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Abstract

We elaborate on the symmetry breaking pattern involved in the Penrose limit of AdSd+1 ×
Sd+1 spacetimes and the corresponding limit of the CFT dual. For d = 2 we examine in
detail how the symmetries contract to products of rotation and Heisenberg algebras, both from
the bulk and CFT points of view. Using a free field realization of these algebras acting on
products of elementary fields of the CFT with SO(2) R charge +1 , we show that this process
of contraction restricts all the fields to a few low angular momentum modes and ensures that the
field with R charge −1 does not appear. This provides an understanding of several important
aspects of the proposal of Berenstein, Maldacena and Nastase. We also indicate how the
contraction can be performed on correlation functions.
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1 Introduction

PP waves provide exact backgrounds for string theory in which the Green-Schwarz worldsheet

action becomes quadratic in the lightcone gauge [1]. Such plane waves may be regarded as

Penrose limits [2] of AdS × S spacetimes [3]. Some time ago, Berenstein, Maldacena and

Nastase (BMN) [4] used this to propose that the dual description of IIB string theory on the

ten dimensional pp-wave is the large R-charge sector of the N = 4, SU(N) gauge theory.

Questions of holography in this background appear to be confusing at this moment and various

proposals have been made in [5, 6, 7, 8, 9]. The proposal has been extended to other related

backgrounds [10]. Open strings and D-branes have been studied in this context in [11]. Further

insight into the correspondence has been obtained from a semiclassical treatment [12]. Other

aspects of string theory in pp-wave background has been studied in [13]. Properties of the

Yang-Mills theory relevant to this limit have been studied in [14]. Some questions about black

hole formation in these backgrpounds have been addressed in [15].

In [5], the Penrose limit leading to a pp-wave was considered from the point of view of

symmetry breaking. The bosonic isometries of AdSd+1 × Sd+1 backgrounds are SO(d, 2) ×
SO(d + 2). In the pp wave limit the number of Killing vectors remain the same and include

SO(d) × SO(d) × H(d) × H(d) together with translations along the two light cone directions.

In terms of the standard metric of a pp-wave

ds2 = 2dx+dx− − µ2(~x2 + ~y2)(dx+)2 + (d~x)2 + (d~y)2 (1)

the first H(d) denotes a Heisenberg algebra which acts on the plane ~x transverse to the wave,

while the second H(d) acts on the plane ~y. The two SO(d) factors are rotations in the two

transverse planes ~x and ~y. (The metric itself has more symmetries, but the RR gauge fields

which are necessary for the solution do not). However, the generators of H(d) are broken

symmetries since they do not commute with the light cone time x+. Rather, ∂− is the common

central charge for both the Heisenberg algebras while ∂+ acts as an outer automorphism. The

single particle states in this background may be then considered as Nambu-Goldstone bosons.

Other discussions of symmetries appear in [16].

In the bulk, supergravity states are created from the light cone vacuum with a given value

of the central charge by the action of the creation operators of H(d)×H(d). This is similar to

what happens in AdS×S where the states are created by the raising operators of the conformal

isometries and those of SO(d + 2). For AdS × S, the AdS symmetry generators simplify near

the boundary and become differential operators which act entirely on the Sd−1× (time). These

then become the conformal symmetries of the holographic theory defined on the boundary,

while the SO(d + 2) acts as internal symmetries. These symmetries are in turn used to create

states in the CFT which are dual to the supergravity modes.
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In the Penrose limit, we have to focus on the center of AdS rather than the boundary. In

this limit the AdS ×S isometries become the pp-wave isometries which include the Heisenberg

algebras. The latter act on the transverse planes while translation in x+ generate identical

copies of the same algebra. In [5] this was used to suggest that there should be a holographic

description in which these symmetries are realized on a d dimensional transverse plane and x+

acts as a holographic coordinate representing a scale. The other half of these symmetries would

be still realized as internal symmetries. Other authors [6] proposed that the holographic theory

should involve the entire transverse plane. In [7] the radial coordinate of the transverse plane

was proposed as a holographic direction. In [8] it was shown that the boundary of the pp wave

spaetime is a one dimensional null line and it was suggested that this would be the place where

a holographic theory should live.

These observations seem to be contradict the original proposal that the dual theory is the

same old Yang-Mills theory restricted to the large R-charge sector, since this gauge theory

clearly lives on the boundary of AdSd+1 × Sd+1 which is Sd−1 × time. In fact, this boundary

is not a part of the pp-wave spacetime. While it is certainly true that this sector of the Yang-

Mills reproduces quantities in the string theory, this is not a holographic description in the

usual sense.

In this note we shed light on this confusing issue by analyzing how the original symmetries

of the theory ”contract” in the Penrose limit, both from the bulk point of view as well as from

the gauge theory point of view.

For the simple case of d = 2 we first show how Heisenberg algebras arise from the conformal

and rotation algebras at the abstract level. We then study in detail a free field realization

involving two complex scalar fields. This serves as a toy model for more realistic cases as in

e.g. d = 4. Starting with a highest weight state created by products of the complex scalar

which has SO(2) R charge +1 and creating states by lowering operators of the conformal and

rotation groups, we show explicitly how for large conformal weights and R charges the states

organize as representations of Heisenberg algebras. We find that at the same time the fields

become restricted to a few low angular momentum modes and the scalar with R charge −1

never appears. We indicate how the result would generalize to AdSd+1 × Sd+1 with d > 2,

though we do not work out the details. In these cases the reduction of the number of modes

is in fact expected to be simpler : the field with SO(2) R charge +1 is restricted to the zero

mode and d other lowest angular momentum modes, the fields neutral under the SO(2) are

in their zero modes while the field with SO(2) R charge −1 does not participate. These are

crucial ingredients of the proposal of BMN where it was argued that operators which contain

modes other than those listed above would generically have large anomalous dimensions in

large N . Here we have shown that the same restrictions are required by the contraction of

the conformal and rotation algebras to the Heisenberg algebras. Finally we discuss a way to
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redefine correlation functions in the CFT appropriate to the large weight, large R-charge limit.

