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Let V be a finite-dimensional vector space over the field R of real numbers,
namely R? for some d > 0. We denote by P(V) the corresponding projective space;
thus P(V) = (V\{0})/ ~, where ~ is the equivalence relation identifying every v €
V\{0} with tv for all ¢ € R* (nonzero real numbers). We consider V' equipped with
the usual Euclidean topology, and the projective space equipped with the quotient
topology as the space of equivalence classes. Let 7' : V' — V' be a nonsingular linear
transformation of V. Then T carries every equivalence class in V'\{0}, with respect
to ~ as above, to an equivalence class, and hence induces a homeomorphism of
P(V); we call this the projective transformation associated with 7.

Here we consider the nonsingular linear transformations and projective transfor-
mations as dynamical systems. We describe their dynamical properties, and their
applications to certain topics in Lie groups and ergodic theory: Borel’s density the-
orem, Halmos’s question on existence of ergodic automorphisms, invariant measures
of automorphisms of locally compact groups etc.. This is primarily an expository
article, but some new points have been brought out, correction to some arguments
in [2] and [14] are noted, and some questions are raised. While for the most part we
shall consider only real vector spaces, and their analogues over complex numbers, in
§ 7 we shall briefly describe also analogues of the results in the case of vector spaces
over p-adic fields.

1 Preliminaries on general dynamical systems

We recall some definitions for a general dynamical system (X, 7), where X is a
locally compact second countable space and 7 is a homeomorphism of X. A point
x € X is said to be wandering, if there exists a neighbourhood U of z in X such
that U N 78(U) = 0 for all i € N (natural numbers). A point z € X is said to be
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nonwandering if it is not wandering. The set of all nonwandering points is called
the nonwandering set of (X, 7), and is denoted by Q(X, 7), or Q(7) (or even just €2,
when there is no likelihood of confusion). It is easy to see that Q(7) is closed and
T-invariant, namely 7(2) = Q. We note also the following.

Lemma 1.1. Let (X, 7) be as above. A point x in X is nonwandering if and only
if there exist sequences {x;} in X and {n;} in N such that, as i — oo, x; — =,
n; — 00, and ™" (z;) — x.

Proof. Let x € X. If there exist sequences {z;} in X and {n;} in N as above, then
for every neighbourhood U of = there exists ¢ such that z; € U and 7" (z;) € U,
which means that U N 7" (U) contains 7" (x;), and hence is nonempty, and therefore
x is nonwandering. This proves the ‘if’ part of the assertion. Now let x be a
nonwandering point. If z is a periodic point of 7, namely if 7"(z) = x for some
n € N then the desired converse is obvious. Suppose therefore that x is not periodic.
Let {U;} be a fundamental system of neighbourhoods of z. Then for each ¢ there
exists n; € N such that U; N 7% (U;) # 0 and hence 77 (U;) N U; # (. For all ¢
choose z; € 77" (U;) NU;. Then clearly x; — x and 7" (z;) — x. Also, since z is not
a periodic point 7" (z;) are different from x for all large 4, and since 7" (z;) — z it
follows that n; — oo. This proves the lemma. O

For every z € X we denote by L*(z,7) (respectively L™ (z,7)) the set of all
y € X for which there exists a sequence {n;} of natural numbers such that n; — oo
and 7" (x) — y (respectively 77" (x) — y) as i — 0o. It is easy to see that for every
z € X, L*(z,7) and L™ (z,7) are closed T-invariant subsets; they are respectively
called the (positive) limit set and the negative limit set of the T-orbit of z. When 7
is clear from the context we shall denote L*(z,7) and L™ (z,7) by L™ (z) and L™ (z)
respectively.

A point z € X is said to be recurrent for 7, if there exists a sequence {n;} in N
such that n; — oo and 7" (z) — x, namely if x € LT (x).

Remark 1.2. We note that for all x € X the sets L™ (z,7) and L™ (z,7) are con-
tained in Q(7): If 7" (z) — y for a sequence {n;} in N such that n; — oo, we
can find a sequence m; in N such that m; — oo and {m; + n;} is a subsequence of
{n;}, and setting y; = 7" (x) we see that y; — y and 7™ (y;) = 7™ " (z) — y, and
hence by Lemma 1.1 it follows that y is nonwandering. This shows that L*(z,7)
is contained in (1), and similarly L~ (z,7) is contained in (7). We note that in
particular all recurrent points of (X, 7) are contained in Q(7).

In the context of the systems of linear and projective transformations that we
would be discussing in the following sections, it would also be of interest to define the
following auxiliary notions related to the nonwandering set, in a general framework.



Let (X, 7) be a dynamical system as above. We define (X, 7) to be the subset
of X consisting of all points y in X for which there exist a convergent sequence {z;}
in X and a sequence {n;} in N with n; — oo, such that 7" (x;) — y. We shall call
U (X, 7) the core of (X, 7); we shall sometimes denote ¥(X,7) by ¥(7) when the
underlying space is clear from the context. We note that ¥(X,7) is a 7-invariant
subset of X, and that, in view of Lemma 1.1, Q(X, 7) is contained in ¥(X, 7).

We shall say that an open 7-invariant subset Y of X is stably wandering if the
following holds: for any convergent sequence {y;} in Y, and any sequence {n;} in N
such that n; — oo, the sequence {7"(y;)} has no limit point in Y. By Lemma 1.1,
all points of a stably wandering set are wandering; thus every stably wandering set
is contained in X\(7). On the other hand it may be seen that X\¥(7) is stably
wandering. We note that the union of finitely many stably wandering sets is stably
wandering, so in particular we may adjoin X \W(7) to any stably wandering set and
still get a stably wandering set.

A (Borel) measure p on X is said to be 7-invariant if p(7 1 (E)) = u(E) for all
Borel subsets E of X. By the support of a measure . on X we mean the complement
of the largest open subset of X with p measure 0; such a subset exists, as X is
assumed to be second countable. For any measure ;4 on X we denote the support of
1 by supp . We note that if p is a 7-invariant measure then supp p is a 7-invariant
subset of X. A measure is said to be nonatomic if the measure of every point is 0.

A measure p on X is said to be quasi-invariant under the action of 7 if for a
Borel subset F of X we can have u(77'(E)) = 0 if and only if u(E) = 0; that is, the
class of sets of p-measure 0 is invariant under the action induced by 7 on the class
of all subsets of X.

A measure p on X is said to be ergodic with respect to 7 if for every 7-invariant
Borel subset E of X either u(E) = 0 or u(X\E) = 0. (Ergodicity is usually
considered only for quasi-invariant - or invariant - measures, though the definition
is meaningful even without such a condition. To each measure p we can associate a
quasi-invariant measure defined by v(E) = £=_271l,/(77(E)) for all Borel subsets
E, where y' is a finite measure equivalent to (having the same sets of measure zero
as) p. Then p is ergodic (in the generalised sense) if and only if v is ergodic. In
view of this, in the overall context of ergodic theory, not assuming quasi-invariance
does not constitute an essential generalisation.)

The following simple property is useful in many contexts; it is a variation of an
observation going back to G.A. Hedlund’s papers in the 1930’s.

Proposition 1.3. Let p be a nonatomic measure which is ergodic with respect to
7. Then for p-almost all z in X, LT (z) U L~(z) contains supp p. In particular we
have the following:



i) p-almost all x are recurrent either for T or for 771

ii) if supp p = X then there exists x € X such that the orbit {7"(x) | n € Z} is
dense in X.

Proof. Let {U;} be a sequence of open subsets of X such that (suppu) N U; is
nonempty for each j, and {(supp p) N U;} forms a basis for the induced topology
on supp . For each j > 1, let Ej = U_socicoo ™ “(Uj), and let E = N%2,; E;. Then
each F; is a 7-invariant open subset of positive y-measure. Hence by ergodicity we
have u(X\E;) = 0 for all j, and therefore y(X\E) = 0. We show that for all z € E,
supp p is contained in L*(z) U L™ (x). Let z € E be given and let O(x) = {7¥(x) |
k € Z}, the orbit of z. Let S = supp u\O(z). Since p is nonatomic, S is dense
in supp p, and hence it suffices to show that S is contained in L*(z) U L™ (x). Let
y € S be arbitrary. Consider any j € N such that y € U;. Then, as z € F C Ej,
there exists an integer k such that 7"(z) € U;. Since {(supp p) NU;} is a basis of
the topology on supp p, it follows that y is contained in the closure of O(z). Hence
there exists a sequence {k;} in Z such that 7% (z) — y as i — oco. Since y is not
contained in O(z) it follows that {k;} has a subsequence tending either to oo or to
—00. This shows that y € L*(z) U L™ (z); this proves the proposition. O

By considering the translation map n — n + 1 on Z, the integers, it is easy to
see that the nonatomicity condition in the proposition is in fact necessary.

