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1. Introduction and summary

In noncommutative gauge theory, space and color space are intertwined. As a result
there are no local position space gauge invariant observables. However since the theories
typically have translation invariance there are such operators with definite momentum.
These are open Wilson lines, constructed by Ishibashi, Iso, Kawai and Kitazawa (ITKK)
[]. Consider a noncommutative Yang-Mills (NCYM) theory in d+1 = p+2n+1 space-time

dimensions with the noncommutativity matrix 842 given by

048 =0 (A, B)=(i,j) i,j=1---2n

948 = 0 otherwise

(1.1)

In the following we will use ¢,7 = 1,---2n to label noncommutative directions, which
are taken to be space-like, u,v = 1,---p label the spatial commutative directions and
A,B=1,---p+2n+ 1 to label all directions collectively. An open Wilson line W (k, C)
along some open contour C' given by y(\) with momenta k4 is defined in the star product

language as

dy*(\)
A

W(k,C) = /dd+1x tr [P*exp[i/(]d)\ Aalz +y(N))] eikBmB] (1.2)

The trace in ([.2)) is over the nonabelian gauge group. A is a parameter that increases
along the path. In our conventions the path ordering is defined so that points at later
values of A occur successively to the left. Note also that all products in ([[.F), including
those in the path ordered exponential, are star products. The open Wilson line ([[.2) is

gauge invariant if the end points of the contour are separated by an amount Az where
Az? = kghBA. (1.3)

Clearly the separation is nonzero only along the noncommutative directions. When 6 = 0
this is just the fourier transform of an ordinary Wilson loop with a marked point. For
6 # 0 one can perform a fourier transform along the commutative directions to obtain an
operator which has a definite marked point in the commutative directions and a definite
momentum along the noncommutative directions. Various aspects of open Wilson lines
have been discussed in [f]. In [B] it was argued that these operators (with a modification
to include scalar fields) form a complete set (in fact an overcomplete set) of operators of
the theory made from gauge fields and scalars. They can be interpreted as macroscopic

fundamental strings [f].



In [f] gauge invariant operators were written down which reduce to local gauge invari-

ant operators in the commutative limit. These are defined as

1
O(k) = /dd“x tr O(x+k-0)*P, exp[i/ A\ kA0 P Ap(x+ k-0 N« (1.4)
0

Note, the contour is now a straight path transverse to the momentum along the direction
nt = kP4, (1.5)

O(xz+k - 6) is a local operator constructed from the fields which is inserted at the endpoint
of the path, and
(k- 0)4 = kghBA. (1.6)

The path ordered Wilson loop factor above will be referred to as the "tail” of the op-
erator. It clearly extends in the noncommutative direction. This represents a deformation
of the fourier transforms of local gauge invariant operators to the noncommutative theory.
Correlation functions of these operators have been calculated in [ff] yielding interesting re-
sults - in particular a universal behavior at high momenta. It is also possible to construct
other operators, e.g. open wilson lines with self intersections and open wilson lines ending
with a closed wilson loop [{], and the operators ([[.4) are in fact special cases of the latter.

Recently, a smeared version of the operator ([.4) has been introduced in [[J. This

relates to the situation where the operator O(z) is itself a product of operators

O(r) = [ Oalw) (17)
a=1

Then the operators O, can be smeared over the Wilson tail
o = [t [ TLdr Pt ([] Oale’ + 07 ki) Wil A, g )] e (19
a=1 a=1
where W; denotes the Wilson tail
1
Wik, A, ¢, z) = exp[i/ A\ ka02BAp(z + k-0 )] (1.9)
0

For normal p-branes without B fields on them, coupling to a linearized supergravity
background yields a natural set of gauge invariant operators of the worldvolume (p + 1)-

dimensional gauge theory. The same should be true with B fields and should therefore
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naturally lead to a set of gauge invariant operators of the noncommutative gauge theory,
as emphasized in [§]. Such couplings are useful in various contexts, e.g. absorption or
Hawking radiation i [A] or discovery of expanded brane configurations in the presence of
backgrounds [IJ]. A reasonably exhaustive set of such couplings have been obtained by
matrix theory techniques in [[J]] and from T-duality consistencies in [I{].