2 Isometries in AdS and the AdS/CFT correspondence

Let us recall some aspects of the standard AdS/CFT correspondence [17] relevant to our

discussion. We will explicitly deal with AdS3 × S3 for simplicity. The results generalize to

other dimensions in a straightforward way which we will indicate. In global coordinates the

metric is

ds2 = R2[−(1 + r2)dt
2
+

dr2

1 + r2
+ r2dχ2 + (1 − ρ2)dθ

2
+

dρ2

1 − ρ2
+ ρ2dφ2] (2)

The isometries are SL(2, R)×SL(2, R)×SU(2)×SU(2) where the two SL(2, R) factors come

from the AdS3 part and the two SU(2) factors are the standard symmetries of the S3. We will

denote these generators as

L0, L−, L+; L0, L−, L+; J0, J−, J+; J0, J−, J+ (3)

In terms of null coordinates

w = t + χ w = t − χ (4)

the Li are [18]

L0 = i∂w

L− = ie−iw[
2r2 + 1

2r
√

1 + r2
∂w − 1

2r
√

1 + r2
∂w +

i

2

√

1 + r2∂r]

L+ = ieiw[
2r2 + 1

2r
√

1 + r2
∂w − 1

2r
√

1 + r2
∂w − i

2

√

1 + r2∂r] (5)

These satisfy the commutation relations

[L0, L±] = ∓L± [L+, L−] = 2L0 (6)

The expressions for Li are obtained by interchanging w and w. The expressions for Ji and J i

can be similalrly written down by analytically continuing these expressions. We will not need

these, since (5) would be sufficient to make the point.

The states of some field in the bulk form some representation of the algebra. Consider for

example a massless scalar field in six dimensions. The lowest energy state is a highest weight

state which satisfies

L+ |h >= L+ |h >= 0 L0 |h >= L0 |h >= h |h > (7)
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The weight h is determined in terms of the SO(4) = SU(2) × SU(2) representation content.

The creation of states in each represntation is standard and will not be repeated here. If the

SO(4) angular momentum is L, so that the quadratic Casimir is L(L + 2) one has

2h = L + 2 (8)

The descendants may be obtained by the action of the L−’s

|n, n, h >= (L−)n(L−)n |h > (9)

This has

L0 |n, n, h >= (h + n) |n, n, h > L0 |n, n, h >= (h + n) |n, n, h > (10)

As is clear from the expressions for the L0 and L0, the total energy ω is the value of L0 + L0

while the angular momentum l along the circle whose coordinate is χ is the value of L0 − L0.

Thus we have

ω = 2h + n + n l = n − n (11)

It will be useful to relate this discussion to the normalizable solutions of the wave equation.

The solution for the quantum numbers given above is given by

Ψ(t, r, χ; Ω) = e−iωtYL(Ω) eilχ[
1√

1 + r2
]2h [

r√
1 + r2

]l F (2h + n + l,−n; 2h;
1√

1 + r2
) (12)

Using the properties of hypergeometric functions this may be rewritten as

Ψ(t, r, χ; Ω) = e−iωtYL(Ω) eilχ[
1√

1 + r2
]2h [

r√
1 + r2

]l F (2h + n + l,−n; l + 1;
r2

√
1 + r2

) (13)

The key property which leads to a holographic description on the boundary at r = r0 → ∞
is that these wave functions have a universal behavior for large r. It is clear from (12) that

Ψ ∼ (r0)
−2h regardless of the values of n and l. This means that a local bulk operator becomes

a local boundary operator up to an overall factor of the cutoff r0. In the holographic description

it is this boundary operator which creates the state and r0 becomes a scale in the theory.

This behavior of the wavefunction also reduces the generators of Li and Li to standard

forms. On the boundary one gets

L0 = i∂w

L− = ie−iw[∂w − ih]

L+ = ieiw[∂w + ih] (14)

which are the standard form of SL(2, R) generators acting on a primary field of weight h. There

are similar expressions for Li. Thus the states can be created in the CFT side in a fashion
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identical to that in the bulk. The difference is that now the wavefunctions are functions of

w, w, i.e. in a 1 + 1 dimensional theory on the boundary. The generators of the S3 isometries

remain the same as we approach the boundary since they do not involve r. These symmetries

are realized as internal symmetries in the CFT. This makes it clear why the natural location

of the holographic theory is on the boundary.

The above discussion may be easily generalized to higher dimensions. Representing AdSd+1

by an equation

X2
1 + X2

2 − X2
3 − · · ·X2

d+2 = R2 (15)

in a flat d + 2 dimensional space with signature (−1,−1, 1, 1, · · ·) the conformal isometries are

rotations in this embedding space, denoted by JAB. Writing the AdSd+1 metric as

ds2 = R2[−(1 + r2)dt
2
+

dr2

1 + r2
+ r2dΩ2] (16)

where dΩ2 is the standard metric on a d− 1 dimensional sphere, it is clear that the generators

Jij , i, j = 3 · · ·d + 2 are the SO(d) rotations on this sphere. The energy is given by the

generator J12. These are then the generalizations of the generators L0 and L0 of the three

dimensional case. The remaining generators J1i and J2i are the conformal symmetries which

are the generalizations of L± and L±. Once again these become the standard generators of

conformal symmetries on the boundary.

3 The Penrose limit and PP waves

To get to the six dimensional pp-wave from AdS3 × S3, we first define

t = t cosh α − θ sinh α

θ = t sinh α + θ cosh α (17)

Then we rescale

r = Rr ρ = Rρ x± =
R√
2
(θ ± t) (18)

and take the limit

R, α → ∞ r, ρ, x± = fixed µ =
eα

√
2 R

= fixed (19)

In this limit the metric reduces to (1) with the definitions

~x = (x1, x2) x1 = r cos χ x2 = r sin χ (20)

~y = (y1, y2) y1 = ρ cos φ y2 = ρ sin φ (21)
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The parameter µ may be set to unity (if nonzero) by rescaling x±. In the following we will set

µ = 1. These formulae can be trivially generalized to higher dimensions.