When there is a finite invariant measure, we have the following analogous (and
in some ways stronger) assertion, without the ergodicity condition; it is a version
of what is called the Poincaré recurrence lemma; while assertion (i) below may be
found in many books on ergodic theory, assertion (ii) is not readily accessible in
literature; for the readers’ convenience we include a proof of both the statements.

Proposition 1.4. (Poincaré recurrence lemma) Let u be a finite T-invariant mea-
sure on X. Then the following statements hold:

i) if E is a measurable subset of X, then for u-almost all x in E, 7%(z) € E for
infinitely many positive integers i;

ii) if R is the set of all recurrent points of (X, 7) then u(X\R) = 0.

Proof. For any measurable subset E of X let 7(F) denote the subset of E consisting
all z in F such that 7°(z) € F for some i > 1; namely r(E) is the set of points
of E which ‘return’ to E. We note that for any measurable subset E the sets
{T7(E\r(E))} are pairwise disjoint. As p is 7-invariant the p-measures of these
subsets are all equal, and since the measure of X is finite it follows that u(E\r(E)) =
0; thus u(r(E)) = u(E). Now let E be a measurable subset of X and consider the
sequence of sets {r'(E)} defined inductively by setting 7*(E) = r(r""'(E)) for all



i > 1, with 7°(E) = E. Then p(E\N; r'(E)) < Z; p(r'"(E)\r*(E)) = 0, and clearly
for x € N; r'(E) we have 7¢(z) € E for infinitely many 4. This proves (i).

Since X is a locally compact second countable space, it can be realised as a metric
space; let d be a metric on X. Let 6 > 0 be arbitrary. Let {B,} be a sequence of
balls of diameter at most § such that X C UBj, and let X(6) = Ur(B;). Then
p(X\X(0)) < ¥ u(B;j\r(Bj)) = 0. We note that on the other hand if z € X (0),
then z € r(B;) for some j, so there exists ¢ > 1 such that 7'(z) € B; and hence
d(z,7%(z)) < 4. Nowlet Y =N, X(1/k). Then clearly u(X\Y) = 0. Furthermore,
z € LT (x) for every x € Y, namely Y C R, and hence u(X\R) = 0. This proves (ii).
d

In the following sections we will be studying the limit sets and nonwandering sets
of linear and projective transformations, and applying the results to finite invariant
measures and ergodic quasi-invariant measures of these transformations. In fact we
shall consider a more general class of measures, defined as follows.

Definition 1.5. Let (X, 7) be a dynamical system. A measure g on X is said to
be conservative if for every open subset O of X with u(O) > 0 there exists k£ € N
such that u(O N 7%(0)) > 0.

Remark 1.6. Let (X, 7) be a dynamical system. Then we have the following (the
proofs are easy and will be omitted):

i) If p is either a finite 7-invariant measure, or a measure quasi-invariant and
ergodic under the 7-action, then it is conservative.

ii) The support of any conservative measure for (X, 7) is contained in the non-
wandering set Q(X, 7).

iii) If p is a conservative measure on (X, 7) and Y is a closed 7-invariant subset
of X containing (7) then u (viewed as a measure on Y') is conservative for (Y, 7).

2 Unipotent linear transformations

In this and the following sections we discuss the limit sets and nonwandering sets of
linear and projective transformations.

Let K = R or C, the field of real or complex numbers respectively. Let V
be a finite-dimensional vector space over K of dimension d > 1, and P(V) =
(V\{0})/K*, where K* is the group of nonzero elements in K acting on V\{0}
by scalar multiplication, be the projective space corresponding to V. We denote by
7 : V\{0} — P(V) the canonical quotient map. For convenience, for any subset S
of V' we define 7(S) to be 7(S\{0}). Any nonsingular linear transformation 7" of V'
induces a homeomorphism of P(V'), the projective transformation corresponding to



T, which we denote by T : P(V) — P(V). We denote by I the identity transfor-
mation of V', and the zero transformation will be denoted by 0. All subspaces and
linear transformations will be meant to be over K, and we shall not indicate this
specifically.

We begin with the special case of unipotent linear transformations. It may be
recalled that a linear transformation T is said to be unipotent if (T — I)" = 0 for
some r € N (namely T — I is nilpotent); we note that if the condition holds for some
r € N then the Jordan canonical form shows that it holds for » = d. We note that
a linear transformation is unipotent if and only if 7" has 1 as the only eigenvalue
(even if K =R, all eigenvalues over complex numbers are considered).

Let U be a unipotent linear transformation of V. Then V can be decomposed,
using Jordan canonical form of U, as V =V, @& --- &V}, for some [ > 1, such that
each V;, 1 < ¢ < [, is a U-invariant subspace, and admits a basis with respect to
which the matrix of the restriction of U to V; has the form

(11 \

11
\ 1)
where all the diagonal entries and the entries next to them on the right hand side
(except in the last row) are 1, and the other entries are understood to be 0; the 1 x 1
matrix (1) should also be viewed as a special case of the above. It can be seen that
the number [ as above is precisely d — Rank (U — I).

Let us first consider a unipotent linear transformation which has a matrix form
as in (1) above; namely the case with [ = 1, or equivalently such that Rank (U—1) =
d — 1; we shall call such a unipotent matrix an ndecomposable unipotent matrix.
Let {e1,...,eq} be a basis of V such that U(e;) = e; and Ule;) = e; + e;_; for all
j=2,...,d, namely such that the matrix of U with respect to {e;} is as above. As
usual we identify any vector v = E;l:l vje; with the column vector with v; in the jth
row for all j = 1,...,d. It can be seen that for v = E?Zl vje; and k > d the vector




U*(v) corresponds to the column vector

vy + kvs +k021)3 =+ ... +k0d_1’l)d
Vg + kU3 + ... +de,21)d

Vg—1 + k"Ud

\ Vg

where ¥C, denotes, for 1 < r < k, the number of ways of choosing r symbols from
k symbols.

We note that in the above expression all the entries are polynomials in k£, and
the entry in the first row has the highest degree among them. It follows that in this
case LT (v,U) is empty for all v € V except for v in the span of e;; the latter are
fixed under the action of U, and for them of course L™ (v,U) = {v}. It follows also
that for the corresponding projective transformations U, L* (7 (v), U) = 7(e;) for all
v € V\{0}, since if any of the coordinates vy, ..., v, of v are not zero then the first
entry in the above column dominates all other coordinates, as k tends to infinity.

It is tempting to conclude, with similar reasoning about the dominance of the first
row in mind, that the nonwandering sets, and the cores, of U and U also consist of
just the span of e;, and the point 7(e;), respectively. Such an assertion was indeed
made for U in [2], and also in [14]; (we note that the term “irreducible” in [14]
corresponds to indecomposible in the sense as above, and not to irreducible in the
usual sense of representation theory). It turns out however that this is not true, as
was pointed out to the author by Gopal Prasad, with the following counterexample.
Let d = 3 and consider the sequence of vectors

1/k
v = 1

-2/(k—1)

It is then straightforward to verify that as k — oo, v*) — e, and Uk(vr(v(k))) —
m(ez), which shows, by Lemma 1.1, that 7(es) is also a nonwandering point of U.
Since Q(U) is U-invariant and closed, it follows furthermore, that Q(U) contains
7(v) for all nonzero v in the subspace spanned by e; and es.

