h™™h"®, while keeping the terms proportional
to MO and M¥ MK in h¥pk,

One can, however, keep factors of M in the expansion of A™"h"* and this leads to
other terms from Eq.(B.IJ) that are not reproduced by our computations. These terms are
comparable to curvature couplings in that they are linear or quadratic in the metric, and
quadratic in derivatives. Since the computations of Ref.[[J] were performed in flat space
neglecting the presence of curvature couplings, it is perhaps not surprising that we do not

find agreement for those terms. We hope to return to this point in the future.

4. Chern-Simons Action

In this section we compare the Chern-Simons actions in the commutative and non-

commutative descriptions. The first such comparison is that of the coupling to the 10-form
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RR potential C1% . In this case we have, in momentum space,

Scs = 1 CUO(—k) 4(k)

S

(4.1)
S5 = — U0 (—p) / L. {% W (a, c>} x €

9s

In this case, it has been argued[[[J that AScs = 0, so the two expressions above agree
exactly, leading to the topological identity of Refs.[[1[[2,[J]. In these papers it was also
shown that an analogous result holds for comparison of the coupling to the 8-form RR
potential C'® | leading to an exact expression for the Seiberg-Witten map in the abelian
case.

For the coupling to the RR forms C®,C® C® and C©, there are in general o
corrections involving derivatives of the field strength. A subset of these has been computed

explicitly in Ref.[[J]. We will parametrize these derivative corrections as follows:

Scs + AScs = gi /Z C(n) A 627T0¢/(B+F) A eWatWe+Ws+Wio (42)

where W, are 2n-forms made out of F' and its derivatives, containing explicit powers of
o'. The expression on the RHS is to be expanded and then the forms of total dimension
10 are kept. This parametrization is inspired by the lowest order computations in Ref. 7],
which we will confirm using noncommutativity, and which give rise to rather simple ex-
pressions for the Wa,,. However, it is important to keep in mind that Eq.([L.9) is a general
parametrization. The results that one finds for derivative corrections can always be cast
in this form. A point to note here is that our notation is not identical to that of Ref.[[q],

for example what is called Wg there is the sum of our Wg and %W4 A Wjy.

4.1. 4-Form Corrections, Order F?

We turn now to the 4-form that couples to C(®). The commutative Chern-Simons
coupling in this case is proportional to (B + F') A (B + F). Expanding this leads to
three terms, proportional to B A B, BA F and FFA F. It is easy to see that on the
noncommutative side too there are three terms[L(], which can be respectively matched
with these three. Matching of B A B leads to the topological identity which was already
discovered by examining the RR 10-form coupling. Matching B A F' similarly leads to the

Seiberg-Witten map. Hence the only new information comes from matching F' A F', from
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which we will learn about derivative corrections. This pattern will be repeated when we
study lower RR forms. Therefore at each stage, it suffices to examine the F™ part of the
CS coupling.

Hence the Chern-Simons coupling that we will now study (an overall factor of (2ra/)?

has been removed) is

1 1
Scs = . C© A <§F A F) (4.3)

According to our parametrization, the correction AScg is of the form:
1 (6)
AScs = g— CY AWy (4.4)

where Wy is a 4-form. This was computed to 4-derivative order, or equivalently order

a)?, in Ref.[[7], where it was found to be:
(

W, = (2ma’)? % tr (WS ARKS) + ... (4.5)

™

The 2-form S;; in the above expression is defined by

1
Si; = isl'j’ab dz® A dx?

(4.6)
1
=5 (90, Fu + (2ma) 20 0;F o 0;F ) dz* A da®
and contractions are carried out using h, defined in Eq.(B.13J) above.
In the Seiberg-Witten limit, h% — % and this correction becomes
ASes| = / O A Lt (68 7 6S) (4.7)
SW s 48

. 2
where we have inserted ((2) = %-.

