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Noncommutative gauge theories can be constructed from ordinary U(∞) gauge theo-

ries in lower dimensions. Using this construction we identify the operators on noncommu-

tative D-branes which couple to linearized supergravity backgrounds, from a knowledge

of such couplings to lower dimensional D-branes with no B field. These operators belong

to a class of gauge invariant observables involving open Wilson lines. Assuming a DBI

form of the coupling we show, to second order in the gauge potential but to all orders of

the noncommutativity parameter, that our proposal agrees with the operator obtained in

terms of ordinary gauge fields by considering brane actions in backgrounds and then using

the Seiberg-Witten map to rewrite this in terms of noncommutative gauge fields. Our

result clarify why a certain commutative but non-associative “generalized star product”

appears both in the expansion of the open Wilson line, as well as in string amplitude

computations of open string - closed string couplings. We outline how our procedure can

be used to obtain operators in the noncommutative theory which are holographically dual

to supergravity modes.
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1. Introduction and summary

In noncommutative gauge theory, space and color space are intertwined. As a result

there are no local position space gauge invariant observables. However since the theories

typically have translation invariance there are such operators with definite momentum.

These are open Wilson lines, constructed by Ishibashi, Iso, Kawai and Kitazawa (IIKK)

[1]. Consider a noncommutative Yang-Mills (NCYM) theory in d+1 = p+2n+1 space-time

dimensions with the noncommutativity matrix θAB given by

θAB = θij (A, B) = (i, j) i, j = 1 · · · 2n

θAB = 0 otherwise
(1.1)

In the following we will use i, j = 1, · · ·2n to label noncommutative directions, which

are taken to be space-like, µ, ν = 1, · · ·p label the spatial commutative directions and

A, B = 1, · · ·p + 2n + 1 to label all directions collectively. An open Wilson line W (k, C)

along some open contour C given by yA(λ) with momenta kA is defined in the star product

language as

W (k, C) =

∫

dd+1x tr [P⋆exp[i

∫

C

dλ
dyA(λ)

dλ
AA(x + y(λ))] ⋆ eikBxB

] (1.2)

The trace in (1.2) is over the nonabelian gauge group. λ is a parameter that increases

along the path. In our conventions the path ordering is defined so that points at later

values of λ occur successively to the left. Note also that all products in (1.2), including

those in the path ordered exponential, are star products. The open Wilson line (1.2) is

gauge invariant if the end points of the contour are separated by an amount ∆xA where

∆xA = kBθBA. (1.3)

Clearly the separation is nonzero only along the noncommutative directions. When θ = 0

this is just the fourier transform of an ordinary Wilson loop with a marked point. For

θ 6= 0 one can perform a fourier transform along the commutative directions to obtain an

operator which has a definite marked point in the commutative directions and a definite

momentum along the noncommutative directions. Various aspects of open Wilson lines

have been discussed in [2]. In [3] it was argued that these operators (with a modification

to include scalar fields) form a complete set (in fact an overcomplete set) of operators of

the theory made from gauge fields and scalars. They can be interpreted as macroscopic

fundamental strings [4].
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In [5] gauge invariant operators were written down which reduce to local gauge invari-

ant operators in the commutative limit. These are defined as

Õ(k) =

∫

dd+1x tr O(x + k · θ) ⋆ P⋆ exp[i

∫ 1

0

dλ kAθABAB(x + k · θ λ)] ⋆ eik·x. (1.4)

Note, the contour is now a straight path transverse to the momentum along the direction

ηA = kBθBA. (1.5)

O(x+k · θ) is a local operator constructed from the fields which is inserted at the endpoint

of the path, and

(k · θ)A ≡ kBθBA. (1.6)

The path ordered Wilson loop factor above will be referred to as the ”tail” of the op-

erator. It clearly extends in the noncommutative direction. This represents a deformation

of the fourier transforms of local gauge invariant operators to the noncommutative theory.

Correlation functions of these operators have been calculated in [5] yielding interesting re-

sults - in particular a universal behavior at high momenta. It is also possible to construct

other operators, e.g. open wilson lines with self intersections and open wilson lines ending

with a closed wilson loop [6], and the operators (1.4) are in fact special cases of the latter.

Recently, a smeared version of the operator (1.4) has been introduced in [7]. This

relates to the situation where the operator O(x) is itself a product of operators

O(x) =
n

∏

α=1

Oα(x) (1.7)

Then the operators Oα can be smeared over the Wilson tail

Ô(k) =

∫

dd+1x

∫ n
∏

α=1

dτα P∗ tr [

n
∏

α=1

Oα(xi + θjikjτα)Wt(k, A, φ, x)] ⋆ eikix
i

(1.8)

where Wt denotes the Wilson tail

Wt(k, A, φ, x) = exp[i

∫ 1

0

dλ kAθABAB(x + k · θ λ)] (1.9)

For normal p-branes without B fields on them, coupling to a linearized supergravity

background yields a natural set of gauge invariant operators of the worldvolume (p + 1)-

dimensional gauge theory. The same should be true with B fields and should therefore
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naturally lead to a set of gauge invariant operators of the noncommutative gauge theory,

as emphasized in [8]. Such couplings are useful in various contexts, e.g. absorption or

Hawking radiation 4 [9] or discovery of expanded brane configurations in the presence of

backgrounds [10]. A reasonably exhaustive set of such couplings have been obtained by

matrix theory techniques in [11] and from T-duality consistencies in [10].

While it is obvious that these gauge invariant operators couple to general closed string

modes, so far it has not been possible to determine in a precise fashion which operator

couples to which supergravity mode. In this paper we propose a way to do this. We use the

construction of noncommutative gauge theories from ordinary U(∞) gauge theories in lower

dimensions or matrix models [12] [1] [2] [13] [14] [15], which was used to write down these

operators in the first place [1]. We propose that once we know the linearized couplings of a

set of ordinary Dp branes to supergravity backgrounds, we can use the above construction

to find the couplings of these backgrounds to noncommutative D(p + 2n) branes with

noncommutativity in 2n of the directions. These operators turn out to be exactly of the

type (1.8) constructed in [7].

There is another way one could obtain the couplings to noncommutative branes. One

can, by direct calculation, obtain these operators by considering the coupling of a single

closed string with several open strings in the presence of a nonzero B field and express

them in terms of an “ordinary” gauge field fµν . For example for a single noncommutative

brane one may take the coupling given by the DBI-WZ action in an arbitrary background

written in terms of ordinary gauge fields. On the other hand, the gauge field fµν is related

to the noncommutative gauge field Fµν by the Seiberg-Witten map [16]. Using this map

one can in principle obtain the operators in terms of the noncommutative gauge fields Fµν .

One would, of course, get an infinite series and any finite truncation would not be gauge

invariant under noncommutative gauge transformations. Furthermore the Seiberg-Witten

map is not known to all orders. Nevertheless one may carry out this procedure in an

expansion in powers of the noncommutative gauge field Aµ. This has been carried out for

the DBI action in [17] where it has been argued that the answer correctly reproduces the

simplest amplitudes involving open and closed strings obtained in [18] and [17].