It turns out that for any indecomposable unipotent U, as above, it is indeed
true that the nonwandering set consists of the span of e;. Also, Q(U) coincides
with w(W'), where W’ is the unique d — [d/2]-dimensional U-invariant subspace

of V, where [d/2] denotes the largest integer not exceeding d/2. However, the
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arguments for proving these statements (that the author knows at present) are
rather cumbersome. On the other hand, the precise results are of limited interest
in our present context. We shall therefore not go into the proofs here; they may
be taken up elsewhere, on another occasion. For the present we content ourselves
observing the following weaker statements:

Proposition 2.1. Let the notation be as above, and suppose that d > 2. Let
<ei,...,eq_1> be the subsapce spanned by eq,...,eq_1. Then we have the following:
i) QU) CY(U) C <eqy...,eq-1>, and
i) QU) C m(<ei,...,eq_1>); moreover P(V)\m(<ei,...,eq_1>) is a stably
wandering subset for the U-action on P(V).
Proof. Suppose {v*) = E;l:l vj(-k)ej} is a convergent sequence in V and {ny} is a
sequence in N such that n; — oo and U™ (v¥)) — w = $4_, wje; as k — oo, with

wyg # 0. Since the eg-component of U™ (v(*)) is vék) we get that v((ik) — wyq # 0,

and hence the expression in (2) shows that the e; components of U™ (v*)) can
not converge; this is a contradiction, showing that ¥(U) C <ey,...,eq 1 >. This
proves (i).

Now let {v®*) = ¥4, U](-k)ej} be a sequence in V\{0} such that {m(v®*)} is
converges to m(v) where v = ¥9_, vje; with vy # 0, and {n4} be a sequence in
N such that n, — oo and U *(x(v®))) — m(w), for some w = X4, w;e; with

J

wy # 0. Replacing {v®} by suitable multiples we may assume that vj(-k) — v, for

all j = 1,...,d. Since vy # 0 by (2) we have U *(x(v®))) = 7(e1). As d > 2
this shows that P(V)\m(<ei,...,eq1>) is a stably wandering set. In particular
Q) Cc n(<ey,...,eq1>). This proves (ii). O
Remark 2.2. Let the notation be as above, with d > 2. As U(U) C <ey,...,eq-1>
it follows that V\ <ey,...,eq 1 > is a stably wandering subset for the U-action.
However, in contrast with the assertion in (i) for ¥(U), ¥(U) is not contained in
m(<ey,...,es_1>). This may be seen as follows. For all k € Nlet v¥) = —key_; +eq.

Then Uk(w(v(k))) = (eq) for all k, and since 7(v*)) — 7(e4_1), this shows that

m(eq) € W(U).

Remark 2.3. Let the notation be as above. Further, let ' =<e; >, and W be
the subspace defined to be <eq,...,eq-1 > ifd > 2 and W =<e; > for d = 1.
Then, together with the above, clearly ¥(U) C W and ¥(U) C «(W) for all d > 1.
We note that for all d > 1, F' is the space of all points fixed by U, and W is the
subspace spanned by FFU{U(v) —v | v € V'}. This characterisation turns out to be

of significance in the sequel. We note that if U is a unipotent linear transformation



of V which is not necessarily indecomposable, F' is the subspace consisting of all
points fixed by U, and W is the subspace spanned by FU{U(v) —v | v € V'}. then
F and W are the sums of the corresponding subspaces, defined as above, in the
indecomposable components.

We now deduce the following.

Proposition 2.4. Let U be a unipotent linear transformation of V. Let F' be the
subspace of V' consisting of all points fixed by U, and W be the subspace spanned by
FU{U(v) —v |v € V}. Then we have the following:

i) forveV, L*(v,U) and L~ (v,U) are contained in F;

i) for v € V\{0}, L*(n(v),U) and L (w(v),U) are contained in 7 (F);

i) QV,U) c ¥ (V,U) Cc W;

) P(V)\7(W) is a stably wandering set of the U-action on P(V); in particular,
the nonwandering set Q(P(V),U) is contained in w(W).

Proof. For an indecomposable unipotent transformation the assertions are immedi-
ate from the observations above.

Now consider the general case. We decompose V' by Jordan canonical form, as
Vi---@dV,, for some ! > 1, such that for each ¢ = 1,...,1, V; is U-invariant and the
restriction of U to V; is indecomposable as a unipotent transformation. Since the
convergence involved is componentwise, assertions (i) and (iii) as in the proposition
follow immediately from the special case of indecomposable transformations, and
Remark 2.3.

To prove the assertions for the projective transformation U we proceed as follows.
Foreach i =1,...,llet ®; = V\ @, V;; namely ®; is the set of points for which the
i-component is nonzero. Then 7(®;) is an open subset of P(V') and we have a natural
projection map 7; : 7(®;) — P(V;). Now let v € V\{0}, and w € V\{0} be such
that m(w) € L*(7(v),U). Then we see that for all i such that w € ®;, necessarily
v € ®;, and n;(7(w)) € LT (n;(7(v)),U). From the special case of indecomposable
transformations and Remark 2.3 it follows that 7;(w) is contained in 7(F"). Since this
holds for all i such that w € ®; it follows that w € F. This shows that L* (7 (v),U)
is contained in 7(F); similarly we get that L~ (w(v),U) is contained in 7(F). This
proves assertion (ii).

For all i = 1,...,1 let W; be the subspace which is the image of W (as in the
hypothesis) in V;, under the natural projection of V' onto V; with respect to the
decomposition as above. We note that by the special case of indecomposable trans-
formations and Remark 2.3 P(V;)\n(W;) is a stably wandering set for (P(V;),U),
for all i = 1,...,1. For every v € V\{0} such that 7(v) € P(V)\n(W) there exists
i, 1 <4 <[, such that v € ®; and n;(7(v)) € P(V;)\m(W;). Together with the



preceding conclusion this shows that P(V)\m (W) is a stably nonwandering set for
the U-action on P(V). In particular the nonwandering set Q(P(V'),U) is contained
in 7(W). This proves (iv), and completes the proof of the proposition. O

3 General linear and projective transformations

We shall next consider the nonwandering sets and limit sets of general linear and
projective transformations.

As before let V' be a finite-dimensional K-vector space where K = R or C,
and let P(V) be the corresponding projective space. Let T be a nonsingular linear
transformation of V. For every positive real number A let V) denote the largest 7'-
invariant subspace of V such that all (possibly complex) eigenvalues of the restriction
of T to V) are of absolute value A. Clearly V) is nontrivial only for finitely many A,
and letting A to be the set of all A for which V) is nonzero we have

V =®xs0 Vi = ®Bren Vi,

direct sums; we note that V) is the sum of all generalised eigenspaces with respect
to T' corresponding to all eigenvalues with absolute value .

We equip V' with a norm, denoted by | - |. Using Jordan decomposition it can
be seen that for any € > 1 there exists a ¢ > 1 such that for all v € V) and all
1=1,2,...

TN o] < [T ()] < ' A'[v]. (3)

For A € A we denote by T the restriction of T' to V), and by T, the restriction of
T to 7T(V,\).

Proposition 3.1. Let the notation be as above. Then the following statements hold:
i) for any v = Xysovr, LT (v,T) = LT (v, T1) (including when Vi = {0});
ii) for any v € V\{0}, Lt (7 (v),T) = Urea LT (7(vy), T»);
iii) QV, T) =Q(W,Th).
iU) Q(P(V),T) = UAEA Q(W(V)‘),T,\).

Proof. Assertions (i) and (ii) follow from straightforward computation of limits,
using (3) above; we omit the details.

Now, for v = X sovy € V, we see from (3) that if vy # 0 for some A # 1 then
v is wandering. Also if 1 € A and v; is wandering with respect to 77 then v is
wandering. Thus we get that Q(V,T) C Q(V1,71). On the other hand if v € V; is
nonwandering for 77 then clearly it is nonwandering for 7. This proves (iii).
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Finally, let p = 7(v), where v = ¥ cp vy € V. If there are A, Ay € A such that
A1 # Ay and vy, and vy, are nonzero then using (3) we see that p has a neighbourhood

U such that {T'(U)} are pairwise disjoint, so p is wandering in this case. Therefore
Q(P(V), T) C Uxea Qmw(Vy), Ty). The other way inclusion is obvious, and thus we
get (iv). O

We note that for any A € A, Q(w(V3),T») is the same as Q(x(Vy), \"1T)), and
that all eigenvalues of A\~!Ty over V) are of absolute value 1. Therefore, in view
of Proposition 3.1 to determine the nonwandering sets, and similarly the limit sets,
of linear as well as projective transformations it suffices to consider T' for which all
eigenvalues are of absolute value 1.