We want to see what happens to the symmetry generators of AdS3 × S3 in this limit. This

means - among other things - that we have to take the SL(2, R) generators given in (5) and

focus on the region r → 0 keeping r defined above fixed. This is the opposite of the limit taken

to reduce the isometries of the bulk to conformal symmetries on the boundary. Performing the

Penrose limit as described above we get the following limiting form of the generators

L0 + L0 = i∂+ − 2iR2∂−

L0 − L0 = i∂χ

L− + L− = Re−ix+

[
∂

∂x1
− ix1∂−] ≡ Ra†

1

L− − L− = iRe−ix+

[
∂

∂x2
− ix2∂−] ≡ Ra†

2

L+ + L+ = Reix+

[
∂

∂x1
+ ix1∂−] ≡ Ra1

L− + L− = Reix+

[
∂

∂x2
+ ix2∂−] ≡ Ra2 (22)

In this limit the algebra becomes

[ai, a
†
j] = −2iδij∂− (23)

while

[L0 − L0, a1] = a2 [L0 − L0, a2] = −a1 (24)

The generator ∂− commutes with every other generator and acts as a central charge. To leading

order this is essentially L0 + L0. The aj , a
†
j then form a Heisenberg algebra. The limiting form

of the generators in (22) are well known symmetries of the pp-wave background [16].

From the isometries of S3 we get a similar structure, viz two more sets of oscillators

b1, b
†
1, b2, b

†
2 which may be obtained by replacing xj in (22) by the yj . In addition we have

J0 + J0 = −i∂+ − iR2∂−

J0 − J0 = i∂φ (25)

Significantly, the central charge which appears in the oscillator algebra bj is the same as that

in the aj algebra.

The element ∂+ acts as an outer automorphism, generating identical copies of the algebra

at different values of x+. From the expressions above we have

L0 + L0 − J0 − J0 = i∂+

L0 + L0 + J0 + J0 = −iR2∂− (26)
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To obtain the supergravity states of the bulk theory we start with the ”light cone vacuum”

specified by the value of the central charge −i∂− = p− which is annihilated by all the destruction

operators aj , bj. This is the lowest energy state. The higher states are created as usual by action

of the creation operators just as in a multidimensional harmonic oscillator. Thus one has states

of the form

|ni, ma, p− >=
∏

i

(a†
i )

ni
∏

a

(b†a)
ma |0, p− > (27)

The light cone energy is given by

p− ≡ p+ =
∑

j

nj +
∑

a

ma + 2 (28)

The wave functions are given by standard Hermite polynomials in xj , ya.

It is interesting to see how the AdS wavefunctions become these wave functions. To do that

it is easier to work in the coordinates r, ρ, χ, φ. Consider a massless scalar in six dimensions.

The wavefunctions are then

Ψ = e−ip+x++ip
−

x−

eilχ+ijφe−
1
2
p
−

(r2+ρ2) Ll
n(p−r2) Lj

m(p−ρ2) (29)

where L denotes a Laguerre function. The dispersion relation is then

p+ = 2n + l + 2m + j + 2 (30)

Equation (29) should be compared with (13) in the Penrose limit 1. First consider the radial

part of (13). For large angular momentum on the S3 we have 2h ∼ p−R2. Near r = 0 with

r = Rr fixed the first two factors become

[
1√

1 + r2
]2h [

r√
1 + r2

]l ∼ e−
1
2
p
−

r2

rl (31)

while the hypergeometric function simplifies to 2

F (p−R2,−n; l + 1; r2) ∼ Ll
n(p−r2) (32)

The expressions (32) and (31) then gives the r dependent part of (29). The spherical harmonic

YL may be written in the form

YL(Ω) = eiJθeijφ[
1

√

1 − ρ2
]−2h [

ρ
√

1 − ρ2
]j F (2h + m + l,−m; j + 1;

ρ2

√

1 − ρ2
) (33)

1 A similar comparison was performed in [7], however the wavefunctions used in this paper did not contain
the Laguerre polynomial piece.

2Note that since the third argument of the hypergeometric function is a negative integer, it is a polynomial
rather than an infinite series.
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This leads to the ρ dependent part of (29). Finally noting that J = R2p− the t and θ factors

of (33) and (13) combine to give the x± dependent phases of (29).

Once again it is straightforward to generalize the discussion to higher dimensions. As

explained at the end of the previous section the generators Jij of the AdS part of the isometries

remain as they are and become the SO(d) generators acting on the ~x part of the transverse

plane. To leading order, the generator J12 = ∂t becomes a central term, and the generators J1i

and J2i combine to form the Heisenberg algebra on the ~x plane. On the S side, the story is

similar. The SO(d) rotations simply carry over. The other off-diagonal generators reduce to

Heisenberg algebra generators acting on the transverse plane ~y. The generator ∂θ becomes a

central term and is equal to ∂t to leading order. The difference between ∂t and ∂θ is however

finite and provides the outer automorphism ∂+ while the sum provides the common central

term of the two Heisenberg algebras. The reduction of the wavefunctions to the correct pp-

wave wavefunctions also follow.

The generators (22) involve derivatives with respect to the radial coordinates r and ρ in

an essential way. There is no simple way in which these are related to the way the conformal

algebra acts on the dual theory via the generators in (14) simply because the Penrose limit

involved going to the r = 0 region. From this point of view it appears mysterious how one

would realize the algebra of symmetries of the pp-wave in the dual gauge theory which lives in

a region which is not contained in the pp-wave geometry.

4 From Conformal and Rotation algebras to Heisenberg

algebras

Before delving into the question how the pp-wave symmetries are realized in the dual theory

let us examine how the contraction of conformal and rotation algebras happens at the abstract

level. Specifically we will show that the conformal algebra reduces to a product of rotation

algebra and a Heisenberg alegbra when we act on states with large conformal weight. Similarly,

when a rotation algebra acts on states of large angular momentum, it reduces to a product of

a lower dimensional rotation algebra and a Heisenberg algebra. Finally we will combine the

original conformal and rotation algebras. We will discuss the case of SO(2, 2)×SO(4) in detail.