While it is obvious that these gauge invariant operators couple to general closed string
modes, so far it has not been possible to determine in a precise fashion which operator
couples to which supergravity mode. In this paper we propose a way to do this. We use the
construction of noncommutative gauge theories from ordinary U (co) gauge theories in lower
dimensions or matrix models [[Z] ] [B] [[3] [I4] [[T], which was used to write down these
operators in the first place []. We propose that once we know the linearized couplings of a
set of ordinary Dp branes to supergravity backgrounds, we can use the above construction
to find the couplings of these backgrounds to noncommutative D(p + 2n) branes with
noncommutativity in 2n of the directions. These operators turn out to be exactly of the
type ([[.§) constructed in [{q].

There is another way one could obtain the couplings to noncommutative branes. One
can, by direct calculation, obtain these operators by considering the coupling of a single
closed string with several open strings in the presence of a nonzero B field and express
them in terms of an “ordinary” gauge field f,,. For example for a single noncommutative
brane one may take the coupling given by the DBI-WZ action in an arbitrary background
written in terms of ordinary gauge fields. On the other hand, the gauge field f,, is related
to the noncommutative gauge field F,, by the Seiberg-Witten map [[[6]. Using this map
one can in principle obtain the operators in terms of the noncommutative gauge fields F),,, .
One would, of course, get an infinite series and any finite truncation would not be gauge
invariant under noncommutative gauge transformations. Furthermore the Seiberg-Witten
map is not known to all orders. Nevertheless one may carry out this procedure in an
expansion in powers of the noncommutative gauge field A,. This has been carried out for
the DBI action in [[7] where it has been argued that the answer correctly reproduces the
simplest amplitudes involving open and closed strings obtained in [I§] and [[I7].

In our proposal the operators are obtained directly in terms of the noncommutative

gauge fields and are gauge invariant by construction. However, the answer, when expanded

4 For absorption /radiation by black holes the coupling is sometimes to effective theories rather

than fundamental brane theories



in powers of A, should agree with the answer obtained via ordinary gauge fields and the
Seiberg-Witten map. As a concrete check of our proposal we carry out this comparison
explicitly for the dilaton coupling to noncommutative branes. A nonabelian version of
the Dirac-Born-Infeld action coupled to backgrounds was discussed in [[L(] [LT] [I9]. We
assume this form for the lower dimensional brane used to construct the higher dimensional
noncommutative brane. We show that the resulting operator is identical, to second order
in the noncommutative gauge potential, to the one obtained from the DBI action written in
terms of ordinary gauge fields and transformed by the Seiberg-Witten map. For simplicity,
we do the calculation where we have a single euclidean noncommutative (2n — 1) brane
which is obtained from the action of an infinite number of D-instantons (in DBI form).
However the calculation may be easily generalized to lorentzian branes (with magnetic
type B fields on them). Extension of our results to arbitrary number of noncommutative
branes requires a solution to the Seiberg-Witten map for nonabelian gauge fields.

The solution to the Seiberg-Witten map yields an interesting structure : the result
appears in terms of a “generalized star product” which are commutative but non-associative
[[Jand a triple product [R0]. These generalized products therefore appear in the open-
closed string couplings as well. The same generalized products appear in one loop effective
actions of NCYM theories [RI]] [BZ] and in the study of anomalies [B3]. Recently it has been
shown [20],[[] that these generalized products also appear in the expansion of the open
Wilson lines considered in [[] - [B]. Our result therefore provides an explanation as to why
the same structure appears in open-closed interactions as well in the gauge invariant open
Wilson lines f.

Gauge invariant operators also appear in the context of holography. The states created
by such operators would have a dual description as normal modes in the dual supergravity
background. It turns out that the asymptotic geometry for the p + 2n + 1 dimensional
non-commutative theory is identical to that for the p + 1 dimensional ordinary theory at
a particular point in the Coulomb branch where the p-branes are spread out uniformly
along the 2n directions. This is in fact the dual manifestation of the relationship between
commutative and noncommutative Yang-Mills theories discussed above [P4].This connec-
tion may be possibly used to tackle the problem of mode mixing in such supergravity

backgrounds. We do not have definitive results about this at present.

5 In [17] it was proposed that to obtain the coupling of a mode to a noncommutative brane (in
the DBI approximation) one has to first write down the usual coupling, replace ordinary products
by generalized star products and then use the Seiberg-Witten map. We have not been able to see

why this prescription is correct.