To analyse the sets further we use Jordan decomposition of linear transforma-
tions. As usual we denote by GL(V') the group of nonsingular linear transformations
of V (over K), equipped with the usual topology. We recall that S € GL(V) is said
to be semisimple if it is diagonalisable over C (even if K = R). By Jordan decom-
position any 7' € GL(V) can be written uniquely as 7'= SU, where S,U € GL(V),
S is semisimple, U is unipotent and S and U commute with each other; S and U
are called the semisimple and unipotent Jordan components of 1T". Now let T be
such that all eigenvalues of T are of absolute value 1. Then the eigenvalues of the
semisimple Jordan component S of T are also of absolute value 1, and since it is
diagonalisable this implies that S is contained in a compact subgroup of GL(V).
We now prove the following:

Proposition 3.2. Let T : V — V be a linear transformation such that all eigenval-
ues of T are of absolute value 1. Let T = SU be the Jordan decomposition of T in
GL(V), where S and U are the semisimple and unipotent components respectively.
Let F' be the subspace consisting of points fixed by U, and W the subspace spanned
by FU{U(v) —v | v € V}. Then the following conditions hold:

i) forveV, Lt (v,T) and L~ (v,T) are contained in F;

ii) forve V\{0}, LT (7 (v),T) and L~ (7 (v),T) are contained in w(F);

iii) QV,T) c U (V,T) Cc W;

w) QP(V),T) C n(W).
Proof. Recall that S is contained in a compact subgroup, and let C be the smallest
compact subgroup of GL(V') containing S, namely the closure of the subgroup gen-
erated by S. Since U commutes with S, it follows that the subspaces F' and W are
invariant under the action of S, and hence also under the action of all elements of
C.

Now let v € V and suppose that T"(v) — w € V for a sequence {n;} in
N, with n; — oo. Passing to a subsequence of {n;} we may assume that S™ is
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convergent, say S™ — C € C. As S and U commute with each other, it follows
that U™ (v) = S ™T"(v) — C '(w). Therefore by Proposition 2.4 C'(w) €
L*(v,U) C F. Since F is invariant under the action of C it follows that w € F.
This shows that L™ (v, T) C F for all v € V. Similarly we see that L~ (v,T’) C F for
all v € V. This proves (i). A similar argument with the projective action, together
with Proposition 2.4 shows that (ii) holds.

Now let w € ¥(V,T). Then we have a convergent sequence {v;} in V and a
sequence {n;} in N with n; — oo such that 7™ (v;) — w. Arguing as in the proof
of (i), using Proposition 2.4, we see that there exists a C € C such that C~(w) € W.
Since W is C-invariant this shows that w € W. Thus we get that U(V,T) C W,
which proves (iii).

Now let v € V\{0} be such that 7(v) € Q(P(V),T). Then by Lemma 1.1 there
exist sequences {v;} in V\{0} and {n;} in N such that n(v;) — w(v), n; — oo,
and T (m(v;)) — m(v). We may assume the S™ converges, say S™ — C € C, as
i — 0o. Then U (n(v;)) = S “T"(n(v;)) = 7(C~'(v)), as i — oo. Suppose
that 7(v) ¢ m(W). Since 7(v;) — 7(v) and P(V)\w(W) is a stably wandering set
for the action of U on P(V) (see Proposition 2.4) the preceding conclusion implies
that 7(C~'(v)) € w(W), or equivalently C~'(v) € W. Since W is invariant under
the action of C' we get that v € W. But this contradicts the assumption that
m(v) ¢ m(W), and hence shows that 7(v) € m(W). Therefore 7(v) € Q(P(V),T).
This proves (iv) and completes the proof of the proposition. ]

We note that if I' = SU is the Jordan decomposition of 7', where S and U are the
semisimple and unipotent components respectively, then the subspace F' consisting
of all vectors fixed by U is the largest T-invariant subspace of V such that the
restriction of 7" to F' is a semisimple linear transformation, and the subspace W as
above, namely the subspace spanned by F U {U(v) —v | v € V}, is the smallest
T-invariant subspace such that F' C W and the factor of 7" on the quotient vector
space V/W is a semisimple linear transformation. Propositions 2.4 and 3.2 together
therefore yield the following:

Theorem 3.3. Let T : V — V be a nonsingular linear transformation of a K-vector
space V where K = R or C. Let F be the largest T-invariant subspace of V' such
that the restriction of T to F is semisimple (as a linear transformation) and W be
the smallest T-invariant subspace of V' such that F C W and the factor of T on
V/W is semisimple. For each A € Rt let V) be the maximal T-invariant subspace
of V' such that all eigenvalues of T over Vy are of absolute value A\, and A be the
(finite) subset of Rt consisting of all X for which V) is nonzero. Then the following
conditions are satisfied:
i) for anyv € V, L*(v,T) and L~ (v,T) are contained in Vi N F;
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i) for any v € V\{0}, the limit sets L*(n(v),T) and L~ (7 (v),T) are contained
m U)\eA (W(VA) N W(F));

iii) QV,T) is contained in Vi N W ;

i) QP(V),T) is contained in Uyep (m(Vy) Nw(W)).

Remark 3.4. Let the notation be as in Theorem 3.3. Then W =V if and only if
F =V; this can be seen from the characterisation of the two subspaces in terms of
the unipotent Jordan component of 7', and Remark 2.3. We note also that F'is the
largest T-invariant subspace of W on which the restriction of 7" is semisimple.

We now deduce the following corollary about the supports of conservative mea-
sures of linear and projective transformations. We recall that the result applies
in particular to supports of finite invariant measures, and ergodic quasi-invariant
measures (see Remark 1.6).

Corollary 3.5. Let the notation be as in Theorem 3.3. Then the following conditions
are satisfied:
i) for any conservative measure p of (V,T), supp p is contained in Vi N F;

it) for any conservative measure u of (P(V),T), supp u is contained in the set
Usea (m(Va) N (F)).

Proof. To begin with we note that in the case of finite invariant measures (in the
place of the general conservative measures) the assertions in the corollary follow
immediately from Theorem 3.3 and the Poincaré recurrence lemma, namely asser-
tion (ii) in Proposition 1.4.

We now consider the general case of conservative measures, for the case of pro-
jective transformations. The proof will be by induction on the dimension of V.
The assertion being clear for dimension 1, we shall proceed with the general case,
assuming that the statement holds in all dimensions lower than the one under con-
sideration. Now let 4 be a conservative measure of (P(V),T). Then supp u is
contained in the nonwandering set (T), and hence by Theorem 3.3 it is contained
in m(W), where, as before, W is the smallest T-invariant subspace of V such that
F C W and the factor of 7 on V/W is semisimple. We can identify 7 (W) canoni-
cally with P(W), and view p as a measure on P(W) invariant under the action of
the transformation induced by the restriction of 7' to W, say T". If W =V then by
Remark 3.4 F =V, and in that case we are through. Therefore in proving (ii) we
may assume that W is a proper subspace of V. Recall also that F' as above is also the
largest subspace of W such that 7" is semisimple, as a linear transformation of W.
Now, since p is conservative for the system (P(W), T’), by the induction hypothesis
it follows that supp p is contained in 7(F). Since we know already that it is also
contained in Uyep 7(V)), this proves statement (ii) in the corollary. Assertion (i)
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can be proved in the same way, and is even simpler, with appropriate substitutions
in the argument. O

Corollary 3.6. Let T : V — V be a nonsingular linear transformation of a K-
vector space V where K = R or C, and suppose that all eigenvalues of T are real
and positive. Then we have the following:

i) LY (7(v),T) and L~ (n(v),T) consist of fived points of T;

ii) for any conservative measure u of T on P(V), supp p is contained in the set
of fized points of T.

Proof. Since all eigenvalues of 1" are real and positive, for any A > 0 the restriction of
T to the subspace V) (notation as before) has A as the only eigenvalue. Furthermore,
the restriction of 7" to V), N F, being semisimple, consists of scalar multiplication
by A. Thus for T as in the hypothesis the induced action of T on 7(Vy) N 7(F) is
trivial for every A € A. The assertions in the corollary now follow immediately from
Theorem 3.3(ii) and Corollary 3.5 respectively. O

Theorem 3.3 and Corollary 3.5 in turn imply the following, about the dynamics
of the systems arising from linear and projective transformations.