The result generalizes easily to other SO(d, 2)× SO(d + 2).
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4.1 Conformal algebra → Heisenberg algebra

Each of the SL(2, R) factors of SO(2, 2) satisfies the algebra (6). We will consider a highest

weight state |h, h; 0, 0 >

L+ |h, h; 0, 0 > = L+ |h, h; 0, 0 >= 0

L0 |h, h, 0, 0 > = h |h, h; 0, 0 >

L0 |h, h, 0, 0 > = h |h, h, 0, 0 > (34)

and the descendants of level (n, n)

|h, h, n, n >= (L−)n(L−)n |h, h, 0, 0 > (35)

Consider first the action of one of the SL(2, R)’s. The algebra implies

L0 |h, h, n, n > = (h + n) |h, h, n, n > L− |h, h, n, n >= |h, h, n + 1, n >

L+ |h, h, n, n > = [2nh + n(n − 1)] |h, h, n − 1, n > (36)

It is now clear that when n << h the generator L0 becomes a c-number, and

L− |h, h, n, n >= |h, h, n + 1, n > L+ |h, h, n, n >= 2nh |h, h, n − 1, n > (37)

These are precisely the relations obtained from the action of annihilation and creation operators

of a Heisenberg algebra. Thus L+ and L− may be regarded as annihilation and creation

operators A and A† respectively with

[A, A†] = 2h (38)

An identical contraction of course happens for the other SL(2, R) piece. Acting by generators

L− we get states which are specified by another level number n and we have another Heisenberg

algebra A, A
†
which commute to 2h. The sum and difference L+±L+ behave as two independent

annihilation operators while L− ± L− behave as creation operators and these commute to

2(h + h). The difference L0 − L0 usual the angular momentum of the state. Thus we have an

algebra SO(2) × H(2) together with a central charge.

The above discussion may be easily generalized to SO(d, 2). The role of L±, L±’s is now

replaced by the d sets of raising and lowering operators. The role of L0 + L0 is replaced by

dilatation, while L0 − L0 is replaced by the d(d−1)
2

angular momentum generators.

4.2 Rotation algebra → Heisenberg algebra

The isometries of S3 also reduce to SO(2) × H(2). The isometries of S3 are SU(2) × SU(2)

with generators J0, J± and J0, J± respectively, with the usual algebra

[J+, J−] = 2J0 [J0, J±] = ±J± (39)

9



and similarly for the J ’s. Starting with a highest weight state |j, j; 0, 0 >

J+ |j, j; 0, 0 > = J+ |j, j; 0, 0 >= 0

J0 |j, j; 0, 0 > = j |j, j; 0, 0 > J0 |j, j; 0, 0 >= j |j, j; 0, 0 > (40)

We create the other states in this representation as usual

|j, j, m, m >= (J−)m(J−)m |j, j; m, m > (41)

We are using an unconventional normalization for conveninence. In this case the representation

is finite dimensional, so that the maximum values of m, m can be 2j, 2j respectively. Using the

algebra we have well known relations

J0 |j, j; m, m > = (j − m) |j, j, m, m > J0 |j, j; m, m >= (j − m) |j, j, m, m >

J− |j, j; m, m > = |j, j; m + 1, m > J− |j, j; m, m >= |j, j; m, m + 1 >

J+ |j, j; m, m > = [2mj − m(m − 1)] |j, j; m − 1, m >

J+ |j, j; m, m > = [2mj − m(m − 1)] |j, j; m, m − 1 > (42)

When j, j are large and m << j, m << j we can ignore the fact that the representations have

finite dimensionalities (2j+1, 2j+1). Furthermore, J−, J− and J+, J+ become the creation and

annihilation operators of two commuting Heisenberg algebras with planck’s constants 2j and

2j respectively. Taking sums and differences of J± and J± we get a common central charge for

both the Heisenberg algebras which is 2(j + j), while the difference (j − j) is a SO(2) angular

momentum.

Once again the above considerations generalize to higher dimensional rotation group SO(d+

2) leading to SO(d) × H(d).

4.3 Combining the Conformal and Rotation algebras

In the Penrose limit we are interested in states which have both large conformal dimensions as

well as large SO(d + 2) angular momenta. For example in d = 2 we are interested in states

which are constructed out of highest weight states of the form |h, h; 0, 0 > ⊗|j, j; 0, 0 > with

h + h = j + j (43)

In a supersymmetric theory these states have a special significance since these are chiral pri-

maries. The descendants of this state are

(L−)n (L−)n (J−)m (J)m |h, h; 0, 0 > ⊗|j, j; 0, 0 > (44)

Acting on the module, the product of conformal and rotation algebras contract to SO(2) ×
SO(2) × H(2) × H(2) and the central charges of the two H(2)’s are the same. To leading
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order this common central charge is the value of the sum 1
2
(L0 + L0 + J0 + J0). The difference

(L0 + L0) − (J0 + J0) provides an outer automorphism of the Heisenberg algebras. This is

exactly what happens for the isometries of the pp-wave.

5 Heisenberg algebras in the CFT

The discussion above has no reference to any specific way in which the symmetries are realized.

We have seen in the section 3 that when these are realized as isometries of AdS3 × S3 this

contraction corresponds to the Penrose limit which lead us to the isometries of the pp-wave

background. We now want to see how this mechanism happens in the CFT description.

In the CFT, the states form representations of the conformal and R symmetry algebras.

The pp-wave/CFT correspondence requires that a subset of these states should survive in the

large conformal weight and large R charge limit, and should form representations of a product

of lower dimensional rotation and Heisenberg algebras. In this section we will study this in

a free field realization and show that this requirement implies that only a few of the original

angular momentum modes survive in this limit. We will perform the analysis for AdS3 × S3

and indicate how the result generalizes to higher dimensions

The free field realization consists of four scalar fields living on S1 × time which we will

organize into two complex scalars U, V with their complex conjugates U, V . They together

form a vector representation of SO(4). We will pick a particular SO(2) subgroup of SO(4)

such that U has R charge +1, U has charge −1 and V, V are neutral.