Now let us work in the limit of small field strength, keeping only the leading (in this
case quadratic) terms as F' — 0, and test whether Eq.(R.11]) indeed reproduces this term.
For the 4-form correction, the operative term in Eq.(2.11) (again with an overall (2ra’)?

removed) is:

% / L. [Pf(l 0P (Fl —19F> A (Fl —19F> W(m,O)] ik (4.8)




Since we are working to order F2, we can neglect the difference between F and F , and
also the effect of the Pfaffian, the (1 — OF ) denominators, and the Wilson line. Indeed, the
only effect of noncommutativity that we need to keep is the fact that the L, prescription

leads to *,, products, in this case x5. Thus the above expression reduces to
1 ik.x
3 (FNF),,e™ (4.9)
In the small-F limit we can also reduce the 2-form S in Eq.([£.8) to
Sijab ~ 0;0; Fup (4.10)

As a result, Eq.(R.14) tells us that we should find:

1 1 1

(for the %, product of n differential forms, we use the notation (f1 A fa A ... fn)s,)-
It is easy to check, from the definition of the %5 product in Eqn.(R.13), that:

1 1 g
(FAF)., =gFAF+ =t (090;0,F N O*0,0,,F) + ... (4.12)

N =

in agreement with the LHS of Eq.([.1T]).

In this discussion of 4-form corrections, we have so far restricted our attention to
4-derivative terms that are quadratic in F'. Let us now go beyond the 4-derivative approx-
imation but retain the restriction to quadratic F' (thus, F' is small but not slowly varying).
In this case, following the techniques of Ref.[[T], one could explicitly compute higher-order
corrections in o to Eq.({.5). This has not been actually done so far, to the best of our
knowledge. But from our considerations, we can predict what the result will be in the
Seiberg-Witten limit, to every order in derivatives! Indeed, our prediction amounts to the

statement that to quadratic order in F',
AS ‘ —i/c“)')/\ Lpar., —ipaF (4.13)
“Slsw ™~ gs 2 29 '

where the RHS has infinitely many higher-derivative terms.

For example, the 8-derivative correction arising out of this is:
1 1 .
AScs| = — [ CO N s 0908007 0,0,0,,0,F A 00,000, F 414
“Slow gs/ 3840 REm T R (4.14)
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and this should be checked by explicit computation of string amplitudes.
It is tempting to speculate that one can read off the result even away from the Seiberg-

Witten limit, by making the substitution

- - 1 K
6" — 2w’ NV = 21a’ <m) (4.15)
The problem is that this substitution is not unique. The LHS is antisymmetric, so there
could be terms that are nonvanishing in general but vanish in the SW limit. If so, we
would not find them by our procedure. Nevertheless, if the above substitution turns out to
make sense, it would amount to saying that the 4-form corrections to all derivative orders,
but quadratic in F', are encoded in a %9 product whose noncommutativity parameter is
2wa’h (a matrix of no definite symmetry) rather than 6. This is suggestive of a beautiful

mathematical structure underlying stringy o’ corrections.

4.2. 6-Form Corrections, Order F3

Let us now look at corrections to the 6-form that couples to the RR 4-form potential
C™. We continue to work in the limit of small F, so we only keep the lowest power of F,
in this case F3, in all terms. The basic Chern-Simons coupling of interest in this subsection
is:

1 1
Sog = o /C<4> A <§F AF A F) (4.16)

and the correction this time is parametrized as:
1
AScs = — /c<4> A(F AWy + W) (4.17)
Js

Here W, is given to 4-derivative order in Eq.(f.5]), and Ws has been determined by explicit
computation[[[J] to be:

ns §3
We = (2ma’)? 2iﬁl

tr (WS ARS ARS) + ... (4.18)

to 6-derivative order. Following the same arguments as for the 4-form case, and restricting

to the leading terms of cubic order in F', we expect to find that

1 1
~“FAFAF F/\W) W‘ — —(FAFAPF), 4.19
3! + 4SW+ bl sw 3!< ) ( )
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We immediately seem to face a problem. For even integer arguments we have the
property that % is rational, but for odd integer arguments there is no such property.
Hence there does not seem to be any way to obtain a number like ((3) by expanding
3. Fortunately, in the Seiberg-Witten limit, W to the order given in Eq.([.1§) vanishes.
This is because, in this limit, h is replaced by 6, whose antisymmetry together with the
symmetry of S ensures that the trace in Eq.(f.1§) is zero. There is still something to check,
however. We have already seen that

1
(FANFY,, —=FAF (4.20)

W‘*‘ - 2

1
swo 2
Thus Eq.(.19) implies the identity:

1 1 1 1
—FANFANF+F (AFANF),, —=FAF ’ =_—(FAFAF), 4.21
3 ANFANF + /\<2< A F),, 5 A )+WGSW 3!< ANFNF),, ( )

which determines the Seiberg-Witten limit of Wy entirely in terms of *,, products.