Corollary 3.7. Let T : V — V be a nonsingular linear transformation of a finite-
dimensional real vector space V. Let X =V or P(V), and T be the homeomorphism
T or T respectively. Let Y be a closed T-invariant subset of X such that one of the
following conditions holds:

i) the set of points of Y that are recurrent for either T or 7~
of Y, or

ii) there exists a conservative measure p with supp p =Y.

1 4s a dense subset

Then Y is a disjoint union of minimal closed T-invariant subsets. Furthermore, if
Y is a minimal closed T-invariant subset then there exists a homeomorphism 1 of
Y onto a compact abelian subgroup C of GL(V) such that Y71t : C — C is a
translation of C' by an element of C.

Proof. We shall consider the case of projective transformations, namely X = P(V)
and 7 = T; the case of linear transformations can be dealt with in a similar way.
Suppose condition (i) holds and let R be the set of points of Y which are recurrent
for either 7 or 771. Then by Theorem 3.3 every point of R is contained in Uycp 7(V5),
in the notation as before. Since R is dense in Y this implies that Y is contained
in Upep (V). Also, if condition (ii) holds then by Corollary 3.5 Y is contained in
Uxea m(V). As A is finite and each V) is T-invariant, this shows that it suffices
to prove the statement in the corollary for Y N «(V)) (separately) for each A. In
other words, we may assume that all eigenvalues of T" are of the same absolute
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value. Furthermore, as the scalars act trivially on 7(V)) we may assume that all
the eigenvalues are of absolute value 1. By Theorem 3.3 and Corollary 3.5 Y is also
contained in 7 (F'), where F' is a T-invariant subspace on which the restriction of T’
is semisimple. Thus get that it suffices to prove the corollary in the case when 7T
is a semisimple linear transformation all whose eigenvalues are of absolute value 1.
Such a T is contained in a compact subgroup C' of GL(V'), which we may assume
furthermore to be such that the cyclic subgroup generated by 7" is dense in C. It
is now straightforward to deduce the assertions as in the corollary, considering the
orbits of the C-action on P(V). O

We note also the following; it can also be proved directly, but we note it here as
an observation from Theorem 3.3.

Corollary 3.8. Let T : V — V be a linear transformation of a finite-dimensional
vector space V over R. If the closure of an orbit of T has only finitely many connected
components, then it is compact.

Proof. Let v € V and C = {T7(v) | j € Z}, the closure of the T-orbit of v. Suppose
C has only finitely many connected components. Then every point of C' is a limit
point of the orbit {T7(v) | j € Z}. Thus C C L*(v,T) U L™ (v,T) and hence by
Theorem 3.3 it is contained in Vi N F, in the notation of the theorem. The restriction
of T to Vi N F is a semisimple transformation and all its eigenvalues are of absolute
value 1. Therefore all its orbits have compact closure. Since C' contains a dense
orbit, namely that of v, this implies that C' is compact. O

4 Borel’s density theorem

Given a subgroup I' of GL(V'), where V a finite-dimensional vector space over R
(for convenience we shall now restrict to the case of the field of real numbers, the
analogous case for complex number being subsumed by this in the present context),
it is of interest in many contexts to know the smallest algebraic subgroup of GL(V)
containing I'. We recall that a subgroup H of GL(V) is said to be algebraic if there
exist polynomials P,,..., P, for some k > 1, in the d? variables corresponding to
the entries of the matrices, such that when GL(V) is identified with GL(d,R) via
a suitable (fixed) basis, H consists precisely of the common zeros of Pi,..., Py,
namely, {g = (9i5) € GL(n,R) | P(g;;) = 0}; (over the field of real numbers it
suffices to take £ = 1, since the set of common zeros as above coincides with the
set of zeros of PZ + --- + P?2). The intersection of two algebraic subgroups is an
algebraic subgroup, and hence given ' as above there exists a smallest algebraic
subgroup of GL(V') containing I'; it is called the Zariski closure of I'. When I' and
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G are subgroups of GL(V') such that I' C G, we say that I' is Zariski dense in G if
G is contained in the Zariski closure of I'.

For r € N, let V(") be the r-th tensor power of V and p™ : GL(V) — GL(V®™)
denote the r-th tensor power representation of GL(V'). We note that given I' and G
as above, I' is Zariski dense in G if and only if for every r € N any one-dimensional
subspace L of V() which is invariant under the action of I' is also invariant under
the action of G this is a standard fact from the theory of algebraic groups, going
back to the work of Chevelley, and can be proved along the lines of the proof of
Theorem 5.1 in [1] (or may be deduced from it); for the reader not familiar with
algebraic groups, it may be recommended that the above condition be taken as the
definition of I' being ‘Zariski dense’ in G, it being a natural condition by itself.

A theorem due to A. Borel, known as Borel’s density theorem, asserts that if G is
a connected semisimple Lie subgroup of GL(V') with no compact normal subgroup
of positive dimension, and T is a lattice in G (namely a discrete subgroup of G such
that G/I" admits a finite measure invariant under the action of G by left translations)
then I' is Zariski dense in G. (The original theorem is somewhat more general - see
Remark 4.6 below.) This means for example that the subgroup SL(n,Z) consisting
of integral unimodular n x n matrices is Zariski dense in SL(n,R), since SL(n,Z)
is a lattice in SL(n,R) (see [17], Ch. X).

Furstenberg [11] gave a simple proof of Borel’s density theorem, based on con-
siderations of invariant measures under actions of groups on projective spaces. Mo-
tivated by Furstenberg’s note and some variants of his argument obtained in [16],
the question was considered in [2] in terms of nonwandering sets of projective trans-
formations. Apart from the case of finite invariant measures as in Borel’s density
theorem the ideas were applied to ergodic quasi-invariant measures; actually con-
servative measures as we consider here, is now seen to be the ‘right’ setting for the
purpose. While the argument in [2] essentially does yield the results stated there,
as it stands it is incomplete in view of the error in an assertion about nonwandering
sets mentioned in Section 2 above. How to rectify the argument is seen from the
proof of Corollary 3.5. Also, we present below, with proof, somewhat more general
results than in [2].

Theorem 4.1. Let T' and G be closed subgroups of GL(V'), where V is a finite-
dimensional vector space over R, with I' C G. Let u be a measure on G/I" such that
supp p contains the coset I'. Let R be the set of all elements g in G such that all
the eigenvalues of g (as an element of GL(n,R)) are real and positive, and p is a
conservative measure for the translation action of g on G/T'. Let G' be the subgroup
generated by RUT. Then I is Zariski dense in G'. In particular if R generates a
dense subgroup of G then T is Zariski dense in G.
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Proof. To prove the first statement in the theorem it suffices to show that if, for
some 7 € N, p € P(V(") is fixed under the action of p(")(I') then it is also fixed
under the action of p™(R). Let r € N and a p € P(V™) fixed by p("(T) be given.
Then we have an orbit map 1 : G/T' — P(V)) defined by n(gT") = p)(g)(p) for
all g € G. The map 7 is equivariant under the actions of G' on the two spaces, and
hence it follows that the measure n(u) is conservative under the action of p((g),
for all g € R. All eigenvalues of p(") (9), g € R, are real and positive, and hence by
Corollary 3.6 it follows that the support of n(y) is fixed pointwise by each p(")(g),
g € R. Since by the condition in the hypothesis supp x contains the coset I', the
point p as above is contained in the support of 7(), and hence we get in particular
that p is fixed under the action of p(™(R), as sought to be proved. Therefore T is
Zariski dense in G'. The second statement now follows from the fact that algebraic
subgroups are closed in the usual topology on GL(V). O

Remark 4.2. Let G and T" be closed subgroups of GL(V'), with V' as above, and
suppose that I' C G and G/I" admits a finite measure which is invariant under the
G-action. Then the action of every element of G is conservative, and hence the
theorem implies that the subgroup G’ generated by the set of elements of G whose
eigenvalues are all real and positive is contained in the Zariski closure of I'. We note
that G’ contains in particular all unipotent elements contained in G. Now suppose
that G is a connected Lie group. If, furthermore, G is a semisimple Lie group with
no nontrivial compact factor group, then G is generated by the unipotent elements
contained in G, and hence G’ = G. If GG is a more general connected Lie subgroup
of GL(V') then the subgroup H generated by the unipotent elements in it is a closed
normal subgroup such that G/H is a direct product of a compact group with a
vector group (i.e. R? for some d). The subgroup G’ evidently contains H, and G'/H
is a vector group. In general it need not be the case that G/G' is compact; e.g. we
can have one-parameter subgroups (topologically isomorphic to R) of GL(n,R) in
which no nontrivial element has only real eigenvalues. However, if G is an algebraic
subgroup, or an open subgroup of an algebraic subgroup (such a subgroup is called
almost algebraic) then it turns out that G/G’ is compact. The condition that G /G’
is compact means, in a sense, that G’ is large, and by Theorem 4.1 it is contained
in the Zariski closure of I'.