2. Noncommutative Yang-Mills from lower dimensional ordinary Yang-Mills

In this section we review how noncommutative Yang-Mills theories are obtained from
lower dimensional ordinary U(oo) Yang Mills theories. This is how how space-time emerges
in Eguchi-Kawai models [2]], particularly in its “twisted” version, [2f] and how branes
arise in matrix models [£7]. In modern Matrix theory, both of the BFSS [P§] as well as
the IKKT type [BY] branes arise in a similar way [BQ]. This has led to the discovery of
noncommutativity in string theory [Bll] and has been useful in providing valuable insights
BIJ[LG]. Several useful aspects of this connection are contained in [[] [B] [13] [B3] B4] B3]
We will use the framework of [IJ] and [[LF].

Consider a U(co) ordinary gauge theory in (p + 1) dimensions with the usual gauge
fields A, (&) ,p = 1,---p+1 and (9 — p) scalar fields X'(¢), I = 1,---(9 — p) in the
adjoint representation, together with their fermionic partners. In this paper we will restrict
ourselves to only bosonic components of operators, consequently, fermions will not enter

the subsequent discussion. The bosonic part of the action is
S = Tr/dp+1§[FWFW + D, XIDFX7 gy + [XT, X7)[XE, X grrgrL)] (2.1)

where g7y are constants and the other notations are standard. Boldface has been used to
denote oo X co matrices.

The action has a nontrivial classical solution

X&) =x' i=1,---2n
X* =0 a=2n+1---9—p (2.2)
A,=0

where the constant (in &) matrices x* satisfy
[x', x7] = 0“1 (2.3)

The antisymmetric matrix #% has rank p and I stands for the unit oo x oo matrix. The
inverse of the matrix 6% will be denoted by B;;
The idea is then to expand the various fields as follows.
C; = B;X) = p; + A,
X = ¢p* (2.4)
A,=A,



where

pi = Byx’

We will expand any matrix O(§) as follows

O(¢) = /dznk explif“ k;p;] O(k, &)

(2.5)

(2.6)

where O(k, §) are ordinary functions. Regarding these O(k, &) as fourier components of a

function O(x, ), where 2° are the coordinates of a 2n dimensional space we then get the

following map between matrices and functions.
O(§) — O(x,¢)
[pi, O(&)] = i0:0(x,§)
TrO(¢) = [Pf B] / d*"x O(z,§)

1
(2m)"

The product of two matrices O1(§) and Oz(§) is then mapped to a star product

0:1(§)02(&) — O1(z,&) * O1(x, &)
where g
i) 62
51 osio

A quick way to see this is to consider the operators

O1(x,&) * Oz(x,§) = exp O1(x + 5,£)O2(x + t,£) |s=t=0

O(k) = exp [i0" k;p,]

(2.7)

(2.8)

(2.9)

(2.10)

which form a complete basis. Then the commutation relations of x* and hence p; show

O(k)O(K) = e~ 2" %k} O(k + &)
With these rules, one can easily verify
F, —0,A —0,A, —iA, xA, +iA, x A, =F,,
DuXi — Hij (8HAJ' — (%AH — ZAH * Aj —|— ZAJ * AH) = HijFuj
D, X% — 0,0" —iA, * ¢* +i¢p" x A, = D, 0"
(X, X7] — 007 (Fyy — Byy)
(X', XY — i (0;¢% — iA; * ¢* + i¢® x Aj) =07 D;¢*

6

(2.11)

(2.12)



where we have defined
Fij = aq,AJ — 6]141 —1A; x Aj + ZAJ * A; (213)

In the above equations the quantities appearing in the right hand side are ordinary func-
tions of (x,&).