1 1 1
W) — (FAFAF),. —~FAFAF),. +-FAFAF 4.22

Since we know that the LHS vanishes to 6-derivative order, it must be the case that the
RHS is also zero to this order (in particular, the 4-derivative terms cancel out), which one

can confirm by expanding x3 and .

4.8. 8-Form Corrections, Order F*

This case is important because the explicit computation of derivative corrections to
the Chern-Simons action produces a new 8-form Wy, that starts with 8 derivatives. The
computed term is nonvanishing even in the Seiberg-Witten limit. Thus we have a new
numerical coefficient and index structure to compare with the predictions of noncommu-
tativity. In this subsection we neglect all terms that are higher order in F' compared to
the leading power F*.

In this case, the derivative corrections to the coupling

i/O<2> A (%F/\F/\F/\F) (4.23)
gs !

are parametrized as:
1 (2) 1 1
ASCS:g— (GRS §F/\F/\W4+§W4/\W4+F/\W6+Wg (424)
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Here W, and Wy have already been determined, while Wy has been computed to 8-
derivative order[[[J], yielding:
¢(4

Wy = (2ma’)? ot (RS ARSAASARS) +... (4.25)

We note that ((4) = g—; so the numerical coefficient is indeed a rational number. Moreover,
the above expression, like that for Wy, does not vanish in the Seiberg-Witten limit.

Hence repeating the arguments of the previous sections, our prediction is that to 4th
order in F":

1 1 1
—FANFANFAF+-FANFAW, + F A Ws + Wy AWy
4! 2 SwW SwW

i
2 ‘SW+ 8

W (4.26)

1
:E<F/\F/\FAF>*4

Using Eqs.(f£.20) and (E:29) for W4 and W in the Seiberg-Witten limit, we get:

1 1 1
Wy F/\F/\F/\F)*4——F/\(F/\F/\F>*3—§<F/\F>*2<F/\F)*2

- 1
+ 5F AFA(FAF), — {FAFAFAF

It is a tedious but straightforward exercise to expand the right hand side in powers of

derivatives. At the end of it, one finds that, to 8-derivative order,

W tr (§S A S A0S A 6S) (4.28)

sw 5760

in perfect agreement with the Seiberg-Witten limit of Eq.(f.25). Note that this compu-
tation not only predicts the correct 8-derivative term that appears in Wg - with the
correct coefficient, but also involves a number of delicate cancellations between different
terms on the right hand side. These cancellations involve both 4-derivative and 8-derivative
terms, and are crucial in ensuring that the surviving 8-derivative term has precisely the

index contractions required to match with Eq.(f.25).

4.4. 4-Form Corrections, Higher Orders in F

In this subsection we return to the 4-derivative, 4-form corrections that were examined
in subsection 4.1, but now we relax the requirement that F' is small. Thus we have to keep
higher orders in F'. Since the noncommutative field strength F is an infinite series in

powers of F' and its derivatives, given by the Seiberg-Witten map, we will have to face
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this complication now. In addition, the factor % and the Wilson line will all make

contributions. To keep things manageable, we restrict our attention to terms involving
only 4 derivatives and work in order F3.

This check is very nontrivial because, in the Chern-Simons context, it involves for
the first time all the different contributions in Eq.(f.§). Since two explicit F' factors are
already present, to get a third one we can expand either the Pfaffian, or the (1 — OF )
denominators, or the Wilson line, in each case to first order. Also, in the second order
term in F' we must insert the Seiberg-Witten map to the lowest nontrivial order, which
leads to more F3 terms.