Along the lines of the above set of ideas the following is proved in [3].

Theorem 4.3. Let V' be a finite-dimensional vector space over R and G be an
algebraic subgroup of GL(V'). Let p be a probability measure on P(V) and let I(u)
and J(u) be the closed subgroups defined by

I(u) = {g € G | i is preserved under the action of g}
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and
J(u) ={g9 € G|g(v) = for all v € supp u}.

Then I(u)/J(p) is compact.

The reader is also referred to [5] for similar results for automorphisms groups of
Lie groups, in the place of GL(V') (the latter being the automorphism group of V).

Theorem 4.1 can also be applied in situations where p may not be a finite in-
variant measure. To this end we note the following corollary from [2].

Corollary 4.4. Let G and T" be as in Theorem 4.1. Let y be a measure on G/T"
which is quasi-invariant under the G-action and ergodic with respect to the action
of an element gy € G which has only positive real eigenvalues. Then U is Zariski
dense in G.

Proof. Since p is quasi-invariant for the G-action and conservative for the action
of gy it follows that it is conservative for the action of any conjugate of gy, namely
9909~ " with g € G. Hence from the condition in the hypothesis and Theorem 4.1 we
get that ggog~! is contained in the Zariski closure of T', for all ¢ € G. Let H be the
subgroup generated by ggog~', g € G. Then H is a normal subgroup of G, and HT'
is a subgroup of G. Furthermore, for every g € G, gHL'/T is a closed subset of G /T
invariant under the action of gy. Since the action of g, is ergodic, and supp u is the
whole of G/I" (as p is quasi-invariant under the G-action), it follows the go-action
has a dense orbit; (see Proposition 1.3). Hence gHT' /T = G/T for some g. That in
turn means that G = HI'. As H is contained in the Zariski closure of I, this shows
that T' is Zariski dense in (G, thus proving the corollary. ]

As an application of Corollary 4.4 it was deduced in [2] that if M is a Rieman-
nian manifold of constant negative curvature, such that the associated geodesic flow
(defined on the unit tangent bundle of M) is ergodic (with respect to the Rieman-
nian measure), then the fundamental group of M is Zariski dense in the group of
isometries of M (which is a group isomorphic to SO(n, 1), where n is the dimension
of M).

We next prove a variation of Theorem 4.1, not involving considerations of the
eigenvalues being real and positive.

Theorem 4.5. Let G and ' be as in Theorem 4.1, and let u be a measure on G/T
such that supp u = G/T'. Let gy € G be such that u is conservative for the translation
action of go on G/U. Then there exists a closed subgroup G' of finite index in G,
and a representation p : G' — GL(W) over a finite-dimensional vector space W,
such that the following conditions are satisfied:

i) kerp is contained in the Zariski closure of ', and
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i) if S denotes the subgroup of GL(W) consisting of scalar transformations and
PGL(W) = GL(W)/S, then for any k € N such that g§ € G', p(g¥)S is contained
in a compact subgroup of PGL(W).

Proof. Let H be the Zariski closure of I' and suppose that it is a proper subgroup of
GL(V). Then there exist 7 € N and p € P(V")) (notation as before) such that H is
precisely the subgroup consisting of elements g in GL(V) for which p()(g)(p) = p.
Then we get a map 7 : G/T' — P(V)) defined by n(g) = p™(g)(p) for all g € G.
Also, n is equivariant and hence the measure 7(u) is conservative under the action
of p™(go).

We denote by 7 the canonical projection of V(™\{0} onto P(V({)). Let £ be
the family of all subsets E of P(V()) of the form 7(L) where L is a finite union
of vector subspaces of V(") (as before, while taking the image in P(V()) under 7,
0 is to be omitted from consideration). It can be seen that the intersection of any
collection of subsets from £ is again an element of £, and hence for any subset of
P(V() there exists a smallest element of £ containing it. Let E be the smallest
element of £ containing supp (). Let Wi, ..., W, be the subspaces of V) such
that E' = U3_; m(W;). Since supp u = G/T it follows that U3_, W} is invariant under
the action of p((G). Therefore there exists a closed subgroup G’ of finite index in
G such that each W; is p(™(G')-invariant. Now let j be such that p € 7(W;),
and choose W = W;. Let p : G' — GL(W) be the representation defined by
p(9)(w) = p™)(g)(w) for all g € G' and w € W.

We now show that the assertions as in the statement of the theorem hold for the
choices as above. If g € ker p then p() (g9) fixes W pointwise, and since p € ©(W),
it is fixed under the projective action of p{")(g). By the choice of 7 and p € P(V())
this implies that g is contained in the Zariski closure of I'. This proves (i). Now let
k € N and S be as in the statement of (ii). For any A > 0 let V/\(T) be the largest
p(gk)-invariant subspace on which all its eigenvalues are of absolute value A, and A
be the finite set of all A’s such that V)\(T) is nonzero. Also let F' be the largest p(gf)-
invariant subspace on which the restriction of p(gf) is semisimple. The measure
n(p) is conservative for the projective action of p(gf) and hence by Theorem 3.3 its
support is contained in Uyep (W(V)\(T)) Nm(F)). As E is the smallest element of £
containing the support of 7(u), this implies that W as above is contained in V,\(T) NF
for some A € A. Since the restriction of A~*p((g&) to V)\(r) N F' is contained in a
compact subgroup of GL(VA(T) N F), the preceding conclusion implies that p(g¥)S is
contained in a compact subgroup of PGL(W). This proves the theorem. 0

Remark 4.6. Consideration of Zariski density involves, a priori, the groups in
question being realised as matrix groups. In general, given a connected Lie group

19



G and a closed subgroup I', we can consider the Zariski density of p(I') in p(G),
under various finite-dimensional representations p. The adjoint representation of
G arises naturally in this respect, in many contexts. Thus the original form of
Borel’s density theorem states that if G'is a connected semisimple Lie group with no
nontrivial compact factors (or equivalently no compact normal subgroup of positive
dimension) and I' is a lattice in G then Ad (I") is Zariski dense in Ad (G), where
Ad denotes the adjoint representation of G over its Lie algebra, say G. This can be
deduced from Theorem 4.1 or Theorem 4.5, by considering the closures of Ad (I")
and Ad (G) as subgroups of GL(G), in the place of the subgroups I and G of GL(V)
in the theorem.

Zariski density results for subgroups of Lie groups have various interesting con-
sequences. We shall not go into them here. The reader is referred to [17] for some
of the basic applications.

5 Automorphisms and affine automorphisms of
locally compact groups

Some of the basic examples of ergodic dynamical systems, especially in early litera-
ture, consist of (continuous) automorphisms and, more generally, affine transforma-
tions (composites of automorphisms with translations) of compact groups (see for
example [18]). With this in background Halmos asked in his book [12] (see page 29)
whether an automorphism of a noncompact locally compact group can be ergodic.
The question, and various extensions of it have been the subject of many papers.
The question has been answered in the negative and also considerably stronger ver-
sions of this have been proved; see [3], [4], [7], [8], [9], and various references cited
there. We shall not go into the general theory around the question here, but content
ourselves recalling some of the results along the way, obtained via the study of dy-
namics of linear and projective transformations; this involves in particular focussing
on (connected) Lie groups.

In [3] the following theorem was proved, for quasi-invariant measures of auto-
morphisms, via considerations of projective transformations.