In our proposal the operators are obtained directly in terms of the noncommutative

gauge fields and are gauge invariant by construction. However, the answer, when expanded

4 For absorption/radiation by black holes the coupling is sometimes to effective theories rather

than fundamental brane theories
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in powers of Aµ, should agree with the answer obtained via ordinary gauge fields and the

Seiberg-Witten map. As a concrete check of our proposal we carry out this comparison

explicitly for the dilaton coupling to noncommutative branes. A nonabelian version of

the Dirac-Born-Infeld action coupled to backgrounds was discussed in [10] [11] [19]. We

assume this form for the lower dimensional brane used to construct the higher dimensional

noncommutative brane. We show that the resulting operator is identical, to second order

in the noncommutative gauge potential, to the one obtained from the DBI action written in

terms of ordinary gauge fields and transformed by the Seiberg-Witten map. For simplicity,

we do the calculation where we have a single euclidean noncommutative (2n − 1) brane

which is obtained from the action of an infinite number of D-instantons (in DBI form).

However the calculation may be easily generalized to lorentzian branes (with magnetic

type B fields on them). Extension of our results to arbitrary number of noncommutative

branes requires a solution to the Seiberg-Witten map for nonabelian gauge fields.

The solution to the Seiberg-Witten map yields an interesting structure : the result

appears in terms of a “generalized star product” which are commutative but non-associative

[17]and a triple product [20]. These generalized products therefore appear in the open-

closed string couplings as well. The same generalized products appear in one loop effective

actions of NCYM theories [21] [22] and in the study of anomalies [23]. Recently it has been

shown [20],[7] that these generalized products also appear in the expansion of the open

Wilson lines considered in [1] - [6]. Our result therefore provides an explanation as to why

the same structure appears in open-closed interactions as well in the gauge invariant open

Wilson lines 5.

Gauge invariant operators also appear in the context of holography. The states created

by such operators would have a dual description as normal modes in the dual supergravity

background. It turns out that the asymptotic geometry for the p + 2n + 1 dimensional

non-commutative theory is identical to that for the p + 1 dimensional ordinary theory at

a particular point in the Coulomb branch where the p-branes are spread out uniformly

along the 2n directions. This is in fact the dual manifestation of the relationship between

commutative and noncommutative Yang-Mills theories discussed above [24].This connec-

tion may be possibly used to tackle the problem of mode mixing in such supergravity

backgrounds. We do not have definitive results about this at present.

5 In [17] it was proposed that to obtain the coupling of a mode to a noncommutative brane (in

the DBI approximation) one has to first write down the usual coupling, replace ordinary products

by generalized star products and then use the Seiberg-Witten map. We have not been able to see

why this prescription is correct.
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2. Noncommutative Yang-Mills from lower dimensional ordinary Yang-Mills

In this section we review how noncommutative Yang-Mills theories are obtained from

lower dimensional ordinary U(∞) Yang Mills theories. This is how how space-time emerges

in Eguchi-Kawai models [25], particularly in its “twisted” version, [26] and how branes

arise in matrix models [27]. In modern Matrix theory, both of the BFSS [28] as well as

the IKKT type [29] branes arise in a similar way [30]. This has led to the discovery of

noncommutativity in string theory [31] and has been useful in providing valuable insights

[32][16]. Several useful aspects of this connection are contained in [1] [2] [13] [33] [34] [35].

We will use the framework of [12] and [15].

Consider a U(∞) ordinary gauge theory in (p + 1) dimensions with the usual gauge

fields Aµ(ξ) , µ = 1, · · ·p + 1 and (9 − p) scalar fields XI(ξ), I = 1, · · · (9 − p) in the

adjoint representation, together with their fermionic partners. In this paper we will restrict

ourselves to only bosonic components of operators, consequently, fermions will not enter

the subsequent discussion. The bosonic part of the action is

S = Tr

∫

dp+1ξ[FµνF
µν + DµXIDµXJgIJ + [XI ,XJ ][XK ,XL]gIKgJL] (2.1)

where gIJ are constants and the other notations are standard. Boldface has been used to

denote ∞×∞ matrices.

The action has a nontrivial classical solution

Xi(ξ) = xi i = 1, · · ·2n

Xa = 0 a = 2n + 1 · · ·9 − p

Aµ = 0

(2.2)

where the constant (in ξ) matrices xi satisfy

[xi,xj ] = iθijI (2.3)

The antisymmetric matrix θij has rank p and I stands for the unit ∞ ×∞ matrix. The

inverse of the matrix θij will be denoted by Bij

The idea is then to expand the various fields as follows.

Ci = BijX
j = pi + Ai

Xa = φa

Aµ = Aµ

(2.4)
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where

pi = Bijx
j (2.5)

We will expand any matrix O(ξ) as follows

O(ξ) =

∫

d2nk exp[iθijkipj] O(k, ξ) (2.6)

where O(k, ξ) are ordinary functions. Regarding these O(k, ξ) as fourier components of a

function O(x, ξ), where xi are the coordinates of a 2n dimensional space we then get the

following map between matrices and functions.

O(ξ) → O(x, ξ)

[pi,O(ξ)] = i∂iO(x, ξ)

TrO(ξ) =
1

(2π)n
[Pf B]

∫

d2nx O(x, ξ)

(2.7)

The product of two matrices O1(ξ) and O2(ξ) is then mapped to a star product

O1(ξ)O2(ξ) → O1(x, ξ) ∗ O1(x, ξ) (2.8)

where

O1(x, ξ) ∗ O2(x, ξ) = exp [
θij

2i

∂2

∂si∂tj
] O1(x + s, ξ)O2(x + t, ξ) |s=t=0 (2.9)

A quick way to see this is to consider the operators

O(k) = exp [iθijkipj ] (2.10)

which form a complete basis. Then the commutation relations of xi and hence pi show

O(k)O(k′) = e−
i
2
θijkik

′

j O(k + k′) (2.11)

With these rules, one can easily verify

Fµν → ∂µAν − ∂νAµ − iAµ ∗ Aν + iAν ∗ Aµ ≡ Fµν

DµXi → θij(∂µAj − ∂jAµ − iAµ ∗ Aj + iAj ∗ Aµ) ≡ θijFµj

DµXa → ∂µφa − iAµ ∗ φa + iφa ∗ Aµ ≡ Dµφa

[Xi,Xj] → iθikθjl(Fkl − Bkl)

[Xi,Xa] → iθij(∂jφ
a − iAj ⋆ φa + iφa ⋆ Aj) ≡ iθijDjφ

a

(2.12)
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where we have defined

Fij = ∂iAj − ∂jAi − iAi ⋆ Aj + iAj ⋆ Ai (2.13)

In the above equations the quantities appearing in the right hand side are ordinary func-

tions of (x, ξ).

The action (2.1) becomes the action of U(1) noncommutative gauge theory in the p+

2n+1 dimensions spanned by x, ξ. The noncommutativity is entirely in the 2n directions.

In addition to the gauge fields we also have (9 − p − 2n) “adjoint” scalars φa. The gauge

field appears in the combination

FAB − BAB (2.14)

where BAB is an antisymmetric matrix whose (ij) components are Bij and the rest zero.

This corresponds to a specific choice of “description” in the NCYM theory [15]. Further-

more the upper and lower indices of various quantities some contracted with the “open

string metric” whose components in the nocommutative directions are

Gij = −θikgklθ
lj (2.15)

The componments of the open string metric in the commutative directions are the same as

the original metric gab. Finally the coupling constant which appears in front is the open

string coupling Gs which is related to the closed string coupling gs by

Gs = gs(
det(G − B)

det(g + B)
)

1

2 = gs(
det B

det g
)

1

2 (2.16)

It may be also easily verified that

1

G − B
= −θ +

1

g + B
(2.17)

(Recall that θ−1 = B as matrices.)