The computation consists of adding together the following terms. For convenience,
we write out the 4-form indices a, b, ¢, d explicitly, and it is to be understood that they are

totally antisymmetrized. The first contribution is:

A A

~ 1 ..
F2 term : <Fab7ch>*2 == §Fachd _92J<<Ai:ajFab>*2 - <Fa1'7Fbj>*2:ch>*2 (429>

N =

where the Seiberg-Witten map has been inserted on the RHS. For the rest, we get

(1- QF) denominators : Qij<ﬁai, f?’jb, ch>*3

1 .0 A A .
Pfaffian : —19”<Fji, FubFrd) s, (4.30)
1 .. ..

Wilson line : 59”8]- (Ai, Fapy Fed) v

In these terms, we can replace F by F everywhere since we are working to order F3.
As a first check, it is easy to see that on replacing all * products by ordinary products,

all the cubic terms add up to zero. This amounts to the fact that there are no corrections
to this Chern-Simons term that is O-derivative but cubic in F.

Now we proceed to expand the xo and *3 products, keeping terms with upto 4 deriva-

tives. The relevant formulae are:

1
<f7 g>*2 ~ fg - ﬂepreqsapaqf arasg

(4.31)
1
(£.9,Bes ~ Fgh = o676 (/0009 0,0:1 + 9 0,0,0 0,0 + h 0,0, f D, s9)

Using this expansion and summing up Egs.(f.29) and ([.30), the final result for the cubic

terms is then:
1 .. 1 ..
—59” 0P 0% O, F i OgFyj 0r0sFeq + ﬂew 0P 0% ) 0405 F oy, 0705 Fcq (4.32)
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This is to be compared with the results of explicit computation.

From Eq.(fEH), we see that W, contains two types of F? terms. One comes from
inserting the second term in Eq.([£§) into Eq.(-). Another arises by keeping the linear
terms in Eq.(f6), but noting that A% in Eq.(B.1J) contains powers of F. In the Seiberg-

Witten limit this gives us

1
B+ F

ij
2ma’h — < ) ~ (0 —0F0) + ... (4.33)
The term linear in F' above then gives the second contribution to the F? terms.
We therefore find that the 4-derivative contribution to Wy of order F3, in the Seiberg-
Witten limit, is made up of the following two terms:
1

Wy(order F?
4(01' o ) abed 12

070" 071 0,01, Fop O, F.pp 0i Fay + ieij 01 0P9 Fy; 0,0, Fop 0,04 Fea
(4.34)
where again we have displayed the form indices a, b, ¢, d explicitly, and antisymmetrization
over them on the RHS is understood. Comparing Egs.(f.34) and (f.33), we see after
rearranging a few indices that they agree perfectly. This once more demonstrates that the
Seiberg-Witten limit of derivative corrections in ordinary string theory can be determined
just using noncommutativity.
It should be straightforward to extend the above procedure to 4-derivative terms of
order F* and higher, and compare them with the relevant results in Ref.[[d], though we

will not do this here.

5. Conclusions

The amazing agreement between our calculations and the boundary-state computa-
tions performed by Wyllard[[[q] calls for some comment. This agreement basically stems
from the fact that the variables used in Ref.[[J] are, in a precise sense, the correct ones in
terms of which a comparison can be made. Indeed, it is a field redefinition performed in
Eq.(2.15) of Ref.[[7] that plays the crucial role in ensuring this agreement. The motivation
for this field redefinition was to eliminate derivative corrections to the coupling to the RR
8-form C'(®). Because of this, the conventional form of the Seiberg-Witten map holds for
the same choice of variables in which the results of Ref.[[5] are expressed, as was seen in
Refs.[[[1I2,[3]. Once this is ensured, the variables are completely determined and there is

no longer an ambiguity of field redefinitions.
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To summarize, in this paper we have demonstrated that noncommutativity is a pow-
erful tool in determining an infinite set of stringy o’ corrections to the ordinary (commu-
tative) D-brane effective action, including couplings to closed-string backgrounds. This
works basically because the insertion of Wilson lines ensures the exact equivalence of com-
mutative and noncommutative actions, and because the Seiberg-Witten limit drastically
simplifies the noncommutative description while retaining higher-derivative o/ corrections

on the commutative side.
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