The action (2.I)) becomes the action of U(1) noncommutative gauge theory in the p +
2n + 1 dimensions spanned by x, . The noncommutativity is entirely in the 2n directions.

b

In addition to the gauge fields we also have (9 — p — 2n) “adjoint” scalars ¢*. The gauge
field appears in the combination

Fap — Bag (2.14)

where Bsp is an antisymmetric matrix whose (ij) components are B;; and the rest zero.
This corresponds to a specific choice of “description” in the NCYM theory [I7]. Further-
more the upper and lower indices of various quantities some contracted with the “open

string metric” whose components in the nocommutative directions are
GV = —0*g;,0Y (2.15)

The componments of the open string metric in the commutative directions are the same as
the original metric g,;. Finally the coupling constant which appears in front is the open

string coupling G4 which is related to the closed string coupling g5 by

det(G — B) 1 det B 1
s — YUs = s 2.1
¢ g(det(g—i—B))2 g(detg)2 (2.16)
It may be also easily verified that
1 1
=0+ —— 2.17
G—-B N g+ B ( )

(Recall that 6= = B as matrices.)
It is straightforward to extend the above construction to obtain a nonabelian noncom-

mutative theory. The classical solution which one starts with is now
X&) =x'"® Iy (2.18)

where I; denotes the unit M x M matrix. Now the various co X oo matrices map on

to M x M matrices which are functions of z, in addition to £&. With this understanding
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the formulae above can be almost trivially extended. The star product would now include
matrix multiplication and the map for the trace becomes

1
(2m)"

TrO(¢) = [Pf B] / >z tr O(x, €) (2.19)

where tr now denotes trace over M x M matrices. Instead of obtaining a U(1) noncom-
mutative theory one now obtains a U(m) noncommutative theory.

Finally the expression for the open Wilson line ([[.9) is easily seen to be [

M
W(C, k) = / dPPE Limy oo Tr [J] U] €€

n=1

(2.20)
U; = exp [iC - (Ad),]

where Ad,, denotes the n-th infinitesimal line element along the contour C. The momentum
components k, along the commutative directions appear explicitly in (P.2(), while the

components along the noncommutative directions k% are given by
ki = Bj;d’ (2.21)

where d’ are the components of the vector
M
d=Y Ad (2.22)
n=1
Operators with straight Wilson line tails given by ([.4) are similarly represented by

O(k) = / dPHig ethe Ty [ R XD O(X A, €))] (2.23)

3. Branes in supergravity backgrounds

Consider a large number of coincident p branes with no B field in the presence of a
weak supergravity background. Let us denote a supergravity mode in momentum space by
®(kr, k) where k,, denotes the momentum along the brane and k; denotes the momentum
transverse to the brane. Let X! denote the transverse coordinate and A, the gauge field
on the brane. Then in the brane theory, the transverse coordinates are represented by
scalar fields X7 (¢). Suppose a linearized coupling of the mode to the set of branes is given
by

Bl k) [ @4 e Tr X 04X, AL€) (3.1)

8



Such operators can be derived by various methods, for example by using T-duality on Ma-
trix Theory results [[[T]. Note, this is a coupling to an operator quite similar to (.23). The
only difference is that among the X!’s some of them, X¢ are expanded around the trivial
solution, while the X’ are expanded around the nontrivial solution x*. A straightforward
extension of the manipulations performed in [[] allows us to rewrite this in the language
of functions and star products. This leads to the generalization of the Wilson line given
in [B]. The final expression for the coupling of the same supergravity mode to a set of M
noncommutative (p + 2n + 1) branes
S . —® dp+1f d* ik, " ikix®
int = (k;)/W (PEtB) e tr [Og(x + k- 0,&) » P(Wi(k, A, ) x e ]
1 N 1
Wi(k, A, 6) = expli / A\ K69 A, (2 + n(N)) + i / A\ ad®( + n(N))]

" " (3.2)
where °(\) = 67°k;\. The operator Oy (z, £) is obtained from Oy by the mapping discussed
in the previous section. In the rest of the paper we will set k, = 0 for simplicity, so
that the supergravity mode has no momentum in directions transverse to the resulting
noncommutative brane. A nonzero k, can be restored easily using the above formula.

The coupling to the branes is, however, not quite given by (B.]) B, 1t was found in
[[1] that the trace appearing in (B-]]) is in fact a symmetrized trace defined as follows i,
The operator Oy(X, A, §) is in general a composite operator made out of field strengths,
F ., the covariant derivatives of the scalar fields D, X! and [X!, X7]. That is

O4(X,A,€) = H o(X,AL€) (3.3)

where each of the O, denotes a F,,,,, DHXI or a [X?, X7]. Then imagine expanding the
exponential in e*X in (B.I). For some given term in the exponential we thus have a
product of a number of X’s and O, ’s. Finally we symmetrize these various factors of X’s
and O,’s and average. The resulting symmetrized trace will be denoted by the symbol