It is straightforward to extend the above construction to obtain a nonabelian noncom-

mutative theory. The classical solution which one starts with is now

Xi(ξ) = xi ⊗ IM (2.18)

where IM denotes the unit M × M matrix. Now the various ∞ × ∞ matrices map on

to M × M matrices which are functions of x, in addition to ξ. With this understanding
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the formulae above can be almost trivially extended. The star product would now include

matrix multiplication and the map for the trace becomes

TrO(ξ) =
1

(2π)n
[Pf B]

∫

d2nx tr O(x, ξ) (2.19)

where tr now denotes trace over M × M matrices. Instead of obtaining a U(1) noncom-

mutative theory one now obtains a U(m) noncommutative theory.

Finally the expression for the open Wilson line (1.2) is easily seen to be [1]

W (C, k) =

∫

dp+1ξ LimM→∞ Tr [
M
∏

n=1

Uj ] eikµξµ

Uj = exp [i~C · (~∆d)n]

(2.20)

where ∆dn denotes the n-th infinitesimal line element along the contour C. The momentum

components kµ along the commutative directions appear explicitly in (2.20), while the

components along the noncommutative directions ki are given by

ki = Bjid
j (2.21)

where dj are the components of the vector

~d =
M
∑

n=1

~∆d (2.22)

Operators with straight Wilson line tails given by (1.4) are similarly represented by

O(k) =

∫

dp+1ξ eikµξµ

Tr [eikiX
i O(X,A, ξ)] (2.23)

3. Branes in supergravity backgrounds

Consider a large number of coincident p branes with no B field in the presence of a

weak supergravity background. Let us denote a supergravity mode in momentum space by

Φ(kI , kµ) where kµ denotes the momentum along the brane and kI denotes the momentum

transverse to the brane. Let XI denote the transverse coordinate and Aµ the gauge field

on the brane. Then in the brane theory, the transverse coordinates are represented by

scalar fields XI(ξ). Suppose a linearized coupling of the mode to the set of branes is given

by

Φ(kµ, kI)

∫

dp+1ξ eikµξµ

Tr [eikIX
I Oφ(X,A, ξ)] (3.1)
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Such operators can be derived by various methods, for example by using T-duality on Ma-

trix Theory results [11]. Note, this is a coupling to an operator quite similar to (2.23). The

only difference is that among the XI ’s some of them, Xa are expanded around the trivial

solution, while the Xi are expanded around the nontrivial solution xi. A straightforward

extension of the manipulations performed in [1] allows us to rewrite this in the language

of functions and star products. This leads to the generalization of the Wilson line given

in [3]. The final expression for the coupling of the same supergravity mode to a set of M

noncommutative (p + 2n + 1) branes

Sint = Φ(k)

∫

dp+1ξ d2nx

(2π)n
(PfB) eikµξµ

tr [Oφ(x + k · θ, ξ) ⋆ P⋆(Wt(k, A, φ)) ⋆ eikix
i

]

Wt(k, A, φ) = exp[i

∫ 1

0

dλ kiθ
ijAj(x + η(λ)) + i

∫ 1

0

dλ kaφa(x + η(λ))]

(3.2)

where ηi(λ) = θjikjλ. The operator Oφ(x, ξ) is obtained from Oφ by the mapping discussed

in the previous section. In the rest of the paper we will set ka = 0 for simplicity, so

that the supergravity mode has no momentum in directions transverse to the resulting

noncommutative brane. A nonzero ka can be restored easily using the above formula.

The coupling to the branes is, however, not quite given by (3.1) 6. It was found in

[11] that the trace appearing in (3.1) is in fact a symmetrized trace defined as follows 7.

The operator Oφ(X,A, ξ) is in general a composite operator made out of field strengths,

Fµν , the covariant derivatives of the scalar fields DµXI and [XI , XJ ]. That is

Oφ(X,A, ξ) =

n
∏

α=1

Oα(X,A, ξ) (3.3)

where each of the Oα denotes a Fµν , DµXI or a [XI , XJ ]. Then imagine expanding the

exponential in eik·X in (3.1). For some given term in the exponential we thus have a

product of a number of X’s and Oα’s. Finally we symmetrize these various factors of X’s

and Oα’s and average. The resulting symmetrized trace will be denoted by the symbol

“STr” below. The coupling is then of the form

Φ(kµ, kI)

∫

dp+1 ξ eikµξµ

STr [eikIX
I

n
∏

α=1

Oα(X,A, ξ)] (3.4)

6 Some of the arguments in this section arose out a conversation with M. van Raamsdonk.
7 A similar symmetrized trace appears in Tsyetlin’s prescription for the nonabelian DBI action

[36]
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Following the same steps as above, it is straightforward to write down the corresponding

operator in the star product language. Then the effect of symmetrized trace is to place

these various operators Oα along the path C defining the Wilson line and performing a

path ordering. The final result is an operator of the form (1.8),

Sint = Φ(k)

∫

dp+1ξ d2nx

(2π)n
(PfB)

∫ n
∏

α=1

dτα eikµξµ

tr P⋆[

n
∏

α=1

Oα(xi + θjikjτα)Wt] ⋆ eikix
i

(3.5)

where Wt has been defined above. This is precisely an operator of the form (1.8).

These couplings are at the linearized level and the backgrounds produced by the branes

are ignored, which is the situation at weak string coupling. This means one can couple the

p brane to any on-shell supergravity fluctuation about flat space. We see that once this

coupling is known the coupling to the p + 2n brane is determined uniquely.

4. Generalized star products

The generalized star product is defined by

f(x) ⋆′ g(x) =
sin(∂1∧∂2

2
)

∂1∧∂2

2

f(x1)g(x2)|x1=x2=x (4.1)

and the triple product is defined by

[f(x)g(x)h(x)]∗3 = [
sin(∂2∧∂3

2 ) sin(∂1∧(∂2+∂3)
2 )

(∂1+∂2)∧∂3

2
∂1∧(∂2+∂3)

2

+ (1 ↔ 2)] f(x1)g(x2)h(x3)|x1=x2=x3=x

(4.2)

where

∂1 ∧ ∂2 = θij ∂

∂xi
1

∂

∂x
j
2

(4.3)

This ⋆′ product is symmetric in f and g and ⋆3 is invariant under all permutations of f, g

and h [20]. However

(f(x) ⋆′ g(x)) ⋆′ h(x) 6= f(x) ⋆′ (g(x) ⋆′ h(x)) (4.4)

so that it is commutative but nonassociative. Nevertheless it may be verified that

∫

dx(f(x) ⋆′ g(x)) ⋆′ h(x) =

∫

dxf(x) ⋆′ (g(x) ⋆′ h(x)) (4.5)

10



so that if the generalized star product appears in an action it does make sense. If one of

the three functions in the product [fgh]∗3 is a constant this reduces to a ⋆′ product

[A g(x)h(x)]∗3 = Ag(x) ⋆′ h(x) A = constant (4.6)

Another property of the ⋆′ product will be useful in the following [20]

θij∂if ⋆′ ∂jg = −i(f ∗ g − g ∗ f) (4.7)

As shown in [20], these generalized star products and triple products appear in the

expansion of the gauge invariant Wilson line in powers of A. This may be seen by directly

expanding the expression (1.4) or equivalently (2.23). The following identity is responsible

for the appearance of the ⋆′ product :

∫ 1

0

dσO(k)O(k′)ei(k∧k′)σ =
sin(k∧k′

2
)

k∧k′

2

O(k + k′) (4.8)

where the operators O(k) have been defined in (2.10). This leads to the identity

∫

dσei(k∧k′)σ eikx ⋆ eik′x = eikx ⋆′ eik′x (4.9)

The expansion of Õ(k) (defined in (1.4)) to second order in A is (for ka = 0)[20],

O(k) =

∫

dp+1ξ
d2nx

(2π)n
eikµξµ

(PfB)tr [O(x, ξ)+θij∂j(O⋆′Ai)+
1

2
θijθkl∂j∂l[OAiAk]∗3]⋆eikix

i

(4.10)

One would expect that at higher orders different structures will emerge.