Each of the fields have a mode expansion

U =
i√
4π

∑

n

1

n
[ane−inw + ane

−inw]

U =
i√
4π

∑

n

1

n
[a⋆

ne−inw + a⋆
ne−inw]

V =
i√
4π

∑

n

1

n
[bne−inw + bne

−inw]

V =
i√
4π

∑

n

1

n
[b⋆

ne−inw + b⋆
ne

−inw] (45)

where the nonvanishing commutators are

[an, a
⋆
m] = [bn, b

⋆
m] = [an, a⋆

m] = [bn, b⋆
m] = 2nδm+n,0 (46)

In terms of these modes the generators Li, Li of SL(2, R) × SL(2, R) are given by

Ln =
1

2

∞
∑

m=−∞

(an−ma⋆
m + bn−mb⋆

m) (n = 0,±1) (47)
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while the generators Ji, J i of the SU(2) × SU(2) = SO(4) are given by

J0 =
1

4

∫

dφ[U
δ

δU
− U

δ

δU
− V

δ

δV
+ V

δ

δV
]

J+ =
1

2

∫

dφ[V
δ

δU
− U

δ

δV
]

J− =
1

2

∫

dφ[U
δ

δV
− V

δ

δU
]

J0 =
1

4

∫

dφ[U
δ

δU
− U

δ

δU
+ V

δ

δV
− V

δ

δV
]

J+ =
1

2

∫

dφ[V
δ

δU
− U

δ

δV
]

J− =
1

2

∫

dφ[U
δ

δV
− V

δ

δU
] (48)

The SO(2) in question is generated by J0 + J0. These may be expressed in terms of modes

using the mode expansions above. All operators are assumed to be normal ordered.

The effect of the various SL(2, R) generators on primary fields is given by derivative oper-

ators as described in equation (14), while that the SU(2) generators rotate the fields among

them.

To discuss states it is useful to euclideanize the time t by defining τ = −it and perform a

conformal transformation to R2 with complex coordinates z, z

z = eτ+iχ z = eτ−iχ (49)

On the plane the action of Li become

L0 = −(z∂z + h) L0 = −(z∂z + h)

L− = −∂z L− = −∂z

L+ = −(z2∂z + 2hz) L+ = −(z2∂z + 2hz) (50)

The L’s are obtained by replacing z with z.

Consider the operator on the plane

O(z, z) = [∂zU(z)]j [∂zU(z)]j (51)

At z = z = 0 this creates a highest weight state which we will denote by

|j; 0, 0; 0, 0 >= O(0, 0)|0 > (52)

The first slot simply labels the representation, the next two zeros denote that they are at level

(0, 0) of the conformal algebra and at level (0, 0) of the rotation algebra. (52) is clearly a highest

weight state, killed by L+, L+, J+, J+. Furthermore

L0|j; 0, 0; 0, 0 >= L0|j; 0, 0; 0, 0 >= J0|j; 0, 0; 0, 0 >= J0|j; 0, 0; 0, 0 >= j |j; 0, 0; 0, 0 > (53)

12



In terms of the modes this state is

|j; 0, 0; 0, 0 >= (a−1)
j(a−1)

j |0 > (54)

The descendants of this state are of the form

|j; n, n; m, m >= (L−)n(L−)n(J−)m(J−)m|j; 0, 0; 0, 0 > (55)

In terms of the operator creating the state, action of L− is simply a derivative ∂z while J−

replaces one of the fields U by some other field.

From the discussion of the abstract algebras we know that

L+|j; n, n; m, m > = [2jn + n(n − 1)] j; n − 1, n; m, m >

J+|j; n, n; m, m > = [2jm − m(m − 1)] |j; n, n; m, m > (56)

and similarly for the action of L+, J+. In the large j and n, n, m, m << j limit these relations

characterise Heisenberg algebras. We want to see what is involved in this contraction.

5.1 The conformal part

Let us first discuss the conformal descendants. It is sufficient to deal with one of the SL(2, R)

factors. The simplest nontrivial example is

|j; 2, 0; 0, 0 >= [j(j − 1)(a−2)
2(a−1)

j−2 + 2j(a−3)(a−1)
j−1] (a−1)

j |j; 0, 0 > (57)

The operator which creates this state is

∂2
zO(z) = [j(j − 1)(∂2

zU)2(∂zU(z))j−2 + 2j(∂3
zU)(∂zU(z))j−1](∂zU)j (58)

the first term in (57) comes from the first term in (58) and similarly for the second term. Even

at this stage, it is clear that the terms which involve ∂3 is subdominant in the large j limit.

Let us now check the action of L+ on this state. This may be easily calculated to yield

L+ |j; 2, 0; 0, 0 >= [4(j − 1) + 6] |j; 1, 0; 0, 0 > (59)

which is consistent with the general result of (36).

The first term of the right hand side of (59) comes from the action of L+ on the first term

of (57), viz. the state [j(j − 1)(α−2)
2(α−1)

j−2 |0 >. In the large j small n limit only the first

term in (59) contributes and one has

L+ |j; 2, 0; 0, 0 >≃ 4j |j; 1, 0; 0, 0 > (60)

which, as argued above, is characteristic of Heisenberg algebra.
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It is easy to generalize this result for arbitrary n. ∂n
z distributes among the product of

(∂zU)’s. Ignoring the factors of ∂zU which are always present,

∂n
z O(z) = [j(j − 1) · · · (j − n + 1)](∂(∂zU))n(∂zU)j−n + · · · (61)

The elipses denote terms of the form (∂(∂zU))n−2(∂2(∂zU))(∂zU)j−n+1 and those with more

derivatives on a single (∂zU). Note that the first term has n powers of j while the others have

lower powers of j. It may be easily seen that the state |j : n, 0; 0, 0 > is of the form

|j; n, 0; 0, 0 >= [j(j − 1) · · · (j − n + 1)](a−2)
n (a−1)

j−n |0 > +O(jn−1) (62)

Once again the leading term in L+ |j; n, 0; 0, 0 > comes from this first term in (62) and leads

to

L+ |j; n, 0; 0, 0 >≃ 2nj |j; n − 1, 0; 0, 0 > (63)

with subleading contributions which do not involve j.