Theorem 5.1. Let G be a connected locally compact noncompact topological group.
Then there exists a closed subgroup N of G, such that N 1is invariant under all
continuous automorphisms of G, G/N is noncompact, and the following holds: if
T s a continuous automorphism of G, Q0 the nonwandering set of T, and ¥ =
QN/N C G/N then there exists an action of a compact group C on 'Y, such that
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the action induced by the factor of T on'Y coincides with the action of an element

of C.

This may be compared with assertion (ii) in Corollary 3.7 in the particular case of
G =V, avector space. The theorem signifies that a similar assertion as in the special
case holds in general, for a noncompact factor group of the given group G; perhaps
the statement as in the theorem holds for a compact subgroup N of G, invariant
under all continuous automorphisms of G, but this has not been ascertained.

It may be noted that the theorem implies in particular that a connected noncom-
pact locally compact group does not admit an ergodic automorphism (with respect
to the Haar measure, or with respect to any quasi-invariant measure whose support
is the whole of ). It shows also that a connected noncompact locally compact
group does not admit a continuous automorphism with a dense orbit. The corre-
sponding assertion, namely that G as above does not admit an affine automorphism
with a dense orbit, was also upheld in [4] for all affine automorphisms. We now give
a sketch of how the dynamics of linear transformations is applied for the purpose.

Firstly we note that by a theorem of Montgomery and Zippin ([15], Chapter IV)
every connected locally compact group GG contains a unique maximal compact nor-
mal subgroup K such that G/K is a Lie group. The subgroup K is invariant under
all continuous automorphisms of GG, and this reduces the study of the question as
above to the case of Lie groups.

Now let G be a connected Lie group. Let Aut (G) denote the group of all (con-
tinuous) automorphisms of G. It has the structure of a Lie group, with respect to
the topology of uniform convergence on compact subsets (see for example [13]). In
general it is not a connected Lie group; e.g. when G is a torus group of dimension
d > 2 then Aut (G) is an infinite discrete group. We note also that except in the
case when G is a torus, Aut (G) is of positive dimension. We denote by Aff(G) the
group of all affine automorphisms of G, namely homeomorphisms of the form 7, o o
where « is an automorphism of G and T, denotes the translation by g € G. Clearly
Aff (G) can be realised as the semidirect product of Aut (G) and G, and we equip it
with the topology and Lie group structure as a semidirect product.

Now let G be a connected Lie group other than a torus. Let £ denote the
Lie algebra of Aff(G) and Ad: Aff(G) — GL(L) be the adjoint representation of
Aff(G). Let A be the Lie subalgebra of £ corresponding to Aut (G), and let r be
the dimension of A; since G is not a torus, r > 0. Let V = A" L, be the r-th
exterior power of £ and p = A" Ad : Af (G) — GL(V) be the r-th exterior power
of the adjoint representation as above. Let vy € V be a nonzero vector contained
in the one-dimensional subspace A" A of V. Let n: G — V be the map defined by
n(g) = p(g)(vo) for all g € G. Consider any g € G such that p(g)(ve) = vo. Then
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A is Ad (g)-invariant, and hence g normalises the subgroup Aut (G)°, the connected
component of the identity in Aut (G). Since Aff(G) is a semidirect product of
Aut (G) and G, this implies that all elements of Aut (G@)° commute with g, in Aff (G).
This means that g as above is fixed by all automorphisms from Aut (G)°. This is
quite a strong condition in general, and means in particular that g is contained in
the centre of G, since all inner automorphisms of G' (automorphisms induced by
conjugation by elements of G) are contained in Aut (G)°. Suppose that there is no
nontrivial element satisfying this condition; this holds for instance if the center of
G is trivial. Then 7 is an injective map, and gives an embedding of G in V' (as a
subset).

Now let T" be any affine automorphism of G, say T' = T, o a, where g € G and
a € Aut (G). Clearly vy as above is an eigenvector of p(«). Let A be the eigenvalue
of p(a) corresponding to vg. Then we have, for any z € G,

(T () = p(ge(x))(vo) = p(Ty 0 a0 Ty o a ) (vo) = p(T 0 Ty 0 o) (vo)

= A"'p(T) (p(2) (v0)) = A~ p(T) (1(2))-

This means that under the embedding 7, application of 7" on GG corresponds to
restriction of the linear transformation 7 of V, defined by 7(v) = A~!p(T)(v) for all
velV.

Thus we have embedded G, under a suitable condition, in a vector space V' in such
a way that any affine automorphism of G is the restriction of a linear transformation
7 of V. Now suppose that there exists an affine automorphisms 7" of G with a
dense orbit in G. Let z € G be such that {T’(z) | j € Z} be dense in G. Then
considering the images under n we conclude that, with v = n(z), {77(v) | j € Z}
is dense in p(G)(vy). This implies in particular that the closure of the 7-orbit of v
is connected. Then by Corollary 3.8 it is compact. Hence we get that p(G)(vo) is
contained in a compact subset. This is a strong condition on G, irrespective of what
p:G — GL(V) is, so long as it is faithful as in this case, and holds only if G is a
product of a compact group with R? for some d. In the situation when G has an
affine automorphism with a dense orbit this further implies that G is compact, as
desired.

The general case, where 1 as above may not be injective, is reduced to the above

special case by successively going modulo the centre; we shall not go into the of this
details here; (see [4]).

Remark 5.2. In analogy with the question of automorphisms of affine automor-
phisms acting ergodically or with a dense orbit, one may ask about groups of au-
tomorphisms or affine automorphisms acting ergodically or with a dense orbit. For
the case of abelian groups of automorphisms this question has been studied in [7]
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and [9]. We shall however not go into the details here, the themes involved being
rather different.

6 Intersections of orbits of linear transformations
with subspaces

In this section I discuss some interesting questions encountered in the course of the
work in [10], relating to certain dynamical aspects of linear or projective transfor-
mations.

Let V be a finite-dimensional vector space over R and let 7" : V — V be a
nonsingular linear transformation. Let v € V and for any subspace W of V let
viv, W) ={n € N| T"(v) € W}, namely v(v, W) consists of the ‘times of visiting
W, starting from the point v, under iteration by 7. How are the sets v(v, W), for
various choices of v # 0 and proper subspaces W (depending on T)? If W contains
a nonzero subspace invariant under 77 for some r € N then it can be seen that
for any j € N there exist v € V such that v(v, W) contains the infinite arithmetic
progression {j + kr | k € N}. On the other hand it can be seen that if 7" is a
unipotent transformation then for any v whose orbit is not wholly contained in W,
v(v, W) has at most d — 1 elements, where d is the dimension of V. Is the most
general situation a combination of these two cases?

Conjecture 6.1. Let T : V — V be a nonsingular linear transformation of a finite-
dimensional vector space over R. Then there exists m € N such that for anyv € V
and any subspace W, if v(v, W) contains m elements then it contains an infinite
arithmetic progression.

Furthermore, it seems plausible that m as above admits an upper bound de-
pending only on the dimension of V', and that when v(v, W) does contain an infi-
nite arithmetic progression, there exists one such progression whose complement in
v(v, W) has at most m elements.

The following proposition shows that the conjecture is true under an additional
condition. The result is noted in [10], Remark 5.2; here we give the argument in
some detail. For the proof we need the following lemma.