The operators which are obtained from symmetrized traces as in (3.4) and (3.5) can

be similarly expanded in terms of generalized products [7].

In a sense the generalized star product is not a fundamentally different structure : it

appears because of the integration over the parameter σ in (4.8). If we retain this integral

the answer is always written in terms of the conventional star product. However it is more

natural to perform the σ integral to make the operator look local in position space : in

that case the ⋆′ product appears. It should be emphasized that whatever the notation, the

operator is actually nonlocal in position space - since translations are equivalent to specific

noncommutative gauge transformations [3],[5] and the operator has to be gauge invariant.

These generalized star products also appear in the explicit solution of the Seiberg

Witten map which relates an ordinary gauge field fij to the noncommutative gauge field
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Fij and the noncommutative gauge potential Ai. In a U(1) theory the map is given, upto

two powers of Ai, by [17]

fab = Fab + θkl(Ak ⋆′ ∂lFab − Fak ⋆′ Fbl) + O(A3) (4.11)

Again to higher orders the triple product appears [20]. As explained in the introduction

this leads to the apperance of these products in the closed string - open string interactions

when expressed in a power series in Ai.

Our proposal for operators which couple to supergravity modes then provides a natural

explanation why these same products also appear in the direct string amplitude calculations

of [18] and [17]. This is simply because these operators are precisely appropriate momentum

space operators with straight Wilson tails.

Our proposal also explains why the generalized star products appeared in one loop

effective action calculations [21], [22] in the first place. For usual gauge theories, this one

loop effective action for the massless fields obtained in the symmetry breaking U(N1 +

N2) → U(N1) × U(N2) can be alternatively viewed as the potential between a set of

N1 branes and another set of N2 branes separated by a distance [37] due to exchange of

supergravity modes. If the same is true for noncommutative gauge theories, generalized

products in the supergravity couplings naturally lead to their presence in the effective

action.

5. Dilaton couplings to noncommutative branes

In this section we perform a test of our proposal. We consider the coupling of the

dilaton to noncommutative branes in a DBI approximation and show that our proposal is

consistent with the opertors which would be obtained by starting out with ordinary gauge

fields and using the Seiberg Witten map.

For simplicity we consider a single noncommutative euclidean D(2n − 1) brane (with

2n dimensional worldvolume) and we will construct this from a large number N of D(−1)

branes. Following [10],[11]and [19] we will assume that the action in the presence of a

dilaton field D(x) (with all backgrounds trivial) is given by

S =
1

gs
STr e−D(XI )

√

det(δI
J − i[XI ,XK]gKJ) (5.1)
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Here, as before, XI denote all the d transverse coordinates. gIJ is a constant closed string

metric which is taken to be diagonal as well 8 and gs is the closed string coupling. The

meaning of the symmetrized trace has been explained in the previous section. As in the

previous sections we will write the background in terms of its fourier transform so that for

a given space-time momentum k the linearized coupling is

Sint =
D(k)

gs
STr eik·X

√

det(δI
J − i[XI ,XK ]gKJ) (5.2)

where D(k) is the fourier transform of D(x) The classical solution which leads to a non-

commutative (2n − 1) brane

Xi = xi i = 1 · · ·2n

Xa = 0 a = (2n + 1) + · · ·d
(5.3)

We then expand around this classical solutions as in (2.3) and (2.4). To simplify things

further we will assume that ka = 0 so that we have dependence only on X i and also set

the scalar fields to zero, φa = 0. It is trivial to repeat the following for nonzero ka and φa.

In the following we will be interested in terms upto O(A2) in the noncommutative

gauge fields. In the language of matrices we will be interested in terms which contain at

most two matrices. For such terms there is no distinction between the symmetrized trace

and ordinary trace. We will therefore replace STr in (5.2) with Tr. Using the results of

section 2, this interaction is then written in terms of noncommutative gauge fields Fij

Sint =
D(k)

gs
|
√

detB|
∫

d2nx eikx P∗[exp (i

∫

dηiAi(x + η(λ)))]
√

det(I − θ(F − B)θg)

(5.4)

where in (5.4) the quantities θ, F, B, g are written as (2n) × (2n) matrices and I stands

for the identity matrix, in a natural notation. In the following whenever these quantities

appear without indices they denote these matrices. We now use (2.15) and (2.16) to write

this in terms of the open string metric Gij and the open string coupling Gs as

Sint =
D(k)

Gs

∫

d2nx eikx P∗[exp (i

∫

dηiAi(x + η(λ)))]
√

det(G + F − B) (5.5)

Here the path used is given by (1.5) and all products are star products.

8 the diagonal nature of the closed string metric has been used to arrive at (5.1) starting from

the form of action given e.g. in [10].
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In terms of the ordinary gauge fields fij , the closed string metric and the closed string

coupling, the interaction may be read off from the standard Dirac-Born-Infeld action

S̃int =
D(k)

gs

∫

d2nx eikx
√

det(g + f + B) (5.6)

The strategy is now to express (5.6) in terms of the noncommutative gauge field Fij

using the Seiberg-Witten map in a series involving powers of the potential Ai and compare

the result with (5.5) which is also expanded in a similar fashion.

For zero momentum operators this is the comparison done in [16], where it is shown

that

1

gs

√

det(g + f + B) =
1

Gs

√

det(G − B + F ) + O(∂F ) + total derivatives (5.7)

which shows the equivalence of the two actions in the presence of constant backgrounds.

The crucial aspect of our comparison is the presence of these total derivative terms in

(5.7), which cannot be ignored if k 6= 0. We will find that these total derivative terms are

in precise agreement with similar terms coming from the expansion of the Wilson tail in

(5.5), upto O(A2).

Since we are using the DBI action, the field strengths should be really treated as

constant. In carrying out the comparison though some caution must be exercised. Since the

Seiberg-Witten map contains gauge potentials as well as field strengths a term containing

a derivative of a field strength multiplied by a gauge potential without a derivative on it,

cannot be set automatically to zero, as emphasised in [16].

5.1. O(A) comparison

First let us do the comparaison to O(Ai). To this order the Seiberg-Witten map in

(4.11) simply reduces to fij = ∂iAj − ∂jAi + O(A2). Thus it is sufficient to expand the

determinant in (5.6) to linear order in f . One obtains

S̃
(1)
int =

D(k)

gs

√

det(g + B)

∫

d2nx eikx [1 +
1

2
(

1

(g + B)
)ij(∂jAi − ∂iAj) + O(A2)] (5.8)

Using (2.16) and (2.17) this may be written as

S̃
(1)
int =

D(k)

Gs

√

det(G − B)

∫

d2nx eikx [1+
1

2
(

1

(G − B)
+θ)ij(∂jAi−∂iAj)+O(A2)] (5.9)
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We have to compare this with the expansion of the expression (5.5) to O(A). In this

expression all products are star products. To do this we can use (4.10) with the function

O being replaced by the quantity
√

det(G + F − B). To linear order in A we have

√

det(G + F − B) =
√

det(G − B)[1 +
1

2
(

1

G − B
)ij(∂iAj − ∂jAi) + O(A2)] (5.10)

The various products appearing on the left hand side of the above equation are star prod-

ucts. However to this order these collapse to ordinary products since G, B etc. are con-

stants. Also to this order one has

θij∂j(
√

det(G + F − B) ⋆′ Ai) = θij
√

det(G − B)∂jAi =
1

2

√

det(G − B)θij(∂jAi − ∂iAj)

(5.11)

Thus substituting (5.10) and (5.11) in Sint we have after using (4.8)

S
(1)
int =

D(k)

Gs

√

det(G − B)

∫

d2nxeikx [1+
1

2
(

1

(G − B)
+θ)ij(∂jAi−∂iAj)+O(A2)] (5.12)

which is exactly the same as (5.9).

