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ABSTRACT

We discuss some applications of the study of flows on homogeneous spaces 1o
describe the set of points in the euclidean spaces which can be approached, starting
from an initial point, by application of linear transformations from various special

classes.

INTRODUCTION

ET E” be the usual n-dimensional eucli-
dean space; the elements of E™ will be
written as n-tuples x = (xy,..., X,), where
X1, .5 X, are teal numbers, namely the coor-
dinates of x. Let T be a set of linear trans-
formations of E”. Suppose we are given two
points v = (vy,..., vyyand w = (wy, ..., w,),.
Consider the following question: can we reach
w from v by a transformation from 7?7 That 1s,
does there exist a transformation o from T
such that ¢(v) = w? In the cases that interest
us T will be countable. Then for each v the
question is doomed to have negative answer
for all but countably many w. Let us however
relax the question and ask the following: Can
we approach w starting from v by transtorma-
tions from 7T ? that is, are there points arbitrari-
ly near w that can be reached? in yet other
words, can we find a scquence of transforma-
tions @y, @3,..., Tk, ... in T such that o, (v)
converges tow as kK — «? Let Cr(v) be the set
of points w in E” for which the answer to these
questions is affirmative. Cy(v) of course in-
cludes the set of w such that o{v) = w for some
o in T. But while the latter is countable
whenever T is countable, the former can be a
large set and perhaps even the whole of £”.
In general it is a difficult problem to describe
Cr(v) for a given set of transformations. It is
the purpose of this article to descnbe some
results achieving this in certain specific naturai
sitpations. In §1 we describe the results; these
can be understood without much mathematical
background. Section 2 is devoted to giving an
outline of the underlying ideas from dynamics

involved in the approach; in §3 we give a proof
of the main result stated in §1. In the conclud-
ing section we discuss some related questions.

§1. Results on approximation

For any m = 1let §,, denote the set of linear
transformations o of &£™ such that for all
Y = (V], s oo ,'Vm) in Em:

o((V1,. -5 Var))

11
=(Z A1 Vis vy

i = 1 f

% lami Vi) , (1)

where a,; are all integers and the determinant
of the matrix {a;) is 1. It would be worthwhile
to note that every such o can be expressed as a
composite of transformations of the form oy, or
o, where 1l =k =sn, 1l =l=sn, k#*!and
o 18 defined, for all (vy, va,,..., v,,) in E7,
by

JM[(VI:' *y l"’m)]
= (Vli"'! Vie1, V;'f‘Vk, Vigtysooy Vm).r (2)

The transformation oy conststs of fixing the
hyperplane defined by the equation v, = 0 and
shearing the other points along the {th axis by
an amount equal to the Ath coordinate.

A. Now consider the set of transformations
T=S_ of E" It is casy to see that if
v = (v{,... V,) is an integral vector (that s,
Vy,... v, arc integers) then any w of the form
o(v), o € T, is also an integral vector. Since
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limits of integral vectors are again integral
vectors, we see that for any integral vector v,
C +(v) consists of integral vectors. Similarly we
see that if v is such that tv is an integral vector
for some positive real number ¢ then fw is an
integral vector for all win C (v); consequently
in this case also C r(v) is a proper subset of E™,
It turns out however that for all other points
C 7(¥) equals E”. Namely we have the fol-
lowing:

i.1 Theorem: Let 7 be as above and let
v = (v{,...v,) be such that for some i, J,
v, # 0 and v,/v, is an trrational number. Then
Cr(v) = E". That is, any point w can be
approached starting from v by applying trans-
formations from T.

A proof of this may be found in Dani'.
There is also another somewhat more
elementary proof possible, which however is
not found n literature.