Lemma 6.2. Let f be a function on R, of the form f(t) = XI_; e*'Q;(t) for all
t € R, where aq,...,a, are distinct real numbers, and Q1,...,Q, are polynomials.
If f is not identically zero then the number of zeros of f, namely the cardinality of
the set {t € R| f(t) =0}, is at most r — 1+ X7_; deg Q;.
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Proof. Let C denote the class of nonzero (not identically zero) functions on R of the
form X7_, e®*Q;(t), where a, . . ., o, are real numbers, and @, . . ., @, are polynomi-
als; for any f € C there exists a unique expression as above, for which aq, ..., a, are
distinct. For f = X7_, e®'Q;(t), with «;’s distinct, let m(f) =r — 1+ X7_; degQ;.
We proceed by induction on the number m(f). We note that m(f) > 0 for all f € C.
If m(f) = 0 then f has the form ae*, with a € R*, which has no zero, and hence
the desired contention holds. Now consider any f = XI_, e®'Q;(t) € C as above,
with m(f) > 1, assuming that the contention of the lemma holds for all g € C with
m(g) < m(f). Taking out the factor e®'*, which has no zeros, we may also assume
that oy = 0. Now consider the derivative f’ of f. We have

F(t) = Ty 0ae™Qs(t) + e*Qi(t) = Q' (1) + Xi_p e (euQi(t) + Q5(2))-

Now if f’ is identically zero then f is constant, and hence we are through in this
case. We may therefore suppose that f’ is not identically zero. Then f' € C.
Also, m(f') =r —1+ (deg@y — 1) + XI_, deg Q; = m(f) — 1, if deg@1 > 1, and
if Q; is a constant polynomial then f'(t) = XI_, e*!(;Q;(t) + Q%(t)), and hence
m(f) = (r—1) — 1+ XI_,deg@; = m(f) — 1. Thus in either case we have
m(f') = m(f) — 1. Therefore by the induction hypothesis f’' has at most m(f) — 1
zeros. Therefore by the mean value theorem we get that f has at most m(f) zeros.
This proves the lemma. U

Proposition 6.3. LetT : V — V be a nonsingular linear transformation of a finite-
dimensional vector space V' of dimension d over R. Suppose that all eigenvalues of
T are real. Letv € V and W be any subspace of V.. Then v(v, W) either contains all
even or all odd natural numbers, or has at most 2(d — 1) elements. If, furthermore,
all eigenvalues of T are positive then either v(v, W) = N or it has at most (d — 1)
elements.

Proof. We note that k € v(v, W) if and only if either k¥ = 21 and (T?)'(v) € W or
k =2l+1and (T?)"(Tv) € W, for some | € N. As the eigenvalues of T? are positive,
this shows that if we prove the second statement in the proposition, then the first
one follows.

We now suppose that all eigenvalues of 7" are positive. Let V' be the subspace
of V spanned by {T%(v) | k € N}. We have to show that for all subspaces W which
do not contain V', v(v, W) has at most d — 1 elements. In proving this, without
loss of generality we may assume, and we shall, that W is a hyperplane (subspace
of codimension 1).

Now let ¢ be a linear functional on V' with W as its kernel. Let Ay, ..., A, be the
distinct eigenvalues of T. By the Jordan canonical form there exists a basis {e;; |
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i=1,...,r; j=1,...,d;}, where d; is the dimension of the generalised eigenspace
corresponding to the eigenvalue );, such that for v = 3; ; vi;e;; we have T*(v) =
¥i.; A\FPij(k)e;; where Pj; is a polynomial of degree at most d; — 1 (with coefficients
depending on v;;’s). Then for v = ¥, ; v;je;; we have (T*(v)) = X;; \fPy; (k) o (ei;)
which may be written as ¥7_, \¥Q;(k), where Q; = E?;l ¢(e;;)Pi; is a polynomial
of degree at most d; — 1. As )\; are positive we may write them as e®, where
a; =log )\, for all 4 =1,...,r, and applying Lemma 6.2 we then see that there are
at most r — 1+ ¥ (d; — 1) = d — 1 integers k such that o(T*(v)) = 0. Since W is
the kernel of ¢ this shows that v(v, W) has at most d — 1 elements. This proves the
proposition. O

Conjecture 6.1 can also be verified, along lines of the proof of Proposition 6.3
under the slightly weaker condition that all eigenvalues of 7" be roots of real numbers,
namely z € C such that 2" € R for some n € N. We do not know if a similar assertion
holds under a still weaker condition. The following weaker statement holds however.
It is a special case of Proposition 5.1 in [10], for vectors in the place of subspaces
there. The proof depends on a version of the theorem of Szemeredi, due to Gowers,
on finding arithmetic progressions in sets of integers. We shall however not go into
the details of the proof.

Proposition 6.4. Let V be a finite-dimensional vector space over R andT : V — V
be a nonsingular linear transformation. Then for every 6 > 0 there exists k € N
such that the following holds: if v € V and there exists a proper subspace W of V
such that

{1<j<k[T/(v) € W}| > ok,

(where | - | denotes the cardinality of the set), then there exists r € N such that v is
contained in a proper TT-invariant subspace of V.

7 The case of p-adic vector spaces

Theory analogous to what we discussed in the preceding sections for linear transfor-
mations of real vector spaces works also for (finite-dimensional) vector spaces over
p-adic fields. There are however differences in certain respects. We briefly go over
the results in this case. We will not go into the proofs, which typically are similar
to the real case, with appropriate modifications.

Let K be a locally compact totally disconnected field (local field) of characteristic
zero; we note that such a field is a finite extension of the field @@, of p-adic numbers,
for some prime number p. Let V be a finite-dimensional K-vector space, and T
be a nonsingular K-linear transformation of V. Let P(V') be the projective space
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corresponding to V', consisting of equivalence classes of nonzero points of V| the
equivalence being given by v ~ w if w = kv for some k € K* (nonzero elements
of K). As before, we denote by 7 : V — \{0} the natural quotient map, and
for any subset S of V we write m(S) for the image of S\{0} in P(V'). The linear
transformation 7" induces a map of P (V') which we call the projective transformation
corresponding to T, and denote by T. We are interested in the dynamics of T and
T.

We mention, to begin with, that unlike in the case of linear transformations of
real vector spaces, in the case of totally disconnected fields as above every unipotent
linear transformation is contained in a compact subgroup of GL(V). In view of this,
in the asymptotic dynamical behaviour of T and T the role of the unipotent Jordan
component is quite different than in the case of the reals.

As before, for every positive real number A let V), denote the largest 7T-invariant
subspace of V' such that all eigenvalues (in the algebraic closure of K) of the restric-
tion of T to V), are of (p-adic) absolute value A. Then V' = @59 Vi = Baca Vi, direct
sums, where A is the finite set of A’s for which V), is nonzero. On each V), there exists
a norm, denoted by | - | (as a p-adic vector space) such that |T'(v)| = v for all
v € V); this can be deduced using Jordan decomposition and the fact that the unipo-
tent elements are contained in a compact subgroup of GL(V'). Then |T%(v)| = A|v|
for all v € V), and i € Z, which may be compared with (3) in §3 for the case of real
vector spaces; here we get a stronger relation, for a specific norm, than in the case
of the reals. Using this we can prove, along the lines of the proof of Proposition 3.1,
the following result corresponding to Theorem 3.3 in the real case.

Theorem 7.1. Let the notation be as above. Then the following statements hold:
i) For anyv € V, L*(v,T) = L* (v, T1) C Vi;
ii) for any v € V\{0}, L*(7(v),T) C Urea 7(V3);
wi) QV,T) =QW,,Ty) = Vi;
) Q(P(V),T) = Unea Um(VA), Tx) = Unea m(Va).

As in the real case one can deduce from this the following corollary for supports
of conservative measures.

Corollary 7.2. Let the notation be as above. Then the following holds:

i) for any conservative measure p of (V,T), supp p is contained in V;;

ii) for any conservative measure ju of (P(V),T), supp it C Upea m(V3).

In a way, these results may seem ‘weaker’ than the corresponding results in the
real case, since unlike in the earlier case the sets on the right hand side are not
contained in the space of the fixed points of the unipotent Jordan component (F in
the corresponding earlier results). On the other hand, unlike in the real case, the
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restriction of 7" to V; is contained in a compact subgroup of GL(V;). Similarly it
can be seen that for each A € A (notation as above) Ty, which can be viewed as an
element of the group PGL(V),) = GL(V,)/K* (where K* is the subgroup of GL(V})
consisting of nonzero scalar transformations), is contained in a compact subgroup
of PGL(V,); we note that since A may not be the absolute value of any element of
K, the argument for this, which we shall not go into, involves considering a finite
extension field of K.

In the light of the above observations, and Theorem 7.1, it is easy to see that the
statement as in Corollary 3.7 holds also for finite-dimensional vector spaces over p-
adic fields (verbatim statement with reals replaced by p-adic). This can be applied to
obtain results on Zariski closures of subgroups (analogous to Borel’s density theorem,
along the lines of the proof of Theorem 4.5) and supports of conservative measures
of automorphisms of groups. We shall however not go into the details of this here.

Acknowledgements: Thanks are due to Nimish Shah and Riddhi Shah for helpful

comments on an earlier version of the article.
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