Note that the term proportional to θ in (5.9) came because of the relation (2.17),

while the corresponding term in (5.12) came from the “Wilson tail” involved in the gauge

invariant operator. To this order one is sensitive only to the linear term of the Seiberg

Witten map. However the agreeement of the two derivations of the interaction term is still

nontrivial and the importance of the open Wilson line is evident.

5.2. O(A2) comparison

To next order, several points have to be remembered. First the Seiberg-Witten map

is nontrivial. Secondly, we have to be careful about where we can ignore star products and

where we can not. The strategy is the same as in the previous subsection. We expand the

expression in terms of ordinary gauge fields to the required order and reexpress the terms

using Seiberg Witten map, after using (2.17). Finally we compare the resulting expression

with the expansion of (5.5). It will be necessary to write the noncommutative gauge field

strength (2.13) in terms of ⋆′ products by using (4.7),

Fij = ∂iAj − ∂jAi + θkl(∂kAi ⋆′ ∂lAj) (5.13)
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The details of the calculation are given in the Appendix. Here we quote the final

result. The expansion of (5.6) becomes

S̃int

D(k)
=

√

det(G − B)

Gs

∫

d2nx eikx[1 +
1

2
M ijFji −

1

4
M ijFjkMklFli +

1

8
M ijFjiM

klFlk

+ θij∂jAi +
1

4
θijFjiM

klFlk +
1

2
θijMkl(∂jFlk ⋆′ Ai)

+
1

2
θijθkl(∂lFji ⋆′ Ak) +

1

8
θijFjiθ

klFkl

+
1

2
θijθkl(∂lAi ⋆′ ∂jAk) + O(A3)]

(5.14)

where we have defined

M ij = (
1

G − B
)ij (5.15)

The result is exact to all orders in θ, but to O(A2).

On the noncommutative side, (5.5) may be written as

Sint =
D(k)

Gs

∫

d2nx eikx[P (x)+θij∂j(P (x)⋆′Ai)+
1

2
θijθkl∂j∂l[P (x)Ai(x)Ak(x)]∗3]+O(A3)

(5.16)

where

P (x) =
√

det(G + F (x) − B) (5.17)

Here, in the expansion of the determinant in powers of F we can replace the star product

by ordinary products. We perform this expansion to the requisite power of A and find that

the result is in exact agreement with (5.14).

It should be possible to extend the discussion in this section can be extended to

any other mode, to include fluctuations of the φa and to Lorentzian signature. It will

be particularly interesting to study the couplings to the RR fields : these Chern-Simons

couplings for constant backgrounds have been obtained in [38] and one has to extend this

to nonconstant backgrounds using the proposal of this paper.

5.3. Higher orders

To higher order terms in A, the difference between symmetrized trace and ordinary

trace becomes important. Because of this, it is important to extend the above comparison

to higher orders. We have not performed this calculation yet.
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5.4. Other Descriptions

Let us make one comment before proceeding. Constructing the noncommutative Yang

Mills theory from the D(−1) branes leads (in the notation of [16] ) to the Φ = −B

description. One conjecture for the coupling of the Dilaton in a general description is:

Sint =
D(k)

Gs

∫

d2nx eikx P∗[exp (i

∫

dηiAi(x + η(λ)))]
√

det(G + F + Φ) (5.18)

The Φ = B description corresponds to the case with ordinary gauge field fij , closed string

metric and closed string coupling and to the dilaton coupling (5.6).

Above we showed that upto O(A2) the coupling in the Φ = −B description agreed

with that in the Φ = B case. It is interesting to note that the calculations can be repeated

for other descriptions, i.e. other values of Φ in a very straightforward fashion. One finds

that the ansatz (5.18) in other descriptions agrees with the coupling (5.6) as well, upto

O(A2). This follows in a straightforward fashion by repeating the calculation above and

noting that in the general case, (2.16) and (2.17) are replaced by

1

G + Φ
= −θ +

1

g + B
, (5.19)

and
√

det(g + B)

gs
=

√

det(G + Φ)

Gs
. (5.20)

6. Holographic duals

Gauge invariant operators also appear in the context of holography. Extending the

well known AdS/CFT correspondence [39], it has been proposed in [40][41]that noncom-

mutative gauge theories are holographic descriptions of string theories living in appropriate

backgrounds . Then the supergravity (or more generally string theory) modes should be

dual to momentum space operators, as emphasized in [41],[42],[8]. Naturally these momen-

tum space operators should be related to the set of gauge invariant operators discussed

above [3],[5],[6]. In fact for d = 3 it has been argued in [3] that the relationship between

the momentum and the extent in the noncommutative directions encoded in the defintion

of the open Wilson loop operators is visible in dual supergravity. Similarly [5] argue that

the universal large momentum behavior of the operators (1.4) is in agreement with similar

behavior in dual supergravity found in [41]. In fact supergravity predicts an interesting

crossover in the behavior of closed Wilson loops [43]
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In principle these operators are logically distinct from operators coupled to linearized

supergravity about flat space, though in many cases, they are related to the operators ob-

tained by lineraization around the background geometry[44] Moreover as argued in [11], it is

possible to obtain the correlation function of the holographically dual operators from those

of the operators obtained by coupling to linearized supergravity (around flat spacetime)

by solving the scattering problem in the full geometry.

Consider a non-commutative Yang Mills theory in p + 2n + 1 dimensions. We re-

mind the reader that in our notation, (see comments following equation (1.1)) the non-

commutativity parameter has rank 2n; p denotes the remaining spatial directions with no

noncommutativity. In the following we will define

d = p + 2n (6.1)

to save clutter in the formulae.

6.1. Dual backgrounds

The supergravity duals were discussed in [40],[41], [45], [24]. The metric in these

backgrounds are given by:

ds2 = (
r

R
)(

7−d
2

)
(

−dt2 +

p
∑

i=1

dx2
i +

2n−1
∑

i odd

hi(dy2
i + dy2

i+1)
)

+ (
R

r
)(

7−d
2

)(dr2 + r2dΩ2
8−p−2n).

(6.2)

where

r2 =

9−p
∑

i=2n+1

yiy
i (6.3)

is the radial coordinate in the 9 − p − 2n directions transverse to the brane and

hi =
1

1 + a7−d
i r7−d

a7−d
i =

b2
i

R7−dl4s

R7−d =(4π)(
7−d−2

2
)Γ(

7 − d

2
) gsNl(7−d)

s

∏

i odd

bi.