B. Nextletn = mp, where m, p = 1, We view
E™ as consisting of p-tuples (x,, ..., x,) where
X1,..-, X, are vectors in E™. Each o in §,,
then yields a transformation of E", denoted
here by &, defined by

o %)
— [fr(xl)'r 0‘(13), - ﬂ'(xp)] (3)

for all (x;, x3,..., X,) in E™. That is, o consists
of applying ¢ simultancously to all component
vectors X;,..., X,. Let T be the set of all
transformations & of £” obtained from all o in
Sm as above. We note that if v = (x,,..., x,)
and w = (y],---, )’,—;), where each Y, 1S
approachable starting from x, by transforma-
tions from S, it still does not mean that wis in
C 7(v) since we need to apply the transforma-
tions from §,, simultaneously on all compo-
nents. In fact we see that if there exist
constants ¢;,..., ¢,, not all zero, such that
X +Cxa+ ..+ C,X, 1S an integral vector
(which incidentally would neccssarily be the
case if p = m then for any w = (yy,...,y,)in
Cr(v), ary)+ecy2+...+¢,y, 1s an integral
vector. If this happens, then an arbitrary vector
in £" cannot be approached starting from v,

ﬁ'[(xi, X1, .
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even though from each component it may be
possible to approach any vector in E™. This
however turns out to be the only constraint to
approachability of an arbitrary vector in E”.
Namely, the following holds:

1.2. Theorem: Let m, p, n and T be as above
and v = (x;,..., x,) where x,, x;,..., X, are
in E™. Suppose that there do not exist con-
stants ¢y, €3,..., Cp, DOt all zero, such that
c1Xy+ C2Xa + . ..+ CpX, is an integral vector (so
p = m-1, in particular). Then Cy(v) = E”;
that is, every vector i1s approachable starting
from v by transformations from T.

Remark. If there exist constants ¢;, €3, ..., ¢,
not all zero, such that c;x; + x4+ ... + €)X, 18
an integral vector then w = (yy,..., ¥,) IS in
Cr(v) if and only if ¢,y +C2y2+ ...+ Gy, is
an integral vector for every p-tuple of constants
Ci1s C3s.--, CpSuch that cyx; + X+ ... + X,
is an integral vector.

This theorem was proved in Dani and
Raghavan®. It may be noted that there we also
proved a similar result for sympletic matrices.
We shall however not go into the details of
that.

C. While in the above result the transforma-
tions & were obtatned by applying the same
transformation ¢ to all components, one may
also ask a similar question where to some of
the components we apply o while to some
others we apply, another transformation de-
pending on o. We shall now consider such an

1nstance.
et m, p and g be such that m = 2,

O0sp=m-1, 0=g=m—-1 and 1=

p+g=m. Let n=m(p+q). If o in S, Is

given by the relation (1}, for a suitable matrix
(a,).let ‘0 be the transformation of E™ de-
fined by

rI:"'[(b’l,......, Vm)]
m m
=(Zaﬂvj,..., Zﬂjmvj),
] = 1 F=1

namely, ‘o corresponds to the transpose of
the matrix {(a,). Evidently ‘e is in §,, for all &
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in S,,. Now for each o in S,, let & be the
transformation of E” defined by

Ol(Xiy s X, Fr,.0, £5)]
= [o(x1),..., o(x;), ‘71 (f1),...,
‘e i(f,)] (4)
forall (x;,...,%,, f1,..., B)IME", x;,...,%,

and f,, ..., f, being the component vectors In
E™. Let T be the set of all transformations & of
E" obtained from all ¢ in §,,, as above. As 1n
the earlier case, reaching from (x;,..., x,,
fi,-.,f)t0(y1,-4-5¥p, 815 --» 8g) under &
amounts to reaching simultaneously from x; to
y, forallk = 1.....punder oandfromf;to g
forall /=1,..., g under ‘o