“STr” below. The coupling is then of the form

Bl k) [ 4 0 ST (X ] 04X, AL (3.4)

a=1

6 Some of the arguments in this section arose out a conversation with M. van Raamsdonk.
7 A similar symmetrized trace appears in Tsyetlin’s prescription for the nonabelian DBI action
54



Following the same steps as above, it is straightforward to write down the corresponding
operator in the star product language. Then the effect of symmetrized trace is to place
these various operators O, along the path C' defining the Wilson line and performing a
path ordering. The final result is an operator of the form ([[.§),

n

p+1 2n n . . . B .
Sint = © (k) / % (PB) / T dra €™ tr P Oala’ + 07 kjra) W]+ €™

i

a=1 a=1

(3.5)

where W; has been defined above. This is precisely an operator of the form ([.§).
These couplings are at the linearized level and the backgrounds produced by the branes
are ignored, which is the situation at weak string coupling. This means one can couple the
p brane to any on-shell supergravity fluctuation about flat space. We see that once this

coupling is known the coupling to the p 4+ 2n brane is determined uniquely.

4. Generalized star products

The generalized star product is defined by

sin(21492)
f(@)* g(x) = —575— f(a1)9(22)|oy=ro=s (4.1)
)

and the triple product is defined by

sin( O2N\03 ) Sin( 81N\ (02+03) )
[f(x)g(*x)h(x)]*?) = [ (81—1—282)/\83 81/\(82%1—83) + (1 A 2)] f(QZl)g(xZ)h(x?))|m1=m2=m3:m
2 2
(4.2)
where A
—p .
LNy =075 = (4.3)

This ¥ product is symmetric in f and g and %3 is invariant under all permutations of f, g
and h [BQ]. However

(f(@)*" g(2)) ¥ h(x) # f(2)* (9(z) ¥ h(x)) (4.4)
so that it is commutative but nonassociative. Nevertheless it may be verified that

/dx(f(l') ' g(x)) ¥ h(z) = /dzrff(l') ' (g(x) * h(x)) (4.5)
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so that if the generalized star product appears in an action it does make sense. If one of

the three functions in the product [fghl.s is a constant this reduces to a " product
[A g(z)h(x)]es = Ag(z) " h(x) A = constant (4.6)
Another property of the x product will be useful in the following [P0
090;f ¥ 059 = —i(f x g — g [) (4.7)

As shown in [B(], these generalized star products and triple products appear in the
expansion of the gauge invariant Wilson line in powers of A. This may be seen by directly
expanding the expression ([.4) or equivalently (B.23). The following identity is responsible

for the appearance of the «' product :

sin( 245
kNE'

2

/ 1 doO(k)O(K')e' kMo — O(k+ k') (4.8)
0

where the operators O(k) have been defined in (R.I(). This leads to the identity
/do_ei(k/\k')a eikm *eik'm _ eikm < eik'm (49)
The expansion of O(k) (defined in ([4)) to second order in A is (for k, = 0)[B0],

O(k) = / dp“f(d;Tn;;eikuﬁ“ (PfB)tr [O(x,g)+eiﬂ'aj(o*'Ai>+%9iﬂ‘9klajal [OA; Ay s]xe®™
(4.10)
One would expect that at higher orders different structures will emerge.

The operators which are obtained from symmetrized traces as in (B.4) and (B.5) can
be similarly expanded in terms of generalized products [{].

In a sense the generalized star product is not a fundamentally different structure : it
appears because of the integration over the parameter o in ([.§). If we retain this integral
the answer is always written in terms of the conventional star product. However it is more
natural to perform the o integral to make the operator look local in position space : in
that case the ' product appears. It should be emphasized that whatever the notation, the
operator is actually nonlocal in position space - since translations are equivalent to specific
noncommutative gauge transformations [B],[H] and the operator has to be gauge invariant.

These generalized star products also appear in the explicit solution of the Seiberg

Witten map which relates an ordinary gauge field f;; to the noncommutative gauge field
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F;; and the noncommutative gauge potential A;. In a U(1) theory the map is given, upto

two powers of A;, by [[7]
fab =F, + le(Ak * O F. — Fuk * Fbl) + O(Ag) (411)

Again to higher orders the triple product appears [R0]. As explained in the introduction
this leads to the apperance of these products in the closed string - open string interactions
when expressed in a power series in Aj;.