It is now clear what is happening in the contraction of the conformal algebra to the Heisen-

berg algebra. The raising operator L− acts as a derivative on the complex plane. The only

term which is relevant in the action of Ln
− on (∂zU)j is the term where we have n products of

(∂2
zU) and none involving higher derivatives on U . In terms of modes, this means that the op-

erators involve only a−1 and a−2. In the theory on S1 × time these are the modes with angular

momentum l = 1 and l = 2 on the S1. Operators constructed in this fashion automatically

furnish a representation of the Heisenberg algebra with a “Planck’s constant” equal to 2j.

It should be be possible to extend the above argument easily to higher dimensions. For a

CFT living in euclidean Rd have d raising operators in the conformal algebra. We start with

some elementary field U with dimension 1 and construct a highest weight state by action of

operators like (U)j . Descendants are obtained by action of these raising operators which act

like derivatives. In the large j limit the only terms which survive in these descendants are the

ones which contain single derivatives. There is one crucial difference from the two dimensional

case discussed above. Now the vacuum is not annihilated by the zero mode of (U). Thus

the highest weight state has zero angular momentum but nonzero energy (equal to j) and is

created by products of the zero mode of (U). The descendants have higher angular momenta.

However the above discussion shows that in the large j limit only the d states of lowest angular

momentum, l = 1 participate. This is precisely the proposal of BMN and plays an important

role in the dynamics at large R-charge [14]. We have obtained this from the contraction of the

conformal algebra to the Heisenberg algebra.

5.2 The R symmetry part

The action of J− replaces one of the U ’s in the highest weight state by a V

[J−,O] ∼ j [(∂zV )(∂zU)j−1(∂zU)j + (∂zV )(∂zU)j(∂zU)j−1] (64)
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The first level descendant of the R symmetry algebra is

|j; 0, 0; 1, 0 >= J−|j; 0, 0; 0, 0 >= −j

2
[b−1(a−1)

j−1(a−1)
j + b−1(a−1)

j(a−1)
j−1] |0 > (65)

More powers of J− are going to bring in more of V ’s and V ’s, but will not bring in any U ’s.

The lowest nontrivial state which contains a U is

|j; 0, 0; 1, 1 >=
j

2
[ (j − 1)b⋆

−1b−1(a−1)
j−2(a−1)

j + jb⋆
−1b−1(a−1)

j−1(a−1)
j−1

− a⋆
−1(a−1)

j−1(a−1)
j

+ (j − 1)b⋆
−1b−1(a−1)

j−2(a−1)
j + jb⋆

−1b−1(a−1)
j−1(a−1)

j−1

− a⋆
−1(a−1)

j−1(a−1)
j] |0 > (66)

The operator structure for these terms are

|j; 0, 0; 1, 1 >=
j

2
[ (j − 1)(∂zV )(∂zV )(∂zU)j−2(∂zU)j + j(∂zV )(∂zV )(∂zU)j−1(∂zU)j−1

− (∂zU)(∂zU)j−1(∂zU)j

+ (j − 1)(∂zV )(∂zV )(∂zU)j−2(∂zU)j + j(∂zV )(∂zV )(∂zU)j−1(∂zU)j−1

− (∂zU)(∂zU)j−1(∂zU)j ] (67)

The term which involves U contains lower powers of j and would be subdominant. This becomes

clear when we consider the action of J+ on this state and see how it acts as an annihilation

operator of a Heisenberg algebra in the large j limit. One gets

J+|j; 0, 0; 1, 1 >= −j

2
[ (j − 1)b−1(a−1)

j−1(a−1)
j + jb−1(a−1)

j(a−1)
j−1

+ b−1(a−1)
j−1(a−1)

j

+ (j − 1)b−1(a−1)
j(a−1)

j−1 + jb−1(a−1)
j−1(a−1)

j

+ b−1(a−1)
j(a−1)

j−1] |0 > (68)

Each term in (68) is the action of J+ on the corresponding term in (67). The final result is as

expected

J+|j; 0, 0; 1, 1 >= 2j|j; 0, 0; 0, 1 > (69)

At this level, the action of J+ is like that of a Heisenberg annihilation operator even for finite

j. However the significant point is that in the large j limit the terms which contain a⋆
−1 in

(67) do not contribute. The situation becomes clear at the next level, viz. the action of J+ on

|j; 0, 0; 2, 1 >. Following similar manipulations we find that the corresponding operator which

contains U does not contribute in the large j limit.

The basic reason behind this may be found by examining the charges, equation (48). It is

clear from these expressions that U can be introduced only if there is a V or a V in the operator
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in an earlier stage, which may be replaced by U . However each such term is accompanied by a

term which replaces one of the U ’s by a V or a V - and there are lot more of these terms since

the number of V, V are always much smaller than the number of U ’s.

We therefore conclude that the contraction of the rotation algebra to a Heisenberg algebra

shows that the states which survive in this limit do not contain modes of the field U .

This argument may be generalized to higher dimensions trivially. This is because we are

working with an internal symmetry. Once again the major difference is that the fields U, V

themselves are conformal fields and therefore the highest weight states are created by U j itself.

Consequently all the modes in this subsection would be modes with zero angular momentum

rather than with angular momenta ±1. Action of R symmetry generators of course do not

change the angular momentum.

5.3 Combining the conformal and R symmetry parts

Let us now consider mixed descendants. The lowest such state is

|j; 1, 0; 1, 0 >= −j [ (j − 1)a−2b−1(a−1)
j−2(a−1)

j + ja−2b−1(a−1)
j−1(a−1)

j−1

+ b−2b−1(a−1)
j−1(a−1)

j] |0 > (70)

the structure of the operator which creates this state is

− j [ (j − 1)(∂2
zU)(∂zV )(∂zU)j−2(∂zU)j + j(∂2

zU)(∂zV )(∂zU)j−1(∂zU)j−1

+ (∂2
zV )(∂zV )(∂zU)j−1(∂zU)j ] (71)

This is the first nontrivial operator which contains ∂2
zV . However it is clear that the term

which involves ∂zV is subdominant in the large j limit. One can now go ahead and examine

the action of J+ or L+ on this state and verify that the expected answers follow. In all these

steps the term which involves ∂2
zV does not contribute in the large j limit. A similar result

follows for ∂2
zV when we consider the state |j; 1, 0; 0, 1 >. The situation becomes clearer at the

next level, which we have checked, but will not present here.