(6.4)

N above refers to the number of p+2n branes. Similarly the two-form NS field B and the

dilaton are

Bi,i+1 =
l2s
bi

a7−dr7−d

1 + a7−dr7−d
, i = {1, 3, · · · , 2n − 1}

e2φ =g2
s(

R7−d

r7−d
)(

7−d−4

2
)

∏

i odd

bi

l2s
hi

(6.5)
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Note that in (6.2) xi, i = 1, · · ·p and yi = 1, · · ·2n denote the p+2n directions parallel

to the brane. The corresponding gauge theory also lives in p + 2n space directions with

non-commutativity parameters turned on along the 2n directions, y = 1, · · ·2n. Let us now

consider what happens to the metric in the asymptotic region, air ≫ 1, i = {1, 3 · · ·2n−1}.
In this region

hi →
1

a7−dr7−d
=

R7−d

r7−d

l4s
b2
i

. (6.6)

Rescaling yi,i+1 → bi

l2s
yi,i+1 then gives (6.2)

ds2 = (
r

R
)

7−d
2

(

−dt2 +

p
∑

i=1

dx2
i

)

+ (
R

r
)

7−d
2

(

2n
∑

i=1

dy2
i + dr2 + r2dΩ2

8−p−2n

)

. (6.7)

The NS field, B, goes to constant asymptotically and the dilaton is given by

e2φ = g2
s(

R7−p

r7−p
)

3−p

2 . (6.8)

In comparison the metric and dilaton background dual to a p dimensional ordinary

gauge theory are

ds2 =H−1/2(dt2 +

p
∑

i=1

dx2
i ) + H1/2(dy2

i )

e2φ = g2
sH

3−p

2 .

(6.9)

Here, H denotes the appropriate harmonic function which in general can depend on the

9 − p transverse coordinates, yi. When the p branes are uniformly distributed in 2n of

these 9 − p transverse directions the harmonic function is given by

H =
R7−p

p ρ

r7−p

where R7−p
p = (4π)

5−p

2 Γ(
7 − p

2
)gsl

7−p
s .

(6.10)

In (6.10) ρ is the number density of p branes along the 2n directions and r is the transverse

distance in the remaining 9 − p − 2n transverse directions.

Comparing (6.7) (6.8) with (6.9) (6.10) shows that they are identical, with,

ρ =
1

(4π)n

Γ(m
2 )

Γ( 7−p
2 )

N

l4n
s

∏

i odd

bi. (6.11)

In short, asymptotically, the background (6.2) (6.5), becames identical to multicene-

terd version of the dual for an ordinary p+1 dimensional Yang Mills theory, with the branes
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distributed uniformly along 2n transverse directions. This behavior is in accord with our

description in section 2 of the non-commutative p + 2n + 1 diemsnional gauge theory as

a particular state in the p dimensional ordinary Yang Mills theory. In the N → ∞ limit,

matrices which satisfy (2.2) have eigenvalues which are uniformly distributed between −∞
and +∞. This is in agreement with what we have found above where the branes are

uniformly distributed in the 2n directions.

The discussion above implies that supergravity modes which are perturbations about

(6.2) (6.5) must asymptotically map in a one to one manner to modes about the background

(6.7) (6.8). The latter background is considerably simpler, and being the dual of the

multicentered ordinary Yang Mills theory, in some cases better understood. This simplies

the task of classifying the sugra modes in the noncommutative background.

6.2. Normal modes and dual operators

The background (6.2)(6.5) has nonzero values for several of the supergravity fields. As

a result the analysis of small fluctuations around such a background is rather complicated

and it is difficult to find normal modes which satisfy decoupled equations. On the other

hand these normal modes should be dual to independent gauge invariant operators of the

holographic theory on the boundary.

One such mode is known for supergravity duals of 3 + 1 dimensional NCYM with

noncommutativity matrix of rank 2. In the notation of (6.2) we now have p = 1, n = 1

and the noncommutativity is in the (y1, y2) direction. In that case denote the component

of the ten dimensional graviton polarization along the (t, x1) directions by htx1
(kµ; ki; ka).

We have used the notation of section 3 : kµ denotes momenta along the commutative

directions t, x1, ki, i = 1, 2 denote momenta along the noncommutative directions y1, y2

and ka, a = 1, · · ·6 denote the momenta transeverse to the three-brane which may be also

written in terms of a radial momentum along r and the angular momenta on the S5. When

ka = 0 the angular momentum along the S5 is zero and this is a decoupled mode [41].

To extract the dual operator in the gauge theory, we use the fact that the asymptotic

geometry is that of an infinite set of D1 branes along x1 which are smeared in the two

transverse directions y1, y2. In the D1 brane the operator which couples to the s-wave

graviton with polarization along (t, x1) would be given by

∫

d2ξ Tr [eikiX
i Ttx1

] (6.12)
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where Ttx1
is the operator whose trace gives the energy momentum tensor component Ttx1

.

The exponential factor gives the the operator a R-charge or equivalently momentum along

the directions y1, y2.

Such decoupled modes are, however, rare. In general it is rather difficult to find these

from the supergravity equations. The observation of the previous subsection, however,

relates this problem to a possibly easier problem of decoupling the equations around the

background of a set of lower dimensional branes with no B fields. It would be intersting

to see whether this approach is indeed fruitful.

7. Conclusions

We have proposed a definitive way to identify operators which couple supergravity

modes to noncommutative branes. These are operators smeared along straight Wilson

tails. It is gratifying that these operators involve the simplest form of nonlocality required

by gauge invariance. We have tested our proposal in a rather simple setting, viz. for an

abelian theory and in the DBI approximation. Contrary to naive expectations even this test

is rather nontrivial. We expect the couplings of supergravity modes to non-commutative

branes found in this paper to be true in general, beyond these approximations as well, since

it only relies on the construction of non-commutative branes theory from lower dimensional

non-abelian branes. It is important to check this by comparing with direct string amplitude

computations.

By the nature of our construction, we obtain the operators in the Φ = −B description

of the noncommutative gauge theory. The operators in some other description may be in

principle obtained by using the Seiberg Witten map between these two descriptions. In

fact, in the DBI approximation we have argued that the operators in any other description

may be written down by a straightforward replacement of the parameters. It is not clear

what happens beyond the DBI approximation. One possibility is to consider the Seiberg-

Witten low energy limit. In this case, one may hope to obtain the operators in some other

description - in particular the Φ = 0 description by using the Seiberg Witten map in a low

energy approximation. It would be interesting to see whether the resulting operators have

again a simple form.

One might hope that our proposal can be used to identify the operators which are

involved in the holographic map as well. Here the fact that the supergravity duals asymp-

tote to geometries which are those of lower dimensional branes smeared over some of the

directions may be helpful.
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8. Appendix

In this appendix we give the details of the calculations which lead to the result (5.14)

both from the expansion of (5.6) and (5.16).

We will use the following properties

(1) The noncommutative field strength may be written in terms of the ⋆′ product as in

(5.13).

(2) The ⋆′ product is commutative

Furthermore since we are dealing with the DBI approximation and working to only O(A2)

(3) In terms which are O(A) we have to keep the full expression for Fij as in (5.13).

However in terms which are O(A2) we can replace Fij by ∂iAj − ∂jAi.

(4) In terms which involve only the Fij with no explicit Ai we can replace the ⋆ and ⋆′

product by ordinary products.

In the following we will refer to these as rules (1)-(4) respectively.