Our proposal for operators which couple to supergravity modes then provides a natural
explanation why these same products also appear in the direct string amplitude calculations
of [[§ and [[7]. This is simply because these operators are precisely appropriate momentum
space operators with straight Wilson tails.

Our proposal also explains why the generalized star products appeared in one loop
effective action calculations [BT]|, [B7] in the first place. For usual gauge theories, this one
loop effective action for the massless fields obtained in the symmetry breaking U(N; +
N3) — U(N7) x U(N32) can be alternatively viewed as the potential between a set of
N; branes and another set of Ny branes separated by a distance [B7] due to exchange of
supergravity modes. If the same is true for noncommutative gauge theories, generalized
products in the supergravity couplings naturally lead to their presence in the effective

action.

5. Dilaton couplings to noncommutative branes

In this section we perform a test of our proposal. We consider the coupling of the
dilaton to noncommutative branes in a DBI approximation and show that our proposal is
consistent with the opertors which would be obtained by starting out with ordinary gauge
fields and using the Seiberg Witten map.

For simplicity we consider a single noncommutative euclidean D(2n — 1) brane (with
2n dimensional worldvolume) and we will construct this from a large number N of D(—1)
branes. Following [[(],[[Tand [[9] we will assume that the action in the presence of a
dilaton field D(x) (with all backgrounds trivial) is given by

S = giSTr e_D(XI)\/det(5§ —i[XT, XX]gr ) (5.1)

12



Here, as before, X! denote all the d transverse coordinates. gr; is a constant closed string
metric which is taken to be diagonal as well B and gs is the closed string coupling. The
meaning of the symmetrized trace has been explained in the previous section. As in the
previous sections we will write the background in terms of its fourier transform so that for

a given space-time momentum k the linearized coupling is

D(k)

9s

Sint = STr eik’x\/det(6§ — [ XTI, XK]gk ) (5.2)

where D(k) is the fourier transform of D(x) The classical solution which leads to a non-
commutative (2n — 1) brane
X'=z" i=1--2n
(5.3)
X*=0 a=2n+1)+---d
We then expand around this classical solutions as in (2.3) and (2.4). To simplify things
further we will assume that k, = 0 so that we have dependence only on X and also set
the scalar fields to zero, ¢* = 0. It is trivial to repeat the following for nonzero k, and ¢°.
In the following we will be interested in terms upto O(4?) in the noncommutative
gauge fields. In the language of matrices we will be interested in terms which contain at
most two matrices. For such terms there is no distinction between the symmetrized trace
and ordinary trace. We will therefore replace STr in (p.3) with Tr. Using the results of

section 2, this interaction is then written in terms of noncommutative gauge fields Fj;

D(k)
gS

Sint =

|VdetB| /d%x ™ P, [exp (i/dniAi(m +n(\))] Vdet(I — 0(F — B)fg)
(5.4)
where in (p-4) the quantities 6, F), B, g are written as (2n) x (2n) matrices and I stands
for the identity matrix, in a natural notation. In the following whenever these quantities
appear without indices they denote these matrices. We now use (B.I7) and (.16) to write

this in terms of the open string metric G;; and the open string coupling G as

D(k)

Sint = Gs

/d2"x ™ P, [exp (i/dniAi(aj +n(\))] Vdet(G + F — B) (5.5)

Here the path used is given by ([.F) and all products are star products.

8 the diagonal nature of the closed string metric has been used to arrive at (b-1)) starting from

the form of action given e.g. in [[L(].
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In terms of the ordinary gauge fields f;;, the closed string metric and the closed string

coupling, the interaction may be read off from the standard Dirac-Born-Infeld action
D(k)

Sint = 0 /d%x e*® \/det(g + f + B) (5.6)

The strategy is now to express (p.6) in terms of the noncommutative gauge field F;;
using the Seiberg-Witten map in a series involving powers of the potential A; and compare
the result with (p.5) which is also expanded in a similar fashion.

For zero momentum operators this is the comparison done in [[§], where it is shown

that

—\/det (9g+f+B)= —\/det G — B+ F)+ O(0F) + total derivatives (5.7)

which shows the equivalence of the two actions in the presence of constant backgrounds.
The crucial aspect of our comparison is the presence of these total derivative terms in
(b.7), which cannot be ignored if k # 0. We will find that these total derivative terms are
in precise agreement with similar terms coming from the expansion of the Wilson tail in
(BH), upto O(A?).