Recall that two vectors a = (a,,..., 4,,) and
b=(by,..., b,,) in E™ are perpendicular to
each other if and only if a1b;+...+a,b,,
= (). We wriic a L b to say a is perpendicular

to b. Let

X={(x1,|--, xp, fl!“""‘l fq)
X15...5 Xp, and fy,..., £, are jn E™ and

xk_Lf;forallk=l,...,p

andl =1,..., q} (5)
it is easy to verify that if v = (xq,..., X,
fi,...,f,)isin X then &(v), defined as above,
is also in X. This implies that for any v in X,
Cr(v) is contained in X. That 1s, if a vector w
in E” can be approached, starting from v by
application of transformations & as above, then
it must belong to X; further, if v = (xq,...,
X5, f1,..., fq) and w = (}'l,.u., Yo: B1s-+ >

g,) then (y1,...,¥,) and (g1,. .., g;) must be
approachable starting from (x(,..., %,) and

(fy, ..., £,) respectively under the action as in
B, for which the conditions are described by
Theorem 1.2. Conversely, it turns out that
these conditions suffice to ensure approachabil-
ity of w starting from v, That 1s, we have the
following.

1.3. Theorem. Let p, g, m, n, T and X be as
above. Let v = (x5,..., X,, [1,..., [;) be an
element in X. Suppose that there do not exist

constants a4,..., a,, not all zero, such that
a:1X; + ...+ a,Xx, is an integral vector and there
do not exist constants b,, ..., by, not all zero,
such that b,f, + ...+ b f_ is an intggral vector.
Then C(v) = X thatis, any element of X can
be approached starting from v.

Clearly when ¢ = 0 Theorem 1.3 reduces to
Theorem 1.2. The study of dynamics of horos-
pherical flows involved in Dani and Raghavan®
was extended in Dani’ proving a certain
conjecture regarding the orbits of such flows in
a very general set up. Theorem 1.3 1s to be
deduced from the main dynamical theorem in
Dani®. The details of the deduction are in-
cluded in §3, after introducing the necessary
technical background in §2.

Of course, it would also be of interest to
describe C1(v) for v in E” which are not
contained X. However the available techni-
ques do not yield comparable results for points
outside X. It is indeed possible to prove certain
weaker results, which we shall not take up

here. (cf. Dani*, for instance).
We note, on the other hand, that here we

have concentrated on describing results which
can be understood without much mathematical
background and hence dealt only with the
above simple classes of transformations. Simi-
lar results can in fact be deduced for a wider
class of sets, (or rather, groups), of transforma-
tions using the dynamical approach outlined in
the forthcoming sections. (cf. Theorem 4.1, for
instance).

§<. Dynamics on homogeneous spaces

Let G = SL(m,R), the group of all mXxXm
matrices with real eatries, and determinant
equal to 1. We consider G equipped with the
usual topology. Let D be the subgroup
SL(m, Z) of G, consisting of the matrices in G
whose entries are integers. D i1s a discrete
subgroup of G. We form the quotient space
G/D and equip it with the quotient topology.
Such a quotient space is also sometimes called
a homogeneous space. On G/D there 1s a
natural action of G on the left: an element g in
G acts by taking the coset xD to gxD. It
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turns out that on G/D there 1s unique Borel
measure u such that w(G/D) = 1 which is
invariant under the action of (G as above (cf.
Raghunathan®, Chapter X).

Let H be a closed subgroup of . Then the
action of G on G/D yields an action of H on
G/D, by restriction. It turns out that whenever
H is non-compact this H-action on G/D 1s
ergodic with respect to the measure p; this
means that any Borel subset of G/D which 1s
invariant under the H-action has measure
either 0 or 1 (cf. Zimmer®, Theorem 2.2.6).
As a consequence it follows that for almost all x
in G/D (with respect to the measure u) the
orbit Hx is dense in G/D.. (cf. Zimmer®,
Proposition 2.1.7). It must be emphasized that
the assertion is only for almost all x. Only for
certain subgroups, e.g. the group of all upper
triangular matrices in G, the assertion holds for
all x in G/D (cf. Dani and Raghavan?, Proposi-
tion 1.5). In general, not only it may not hold
for all x but there is also no information
available about the set of x for which the
assertion holds. However, for a class of sub-
groups called horospherical subgroups a char-
acterization of the set of points with dense
orbits was obtained in Dani’. We shall describe
the result below and use it to prove Theorem
1.3. But before that we shall make some
general observations so that the result may be
viewed in a proper perspective.