Once again the reason behind this is clear from the generators. Higher angular momentum

modes of V, V can be obtained only when L− or L− act. These are derivatives which get

distributed over all the terms in the product, and since there are always lot more U ’s compared

to V or V ’s, the dominant terms are those in which the derivatives act on U ’s.

We therefore conclude that in this limit the fields V must be restricted to its lowest nontrivial

angular momentum mode. Once again the argument generalizes to higher dimensions with the

obvious differences noted above.

Let us therefore list the various facts which result from examining the contraction of the

product of conformal and R symmetry groups to lower dimensional rotation and R symmetry
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groups and Heisenberg groups. Starting with a state constructed from products of an elementary

field U with SO(2) R charge +1

1. The field U is restricted to its two lowest nontrivial angular momentum states. (For d > 2

these are the zero mode and the d l = 1 modes.)

2. The field U does not appear in the operators which create the states

3. The fields which are neutral under the SO(2) are restricted to their lowest nontrivial

angular momentum state.

These are crucial ingredients in the work of BMN [4]. We have obtained them from symmetry

considerations.

5.4 States in the dual gauge theory

For the case of most interest, AdS5 ×S5 the dual CFT is a N = 4, SU(N) gauge theory living

on S3 × time. The conformal group is SO(4, 2) and the R-symmetry is SO(6). In the pp-wave

description, the Penrose limit leads to SO(4) × SO(4) × H(4) × H(4) and according to the

proposal of BMN is the states of string theory in the pp-wave background are a subset of states

in the gauge theory with large R-charge J and large dimension ∆ and small ∆ − J .

The considerations of the above subsections may be viewed as a carricature of this. We

have not considered the effects of the gauge group and our considerations were restricted to

free field theory.

The contraction of the conformal and the R-symmetry algebras does not depend on the

fact that these symmetries act on gauge fields and adjoint scalars. The specific way these are

represented, however, differ from the considerations of this section - the operators in question

involve traces over the gauge group. Nevertheless we expect that the conclusions remain at the

free field level. The essential point is that the operators which dominate in the large j limit

are those which are obtained when the lowering operators act on the string of U ’s rather than

other fields which are brought down at earlier levels. This should lead to a restricted Hilbert

space Hh ⊂ H of states created by operators which do not contain higher angular modes of the

elementary fields.

When we turn on interactions, one has to ask about transition amplitudes between states

in the restricted hilbert state Hh and the states in H−Hh. In [4] it was argued that at large

N operators containing higher angular momentum modes acquire a large anomalous dimension

and therefore decoouple from the theory, so that these transition amplitudes vanish. This is

where large N and large ’t Hooft coupling enters into the discussion and is the reason why our

conclusions regarding a contraction of the Hilbert space would be valid in the full theory.
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Usually the large N limit reduces the allowed interactions to planar diagrams but do not

reduce the free Hilbert space. On the other hand, as we have seen above, large conformal

weight and large R-charge reduce the free Hilbert space without affecting the intensity of

interaction. When we combine the two together we get a consistent truncation of the Hilbert

space. Supersymmetry is a crucial ingredient in this since this ensures that amplitudes for

transitions between states in the reduced space remain finite while those which take us out of

this reduced space are suppressed. For nonsupersymmetric theories like QCD, very likely the

analog of the large J limit contraction should be defined as an infinite momentum frame limit

similar to the original definition of Matrix theory as the infinite momentum frame limit of 11

dimensional supergravity.

5.5 A connection to the bulk

The bulk generators of the Heisenberg algebra, equation (22) appear to be quite different from

the representation in conformal field theory discussed in the previous section. Unlike AdS × S

spacetimes the bulk generators do not reduce to the CFT generators when restricted to some

region of the spacetime (e.g. the boundary). Is there any sense in which the CFT continues to

provide a “holographic” description of the bulk ?

In AdS × S, the holographic representation of the AdS isometries is in terms of conformal

symmetries of a CFT while the S isometries are represented as internal symmetries. When

we take the Penrose limit both of these isometries becomes products of rotation group and

Heisenberg group and there is a Z2 symmetry between these. One would expect that the same

phenomenon appears in a holographic description.

The above discussion shows that the CFT essentially reduces to a finite number of quan-

tum mechanical degrees of freedom. For d > 2 these include the d + 1 zero modes of the

scalars and d lowest angular momentum modes of the scalar U . The symmetries may the then

written in terms of these modes and derivatives with respect to them. The generators of the

Heisenberg algebra in the bulk involve derivatives with respect to the transverse coordinates

to the pp-wave. In [5] it was proposed that this implies that there should a holographic rep-

resentation in d euclidean dimensions. In view of the above results it is tempting to attempt

a different interpretation, viz. the transverse coordinates in the bulk should be thought of as

these 2d quantum mechanical degrees of freedom. It appears, however that the CFT furnishes

a Bargmann-Fock representation of the harmonic oscillator algebra while the bulk furnishes

a usual coordinate representation 3. This would make the Z2 symmetry more manifest. The

details of this correspondence, especially the role of the gauge field remain to be understood.

3 A related point has been made in Arutyunov and Sokatchev, [16]
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6 Correlators in the large R charge limit

In the standard AdS/CFT correspondence the n-point correlators of conformal fields are related

to bulk correlators via boundary-to-bulk Green’s functions [17]. Consider for example the two

point function of an operator Oh,ni
which has vanishing anomalous dimension. The lowest

energy state in the CFT defined on Sd−1 created by this operator are the ones which are

obtained from a primary state by the action of d raising operators ni times. The energy of this

state is h +
∑

i ni. This is also the conformal dimension of the operator, so that on Rd the two

point function is given by

< Oh,ni
(x)Oh,ni

(0) >=
1

|x|2h+2N
(72)

where N =
∑

i ni. Here |x| denotes a radial coordinate in the Rd. This is related to the

euclidean time coordinate τ of the CFT defined on a Sd−1 by |x| = eτ . Since this is the global

time in the AdS we get the relationship

< h, ni|e−τH |h, ni >=
1

|x|2h+2N
(73)

where H is the hamiltonian of the bulk theory.