Since we are using the DBI action, the field strengths should be really treated as
constant. In carrying out the comparison though some caution must be exercised. Since the
Seiberg-Witten map contains gauge potentials as well as field strengths a term containing
a derivative of a field strength multiplied by a gauge potential without a derivative on it,

cannot be set automatically to zero, as emphasised in [[§].

5.1. O(A) comparison

First let us do the comparaison to O(A;). To this order the Seiberg-Witten map in
(E11) simply reduces to f;; = 9;4; — 9;A; + O(A?). Thus it is sufficient to expand the

determinant in (b.§) to linear order in f. One obtains

1 1 iy
3 \/det (g +B) / 2 o LS () (0,40 = 04 + O] (59

Using (B.16) and (B.17) this may be written as

g _ \/d WG = B) / P e L (ot Trer ! 550704 =04, +O(42)] (59)
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We have to compare this with the expansion of the expression (5.5) to O(A). In this
expression all products are star products. To do this we can use ([.1() with the function

O being replaced by the quantity \/ det(G + F' — B). To linear order in A we have

\/det(G-l-F—B) = det(G—B)[l-l— %(ﬁ)”(@,fb —6]‘141') +O(A2)] (510)

The various products appearing on the left hand side of the above equation are star prod-
ucts. However to this order these collapse to ordinary products since G, B etc. are con-

stants. Also to this order one has

Gijaj(\/det(G + F - B) */ A1> = 0”\/ det(G — B)6]A1 = %\/ det(G — B)G”(@Al — 81A3>
(5.11)
Thus substituting (p.10) and (5.11]) in S;,: we have after using (4.8)

s D Cgk) Jdet(G — B) / d2peike [1+%(ﬁ+9)ij(ain—aiAj)+0(A2>] (5.12)

which is exactly the same as (f.9).

Note that the term proportional to 6 in (b.9) came because of the relation (P.17),
while the corresponding term in (5.12) came from the “Wilson tail” involved in the gauge
invariant operator. To this order one is sensitive only to the linear term of the Seiberg
Witten map. However the agreeement of the two derivations of the interaction term is still

nontrivial and the importance of the open Wilson line is evident.

5.2. O(A?) comparison

To next order, several points have to be remembered. First the Seiberg-Witten map
is nontrivial. Secondly, we have to be careful about where we can ignore star products and
where we can not. The strategy is the same as in the previous subsection. We expand the
expression in terms of ordinary gauge fields to the required order and reexpress the terms
using Seiberg Witten map, after using (B.17). Finally we compare the resulting expression
with the expansion of (p-). It will be necessary to write the noncommutative gauge field

strength (B-13) in terms of " products by using (f7),

Fyj = 0;A; — 0;A; + 0" (0, A; ¥ 0 A;) (5.13)

15



The details of the calculation are given in the Appendix. Here we quote the final

result. The expansion of (5.6) becomes

Sint  +/det(G—B , 1. 1. 1
5 (kt) = <G ) / d*"z et 4 G MY Eji ZM”ijMleli + gM”FjiMlelk

. 1 .. 1 ..

+070;A; + ZO”FjiMlelk + 5923Mkl(ajFlk * A
1, 1

+ iemekl(alei *' Ak) + geijielekl

+ %eijekl(alAi x 9 Ay) + O(A?)]
(5.14)

where we have defined
1

G-B
The result is ezact to all orders in 6, but to O(A?).

M = ( ) (5.15)

On the noncommutative side, (5.5) may be written as

Sint = chk) /dQ”x etk [P(m)—f—@ij@j(P(m)*’Ai)—f—%Qij@kl@j@l [P(z)A;(2) Ar(z)]3] +O(A?)
(5.16)

where
P(z) = \/det(G + F(x) — B) (5.17)

Here, in the expansion of the determinant in powers of F' we can replace the star product
by ordinary products. We perform this expansion to the requisite power of A and find that
the result is in exact agreement with (5.19).

It should be possible to extend the discussion in this section can be extended to
any other mode, to include fluctuations of the ¢* and to Lorentzian signature. It will
be particularly interesting to study the couplings to the RR fields : these Chern-Simons
couplings for constant backgrounds have been obtained in [B§] and one has to extend this

to nonconstant backgrounds using the proposal of this paper.