In the above discussion it is possible to allow
G to be any simple Lie group with finite centre
and D to be any discrete subgroup such that
the homogeneous (quotient) space G/D admits
a finite measure invariant under the action of
G on the left. The case G = SL(m,R) and
D = SL(m,Z) is but an example of such a set
up. We note that while in this example G/D
happens to be noncompact, there are other
discrete subgroups D of G = SL(m,R), and
also of other simple Lie-groups, such that G/D
is compact.

A subgroup U of a Lie group G is said to be
horospherical if there exists g in G such that

U={ueGlgug”’ — e as j— =}, (6)

where e i1s the

identity element. If

G = SL(m,R), a subgroup of G is horospher-
ical if and only if it 1s conjugate to a subgroup
of the following form: For any subset
A={a,...,a} of {1,...,m-1}, whers
a < a4 <...<aq, let

Ug = {(u,)|u, = 8, if i > a, and j = ay,,
for some k=0, . .. I}, (7)

where ag = 0 and a;,; = m by convention and
d; is 1 or 0 according to whetheri = jor i # j.
We urge the reader to interpret the condition
in terms of blocks of matrices, which is easier
to understand but clumsy for printing. In
particularif A = {1, . . . ,m —1} then U, is the
group of all upper triangular matrices with 1’s
on the diagonal. If A = {p}, the set consisting
of only one element p, where 1l = p =m-—1,
we shall wnite U, for U4, clearly

I R
U, = i

pX(n—p) matrix} , (8}

R an arbitrary

where I,,1,_, are identity matrices of sizes
pXpand (n—p) X (n—p) respectively and 0 is
the (n—p)Xp zero matrix.

The action of a horospherical subgroup of G
on a homogeneous space G/D as above is called
a horospherical flow. When G = SL(2, R), the
horospherical subgroup U, as above is one-
dimensional and in this case the corresponding
horospherical flow is called the horocycle flow.
The dynamics of the horocycle flow 1s under
study for over half a century now. In the last
two decades various authors have also studied
the general horospherical flows. The reader is
referred to the survey of Dani’ for various
details in this regard. In particular it is known
that if G/D (as above) is compact then every
orbit of any nontnivial horospherical flow is
dense in G/D. But recall that in the example of
our interest here, namely G = SL(m,R) and
D = SL(m,Z), the homogeneous space G/D
Is noncompact. In this case the corresponding
assertion is in fact false. A characterization was
obtained® for any G and D as above (actually
in even somewhat greater generality, which we
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shall not go into here) of the set of points
whose orbits under a given horospherical flow
are dense in G/D. It was also deduced that
when the orbit is not dense the closure of the
orbit is still a homogeneous space with finite
invariant measure, but now with respect to a
proper closed subgroup.

We now go back to the case of
G = SL(m,R) and D = SL(m,Z) as before.
Recall that E™ is viewed as the space of row

vectors with m real entries or, equivalently,
1 X m real matnices. Consider the action of G

on E™ defined by
g{v) =v'g for all v in E™, (9)

where ‘g denotes the transpose of the matrix g.
Observe that S,, as in §1 consists precisely of
transformations as above corresponding to all
the elements g in D. For the case at hand the
result in Dani® implies the following.

2.1 Theorem. Let G =S8L(mR), D=
SL{m,Z) and U = U, for some subset A of
{1,...,m—1}. Let x be an element of G.
Then there exists a closed subgroup H con-
taining U such that

i) HxDID is the closure of UxD/D,

ii) HxD/D admits a finite H-invariant mea-
sure,

iii) either H = G or there exists a proper
nonzero subspace W or E™

such that the following conditions are satisfied:
a) W is a rational subspace; that 15, W 1s
defined within E™ by a system of hnear
equations with rational coefficients and, b) W
is invariant under the action of all g in x~' Hx
(and in particular all g in x™" Ux); that is, g(w)
is in W for all we W and g in x~'Hx,

The conditions 1) and ii) are the same as In
the statement of the main theorem in Dani®. A
scrutiny of the proof would show that for the
particular case at hand condition iii) also holds.
It is also possible to conclude condition in)
from conditions i) and ii) using certain results
in the theory of algebraic groups; it would
however be pointless to go mnto the details of
this,

83. Proof of Theorem 1.3.

In this section we shall give a proof of
Theorem 1.3. In preparation, we first note the
following.