Consider first the expansion of the integrand of (5.6), which we denote by Icom

Icom =

√

det(g + B)

gs
[1 +

1

2
N ijfji −

1

4
N ijfjkNklfli +

1

8
N ijfjiN

klflk] + O(f3) (8.1)

where we have defined

N ij = (
1

g + B
)ij (8.2)

We have to now use (2.17) to write

N ij = M ij + θij (8.3)

where M is defined in (5.15). Now use the Seiberg-Witten map to express this in terms of

Fij . In the second term of (8.1) we have to use equation (4.11) to get

1

2
N ijfji =

1

2
M ijFji +

1

2
θij [(∂jAi − ∂iAj) + θkl(∂kAj ⋆′ ∂lAi)]

+
1

2
M jiθkl(Ak ⋆′ ∂lFij − Fik ⋆′ Fjl)

+
1

2
θjiθkl(Ak ⋆′ ∂lFij − Fik ⋆′ Fjl) + O(A3)

(8.4)

In the first line we have kept the Fji as it is when it multiplies the matrix M , but have

used the expansion in terms of Ai in (5.13) when it multiplies θ. The reason will become
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clear soon. Using the observations (1)-(4) we can now write this (after some simplification)

1

2
N ijfji =

1

2
(M ijFji) + θij(∂jAi)

+
1

2
M jiθkl(Ak ⋆′ ∂lFij) +

1

2
(M jiFikθklFlj)

+
1

2
θjiθkl(Ak ⋆′ ∂lFij) +

1

2
θijθkl(∂kAj ⋆′ ∂lAi) −

1

2
θjiθklFikFjl + O(A3)

(8.5)

In the third and fourth terms of (8.1) already contain two powers of F . Thus to O(A2) we

can set fij = Fij and we get

−1

4
N ijfjkNklfli = −1

4
(M ijFjkMklFli) −

1

4
(θijFjkθklFli) −

1

2
(M ijFjkθklFli)

1

8
(N ijfji)(N

klflk) =
1

8
(M ijFji)(M

klFlk) +
1

8
(θijFji)(θ

klFlk) +
1

4
(M ijFji)(θ

klFlk)

(8.6)

Adding these various contributions and using the realation between gs and Gs in (2.15)

we get (5.14).

Now consider the expansion of the integrand of (5.16)

Inc =
1

Gs
[P (x) + θij∂j(P (x) ⋆′ Ai) +

1

2
θijθkl∂j∂l[P (x)Ai(x)Ak(x)]∗3] (8.7)

where

P (x) =
√

det(G − B + F (x)) (8.8)

In the first term of (8.7) we will need the expansion of the determinant to O(F 2), in the

second term we need the expansion to O(F ) and in the last term to O(F 0). The first term

becomes

P (x) =
√

det(G − B)[1 +
1

2
(M ijFji) −

1

4
(M ijFjkMklFli) +

1

8
(M ijFji)(M

klFlk)] (8.9)

We have replaced star products by ordinary products in accordance to our rule (4) above.

The second term in (8.7) becomes

θij∂j(P ⋆′ Ai) =
√

det(G − B)[θij∂jAi +
1

2
Mklθij(∂jFlk ⋆′ Ai)

+
1

2
Mklθij(Flk ⋆′ ∂jAi)]

(8.10)

Using rules (2)-(4) above this may be written as

θij∂j(P ⋆′ Ai) =
√

det(G − B)[θij∂jAi +
1

2
Mklθij(∂jFlk ⋆′ Ai)

+
1

4
(MklFlk)(θijFji)]

(8.11)
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Finally we consider the third term in (8.7). Here we can replace P by
√

det(G − B) since

the other terms can contribute only O(A3) terms. Then the triple product collapses to a

⋆′ product by virtue of (4.6). Using this one finds

1

2
θijθkl∂j∂l[PAiAk]∗3 =

1

2

√

det(G − B)θijθkl[∂l∂jAi ⋆′ Ak + Ai ⋆′ ∂l∂jAk

+ ∂jAi ⋆′ ∂lAk + ∂lAi ⋆′ ∂jAk]
(8.12)

Since this is already O(F 2) we can use rule (3) above and then use the rule (4) to write

1

2
θijθkl∂j∂l[PAiAk]∗3 =

√

det(G − B)[
1

2
θijθkl(∂lFji ⋆′ Ak)

+
1

8
(θijFji)(θ

klFlk) +
1

2
θijθkl(∂lAi ⋆′ ∂jAk) + O(A3)]

(8.13)

Adding the contributions (8.9),(8.10)and (8.13) and using the commutative nature of the

⋆′ product one again gets (5.14).

9. Acknowledgements

We would like to thank S. Mukhi for discussions. We thank M. van Raamsdonk for

comments about the first version of this paper, especially for pointing out the importance

of symmetrized traces in supergravity coupling to branes.

24



References

[1] N. Ishibashi, S. Iso, H. Kawai and Y. Kitazawa, Nucl. Phys. B573 (2000) 573, hep-

th/9910004.

[2] J. Ambjorn, Y. Makeenko, J. Nishimura and R. Szabo, JHEP 11 (1999) 029, hep-

th/9911041; J. Ambjorn, Y. Makeenko, J. Nishimura and R. Szabo, Phys. Lett B 480

(2000) 399, hep-th/0002158; J. Ambjorn, Y. Makeenko, J. Nishimura and R. Szabo,

JHEP 05 (2000) 023, hep-th/0004147.

[3] S.R. Das and S.J. Rey, hep-th/0008042.

[4] S.J. Rey and R. von Unge, hep-th/0007089.

[5] D. Gross, A. Hashimoto and N. Itzhaki, hep-th/0008075.

[6] A. Dhar and S.R. Wadia, hep-th/0008144.

[7] H. Liu, hep-th/0011125

[8] S.R. Das and B. Ghosh, JHEP 06 (2000) 043, hep-th/0005007.

[9] C. Callan and J. Maldacena, Nucl. Phys. B475 (1996) 645, hep-th/9602043; A. Dhar,

G. Mandal and S. wadia, Phys. Lett. 388B (1996) 51, hep-th/9605234; S.R. Das and

S. Mathur, Nucl. Phys. B478 (1996) 561, hep-th/9606185; I. Klebanov, Nucl. Phys.

B496 (1997) 231, hep-th/9702076; S. Gubser, I. Klebanov and A. Tseytlin, Nucl. Phys.

B499 (1997) 217; I. Klebanov, W. Taylor and M. van Raamsdonk, Nucl.Phys. B560

(1999) 207, hep-th/9905174.

[10] R. Myers, JHEP 9912 (1999) 022, hep-th/9910053.

[11] W. Taylor and M. van Raamsdonk, Nucl. Phys. B558 (1999) 63, hep-th/9904095; W.

Taylor and M. van Raamsdonk, Nucl. Phys. B573 (2000) 703, hep-th/9910052

[12] H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Nucl.Phys.B565

(2000) 176, hep-th/9908141

[13] N. Ishibashi, hep-th/9909176; N. Ishibashi, Nucl.Phys. B539 (1999)107, hep-th/9804163

[14] L. Cornalba and R. Schiappa, hep-th/9907211; L. Cornalba, hep-th/9909081.

[15] N. Seiberg, hep-th/0008013.

[16] N. Seiberg and E. Witten, JHEP 9909 (1999) 032, hep-th/9908142.

[17] M. Garousi, Nucl. Phys. B579 (2000) 209, hep-th/9909214

[18] S. Hyun, Y. Kiem, S. Lee and C.Y. Lee, hep-th/9909059

[19] M. Garousi and R. Myers, hep-th/0010122.

[20] T. Mehen and M. Wise, hep-th/0010204.

[21] H. Liu and J. Micheslon, hep-th/0008205

[22] D. Zanon, hep-th/0009196; A. Santambrogio and D. Zanon, hep-th/0010275

[23] F. Ardalan and N. Sadoghi, hep-th/0009233.