In the strict h = ∞ limit the above correlator is zero for |x| > 1 and infinite for |x| < 1.

To make concrete connections to bulk quantities it is first necessary to define finite quantities

starting from these correlation functions.

We have seen that in the Penrose limit the conformal and R symmetry algebras reduce to

Heisenberg algebras and we can write

H = C + P (74)

where C denotes the common central extension and P denotes the outer automorphism. In the

bulk we have C ∼ p− = p+ and P = p+ = p−. This suggests that we define normalized two

point functions

G(|x|) =
< h, ni|e−τH |h, ni >

< h, 0|e−τH |h, 0 >
(75)

Note that in the bulk the state |h, 0 > is the light cone vacuum with p− = h Then the above

correspondence implies

G(|x|) =< h, ni|e−τP−|h, ni > (76)

We will now consider the large J limit of CFT three point functions. As is well known, in

CFT the three point function is completely determined by the OPE

Oi(x)Oj(0) = Cijk

1

|x|(hk−hi−hj)
Ok(x) (77)
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Let us now assume that the conformal weights are such that hi = Ji + pi for pi small but finite

numbers and where Ji represent U(1) charges. We are interested in the limit of the OPE for

large Ji. Conservation of U(1) charge Jk = Ji + Jj implies that the space time dependence of

the OPE is simply 1

|x|(pk−pi−pj ) i.e it is independent of J . However the structure constants Cijk

will generically depend on the values of the U(1) charges Ji. For instance in the case of BMN

operators we have Cijk =

√
JiJjJk

N
. In the BMN limit where J ∼

√
N , the structure constant

scale like 1/
√

J and therefore goes to zero in the limit J = ∞. This motivates a redefinition of

the structure constants to have a finite OPE in the large J limit. In what follows we suggest a

way to do it. Let us first write the OPE as

Cijk [1 − (pk − pi − pj) log|x|] Ok(0) (78)

and let us define a finite double limit, J → ∞ and |x| → 0 with y = log|x|/
√

J held finite. In

other words as we increase J we focus on smaller values of |x|. Now we have

Cijk log|x| =
a2

√
J

log(|x|) (79)

where a2 = J2/N . The OPE can be now represented as a vertex operator, namely

< i, j, k|V >= y.a2.(pk − pi − pj) (80)

with the new “blow up” variable y representing now the interaction amplitude. This structure

of the vertex operator was already suggested in ref [19]. In summary, we simply observe that

in the large J limit the main contribution to the OPE comes from the contact terms appearing

in the limit |x − y| = 0 with the corresponding pole being compensated by the zero of the

structure constant in the large J limit. It is natural to conjecture that in the large J limit

generic correlators could be mapped into string like diagrams defined in terms of the vertex

opertor (80) and the free propagators (76). For recent discussions on the three point function

see references [8, 20].

7 Conclusions

We have studied how the conformal and R-symmetry algebras in a CFT contract to products of

lower dimensional rotation and R symmetry algebras and Heisenberg algebras. This parallels

the similar contraction in the Penrose limit of AdS × S spacetimes. We have argued that in

this contraction process, higher angular momentum modes of fields in the CFT decouple and

either the field with SO(2) R-charge +1 or with SO(2) R-charge −1 remain (but not both).

We have not considered the supersymmetries; we expect that analogous considerations for the

superconformal algebras will provide more insight.
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The fact that at large weight and large R charge one gets Heisenberg algebras is quite

general. We have explicitly worked out how this happens for the d = 2 case, but it is clear that

the result generalizes to any number of dimensions. The reduction of the Hilbert space has

been, however, demonstrated in a toy model of 1 + 1 dimensional CFT which is a recognizable

carricature of higher dimensional models. This makes it quite plausible that one could generalize

the considerations to higher dimensions. However several crucial ingredients are absent in our

toy model - these are related to the fact that in higher dimensions the CFT is a gauge theory

and one has to perform a large N limit of this gauge theory. It is important to investigate

whether such symmetry considerations may be used to understand the phenomenon in gauge

theory - this would also elucidate the role of large N limit. The intricacies of operator structure

and operator mixing [21] would be relevant to this.

In this paper we have dealt with supergravity modes in the bulk and their CFT descrip-

tions. These are the states which are created using the isometries of the geometry. The most

interesting feature of the pp wave - CFT correspondence is, however the fact that a string the-

ory is tractable in this geometry and [4] have found how to describe the higher stringy modes

in the gauge theory. We have not dealt with such stringy modes in this paper. However it

is reasonable to believe that one can understand the spectroscopy of stringy modes in terms

of worldsheet current algebras and one has to understand how this is realized in the CFT. A

requirement that the CFT encodes this current algebra correctly should throw light on the

proposal of [4] for CFT description of stringy states.

Finally, the meaning of holography in this correspondence remains unclear. The present

paper reinforces the claim that a large R-charge limit of the original CFT is dual to the bulk

theory. But in what sense is this a holographic description ? The dual CFT lives on a Sd−1 ×
time which is the boundary of the AdSd+1 spacetime before any Penrose limit. The Penrose

limit, on the contrary, focusses on the deep interior of the AdS which is not a part of the

pp-wave geometry. The fact that the CFT essentially becomes a quantum mechanical system

might suggest, however, that it is natural to place this on the one dimensional boundary of

pp-wave - as suggested in [8]. However, we do not have any concrete check of this idea yet.

What does appear to be true is that all the symmetries of the bulk are realized as internal

symmetries of this effective quantum mechanics. It appears likely that for the 11 dimensional

pp-wave the theory on the boundary is the Matrix theory in this background written down in

[4] and further studied in [22]. It would be interesting to see if this can be made concrete.

The key point to understand is whether the scale of the CFT appears as some coordinate in

the pp-wave in a way similar to what happened in the AdS/CFT correspondence. One possible

scenario is that worldsheet dilatations become a holographic coordinate, in a way similar to

noncritical string theory [23, 24]. The CFT would be then similar to the c = 1 matrix model

[25]. If this is true, one should be able to recast the contracted form of the beta function
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equations of the CFT as worldsheet beta functions which would be related to bulk equations

of motion in the usual way. For a recent discussion of RG flows in this context see [26].
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