3.1 Lemma. Let U be a subgroup of
G = SL(m,R) of the form xU,x™" for some x
inG and1 < p=m—1. Then the following
conditions are satisfied:

i) the vector subspace consisting of the fixed
points of the action of U viz V = {w|w in
E™, g(w) =w for all g in U}, is of di-
menswon p.

it) if W is a vector subspace of dimension at
most p and invariant under the action of
all g in U then g(w) = w for all win W and
gin U

ili) the subgroup consisting of transposes of all
elements of U is conjugate to U,,_,; that
is, it equals yU,,_,y~! for some y in G.

Proof. We first obscrve that each of these
conditions would hold for any xU,x~!, x in G,
if they hold for U, itself. For t) and ii) this may
be seen by noting that for win E™, g(w) = w
for all g in xU,x™' if and only if
ulx"1(w)] = x"(w) for all u in U, and a
similar assertion for invariant subspaces. For
1i1) it i1s even more obvious,

Now for = U, condition i) is obvious from
the definition of U, (see (8)). In fact, in this
case V={(vi, ...y v, 0, ..., 0y, ...,
v, real}. Condition ii) can be deduced by
verifying by direct computation that if a sub-
space W is invariant under the action of all g in
U, and contains an element w not in V then it
contains the subspace spanned by w and V,
Condition iii) can be seen to hold for U = U,
for the choice y = (y;) where y, =0 if
i+j# mandy; = £1if i+j = m, where the
signs are chosen so that the determinant of
yis 1.

We shall now deduce Theorem 1.3 from
Theorem 2.1. We first note that by including
more vectors in E™ as components we may
without loss of generality assume that
p+g =m. Now consider the action of
G = SL(m, R) on E”, where n = m(p+q),
defined for all g in G by



(10)

where X3, . . . ,X,,f1, ... ,f; are the compo-
nent vectors in E7, and the action on each
component is as defined by (9). Let X be the
subset of E” as before (see (5)), namely the set
of v=1(x,...,%,f,...,f), such that
each x, is perpendicular 'to each f for
k=1,...,pand/=1,...,q. Let e be the
element (e;,e;,...,e,) i E", where
e, . . . ,&, is the standard orthonormal basis
of E™: namely e; has 1 in ith place and O
elsewhere. Then e is in X, Further, it can be
verified that the orbit of e under the action of
G, namely Y = {g(e)|g in G}, consists precise-
lyof v=(x1,-..,%,f,...,[;)in X such
that x;,...,%X, and f, ... .f, are linearly
independent. We note that, in particular, ¥ 1s
locally compact and dense in X. Let
v={(X4,... X,f,...,f,) be as in the
hypothesis of the theorem. Then v belongsto Y
since any linear combination*with at least one
nonzero coefficient is not even an integral
vector let alone be zero. The assertion of the
theorem is equivalent to saying that the set
{g(v)|g in D}, the orbit of v under the action of
D, is dense in X. Since Y is dense in X it 1s
enough to show that the orbit under D (which
is indeed contained in Y) is dense in Y. Let us
suppose that this is not true. We shall complete
the proof by showing that this leads to a