[24] J.X. Lu and S. Roy, Nucl.Phys. B579 (2000) 229, hep-th/9912165; R. Cai and N. Ohta,

JHEP 0003 (2000) 009, hep-th/0001213.

25

http://arXiv.org/abs/hep-th/9910004
http://arXiv.org/abs/hep-th/9910004
http://arXiv.org/abs/hep-th/9911041
http://arXiv.org/abs/hep-th/9911041
http://arXiv.org/abs/hep-th/0002158
http://arXiv.org/abs/hep-th/0004147
http://arXiv.org/abs/hep-th/0008042
http://arXiv.org/abs/hep-th/0007089
http://arXiv.org/abs/hep-th/0008075
http://arXiv.org/abs/hep-th/0008144
http://arXiv.org/abs/hep-th/0011125
http://arXiv.org/abs/hep-th/0005007
http://arXiv.org/abs/hep-th/9602043
http://arXiv.org/abs/hep-th/9605234
http://arXiv.org/abs/hep-th/9606185
http://arXiv.org/abs/hep-th/9702076
http://arXiv.org/abs/hep-th/9905174
http://arXiv.org/abs/hep-th/9910053
http://arXiv.org/abs/hep-th/9904095
http://arXiv.org/abs/hep-th/9910052
http://arXiv.org/abs/hep-th/9908141
http://arXiv.org/abs/hep-th/9909176
http://arXiv.org/abs/hep-th/9804163
http://arXiv.org/abs/hep-th/9907211
http://arXiv.org/abs/hep-th/9909081
http://arXiv.org/abs/hep-th/0008013
http://arXiv.org/abs/hep-th/9908142
http://arXiv.org/abs/hep-th/9909214
http://arXiv.org/abs/hep-th/9909059
http://arXiv.org/abs/hep-th/0010122
http://arXiv.org/abs/hep-th/0010204
http://arXiv.org/abs/hep-th/0008205
http://arXiv.org/abs/hep-th/0009196
http://arXiv.org/abs/hep-th/0010275
http://arXiv.org/abs/hep-th/0009233
http://arXiv.org/abs/hep-th/9912165
http://arXiv.org/abs/hep-th/0001213


[25] T. Eguchi and H. Kawai, Phys. Rev. Lett. 48 (1982) 1063; G. Parisi, Phys. Lett. 112B

(1982) 463; G. Bhanot, U. Heller and H. Neuberger, Phys. Lett 113B (1982) 47; D.

Gross and Y. Kitazawa, Nucl. Phys. B 206 (1982) 440; S.R. Das and S.R. Wadia,

Phys. Lett. 117B (1982) 228; S.R. Das, Rev. Mod. Phys. 59 (1987) 235.

[26] A. Gonzalez-Arroyo and M. Okawa, Phys. Rev. D27 (1983) 2387; T. Eguchi and R.

Nakayama, Phys. Lett. 122B (1983) 59; A. Gonzalez-Arroyo and C. Korthals-Altes,

Phys. Lett. 131B (1983) 396.

[27] B. deWit, J. Hoppe and H. Nicolai, Nucl. Phys B305 (1989) 135.

[28] T. Banks, W. Fischler, S. Shenker and L. Susskind, Phys. Rev. D55 (1997) 5112,

hep-th/9610043.

[29] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, Nucl. Phys. B498 (1997) 467,

hep-th/9612115.

[30] O.J. Ganor, S. Ramgoolam and W. Taylor, Nucl. Phys. B492 (1997) 191, hep-

th/9611202; T. Banks, N. Seiberg and S. Shenker, Nucl. Phys. B490 (1997) 91, hep-

th/9612157.

[31] A. Connes, M. Douglas and A. Schwarz, JHEP 9802 (1998) 003, hep-th/9711162; M.

Douglas and C. Hull, JHEP 9802 (1998) 008, hep-th/9711165.

[32] V. Schomerus, JHEP 9906 (1999) 030

[33] M. Li, Nucl. Phys. B499 (1997) 149, hep-th/9612222.

[34] I. Bars and D. Minic, hep-th/9910091

[35] L. Alvarez-Gaume and S.R. Wadia, hep-th/0006219; A.H. Fatollahi, hep-th/0007023.

[36] A. Tseytlin, Nucl. Phys. B501 (1997) 41, hep-th/9701125.

[37] M. Douglas, D. Kabat, P. Pouliot and S. Shenker, Nucl. Phys. B485 (1997) 85, hep-

th/9608024; M. Douglas and W. Taylor, hep-th/9807225; S.R. Das, JHEP 9902 (1999)

012, hep-th/9901004; S.R. Das, JHEP 9906 (1999) 029, hep-th/9905037.

[38] S. Mukhi and N. Suryanarayana, hep-th/0009101.

[39] J. Maldacena, Adv. Math. Theo. Phys. 2 (1998) 231, hep-th/9711200; S.S. Gubser,

I.R. Klebanov and A.M. Polyakov, Phys. Lett. 428B (1998) 105, hep-th/9802109; E.

Witten, Adv. Theo. Math. Phys. 2 (1998) 253, hep-th/9802150.

[40] A. Hashimoto and N. Itzhaki, Phys. Lett. B465 (1999) 142, hep-th/9907166

[41] J. Maldacena and J. Russo, JHEP 09 (1999) 025, hep-th/9908134.

[42] S.R. Das, S. Kalyana Rama and S.P. Trivedi, JHEP 03 (2000) 004, hep-th/9911137.

[43] A. Dhar and Y. Kitazawa, hep-th/0010256.

[44] See e.g. S.R. Das and S.P. Trivedi, Phys.Lett. B445 (1998) 142, hep-th/9804149; S.

Ferrara, M. A. Lled, A. Zaffaroni, Phys.Rev. D58 (1998) 105029, hep-th/9805082.;

I.Y. Park, A. Sadrzadeh and T.A. Tuan, hep-th/0010116.

[45] M. Alishalia, Y. Oz and M. M. Sheikh-Jabbari, hep-th/9909215

26

http://arXiv.org/abs/hep-th/9610043
http://arXiv.org/abs/hep-th/9612115
http://arXiv.org/abs/hep-th/9611202
http://arXiv.org/abs/hep-th/9611202
http://arXiv.org/abs/hep-th/9612157
http://arXiv.org/abs/hep-th/9612157
http://arXiv.org/abs/hep-th/9711162
http://arXiv.org/abs/hep-th/9711165
http://arXiv.org/abs/hep-th/9612222
http://arXiv.org/abs/hep-th/9910091
http://arXiv.org/abs/hep-th/0006219
http://arXiv.org/abs/hep-th/0007023
http://arXiv.org/abs/hep-th/9701125
http://arXiv.org/abs/hep-th/9608024
http://arXiv.org/abs/hep-th/9608024
http://arXiv.org/abs/hep-th/9807225
http://arXiv.org/abs/hep-th/9901004
http://arXiv.org/abs/hep-th/9905037
http://arXiv.org/abs/hep-th/0009101
http://arXiv.org/abs/hep-th/9711200
http://arXiv.org/abs/hep-th/9802109
http://arXiv.org/abs/hep-th/9802150
http://arXiv.org/abs/hep-th/9907166
http://arXiv.org/abs/hep-th/9908134
http://arXiv.org/abs/hep-th/9911137
http://arXiv.org/abs/hep-th/0010256
http://arXiv.org/abs/hep-th/9804149
http://arXiv.org/abs/hep-th/9805082
http://arXiv.org/abs/hep-th/0010116
http://arXiv.org/abs/hep-th/9909215