contradiction.
Let U/ be the subgroup of G consisting of

those elements which fix e. It is easy to see that
in fact U= U, in the notation above; in
particular it is a horospherical subgroup. As
each element of U fixes e we get a well-defined
bijective map ¢: G/U— Y such that
H(gU) = g(e) for all g in G. As Y is locally
compact it follows from a standard result that
the map ¢ is in fact a homeomorphism. Let gg
ih G be such that v = gg(e). Since ¢ 15 a
homeomorphism and, by assumption, the D-
orbit of v 1s not dense in Y it follows that
Dgo,U/U is not dense in G/U. This is equiva-
lent to saying that the set Dgo U is not dense 1n
G. Hence Ugy! D, which consists precisely of
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inverses of elements of Dgy U, is not dense in
G. Hence Uggy'D/D is not dense in G/D.
Since U is a horospherical subgroup, by
Theorem 2.1 this implies that there exists a
proper nonzero rational subspace W of E™
invariant under the action of all g in goUgg".
Letd = dimension of W, Thenl = d = m—1.

Suppose first that d.= p. Since U = U,, by
Lemma 3.1, i), V is p-dimensional. On the
other hand, by choice, V contains x,..., X,.
Hence V 1s spanned by x,,..., x,. But Wis
under the action of all g in goUgo . Then by
Lemma 3.1, i), V is p-dimensional. On the
other hand, by choice, V contains x;, . . . ,X,.
Hence V is spanned by x;, . .. ,x,. But Wis
contained in V. Hence every element of Wis a
linear combination of x;, . . . ,x,. Also since
W is a non-zero rational subspace, it contains
nonzero integral vectors. Thus a certain linear
combination @, x; + . . . +a,X, must be a non-
zero integral vector; this contradicts the
hypothesis.

Next suppose, if possible, that d > p. Let
W+ be the orthocomplement of W in E”. Since
W is a rational subspace so is W*. Also the
dimension of Wt is m—d < m-p = q. Since
W is invariant under the action of all g in
goUgol, Wt is invariant under the action of
all g such that ‘g~ lis in goUgg ' . Recall that by

Lemma 3.1, iii), the subgroup consisting of all
g satisfying that condition is conjugate to U,.
Hence, by Lemma 3.1, 1), we get that
g(w) = w for all win W and g such that ‘g~ " is
in goUgg!. Equivalently ‘g™ (w) = wforallw
in W* and gin goUgo'. An argument similar
to the one above now shows that every element
of W' is a linear combination of f;, . . . ,f,.
Since W+ contains nonzero integral vectors,
this also contradicts the hypothesis. Since the
assumption to the contrary leads to a contra-
diction, we conclude that the ortit of v under
D is dense in Y and hence in X. This proves
Theorem 1.3.

§4. Comments and questions

1. Theorem 2.1 and the corresponding general
result can also be used to prove similar results
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for actions of other discrete linear groups,
following the method involved in the proof of
Theorem 1.3. In particular, the result that all
orbits of horospherical flows are dense if G/D
1s compact can be seen to lead to the following:

4.1. Theorem. Let G = SL(m,R) and D be
discrete subgroup of G such that G/D is
compact. Let n = m(p+q) where p,g=1
and p+q = m and consider the G-action on
E" defined by (10). Let X be the subset of E” as
in{5)andletv = (x;,...,x,,f,...,f)be
in X. Then the D-orbit of v is dense in X if and
onlyif x;,...,X,and fy, . .. ,f, are lincarly
independent.

2. If one is interested in approaching zero,
rather than an arbitrary vector in E”, one can
also use certain results in dynamics which are
known in a more general setting, but have
weaker conclusions. An illustration of this may
be found in Dani®.

3. One may like to relate the degree of
approximation achieved to the ‘size’ of the
matrix, {namely, how large it is, in a suitable
sense) and look for optimal possibilitics. The
reader is referred to Dani® for certain results
on this question 1n respect of the approach to
zero in Theorem 1.2 starting from v satisfying

o ey i o > —

the condition of that theorem.

4. Though Theorem 1.3 describes the vectors
that can be approached starting from a typical
element in X, given a vector that can be
approached, there is no algorithm to achieve
the purpose. In the simplest case of Theorem
1.1 the approach to zero can be achieved
algorithmically. However not much can be said
in general, 1n this respect.
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