5.3. Higher orders

To higher order terms in A, the difference between symmetrized trace and ordinary
trace becomes important. Because of this, it is important to extend the above comparison

to higher orders. We have not performed this calculation yet.

16



5.4. Other Descriptions

Let us make one comment before proceeding. Constructing the noncommutative Yang
Mills theory from the D(—1) branes leads (in the notation of [[f ) to the ® = —B

description. One conjecture for the coupling of the Dilaton in a general description is:

Sint = chk) /d2”a: e™ P, [exp (i/dn’A z +n(N\))] Vdet(G + F + ) (5.18)

The ® = B description corresponds to the case with ordinary gauge field f;;, closed string
metric and closed string coupling and to the dilaton coupling (p-§).

Above we showed that upto O(A?) the coupling in the ® = —B description agreed
with that in the ® = B case. It is interesting to note that the calculations can be repeated
for other descriptions, i.e. other values of ® in a very straightforward fashion. One finds
that the ansatz (p.1§) in other descriptions agrees with the coupling (p-§) as well, upto
O(A?). This follows in a straightforward fashion by repeating the calculation above and
noting that in the general case, (£.16]) and (B-I7) are replaced by

1
=)+ — 1
G+ o +g-I-B (5-19)

and
det(g +B)  /det(G + ®)

s - G

(5.20)

6. Holographic duals

Gauge invariant operators also appear in the context of holography. Extending the
well known AdS/CFT correspondence [BY], it has been proposed in [AQ][f]that noncom-
mutative gauge theories are holographic descriptions of string theories living in appropriate
backgrounds . Then the supergravity (or more generally string theory) modes should be
dual to momentum space operators, as emphasized in [],[2],[§]. Naturally these momen-
tum space operators should be related to the set of gauge invariant operators discussed
above [B],[H,[f]. In fact for d = 3 it has been argued in [f] that the relationship between
the momentum and the extent in the noncommutative directions encoded in the defintion
of the open Wilson loop operators is visible in dual supergravity. Similarly [{] argue that
the universal large momentum behavior of the operators ([4) is in agreement with similar
behavior in dual supergravity found in [fI]. In fact supergravity predicts an interesting

crossover in the behavior of closed Wilson loops i3]
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In principle these operators are logically distinct from operators coupled to linearized
supergravity about flat space, though in many cases, they are related to the operators ob-
tained by lineraization around the background geometry[fi4] Moreover as argued in [[[T], it is
possible to obtain the correlation function of the holographically dual operators from those
of the operators obtained by coupling to linearized supergravity (around flat spacetime)
by solving the scattering problem in the full geometry.

Consider a non-commutative Yang Mills theory in p + 2n 4+ 1 dimensions. We re-
mind the reader that in our notation, (see comments following equation ([[1])) the non-
commutativity parameter has rank 2n; p denotes the remaining spatial directions with no

noncommutativity. In the following we will define
d=p+2n (6.1)

to save clutter in the formulae.

6.1. Dual backgrounds
The supergravity duals were discussed in [A0],[[], [E5], B4]. The metric in these

backgrounds are given by:

2n—1

T 7=d R
ds® = ()7 (- WY e+ S bt + i) + + (@ %03, ).
i=1 i odd
(6.2)
where
9—p
> vy (6.3)
i=2n+1

is the radial coordinate in the 9 — p — 2n directions transverse to the brane and

1
s 1 +al " 7-d
b2
7—d 7
a; :R7—dl§ (6.4)
Td _ g (T=d=2y o T —d (7—d) .
R =(4m) (=) g NI IT o

i odd
N above refers to the number of p+ 2n branes. Similarly the two-form NS field B and the
dilaton are
2 g7—dpT—d

a
By =52 T
WL T 4 g T Td?

2¢:gS(R_ (T=d=1) H —h

zodds

i={1,3,---,2n—1}
(6.5)
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Note that in (6.2) z;,i = 1,---pand y; = 1, - - - 2n denote the p+ 2n directions parallel
to the brane. The corresponding gauge theory also lives in p + 2n space directions with
non-commutativity parameters turned on along the 2n directions, y = 1, - - - 2n. Let us now
consider what happens to the metric in the asymptotic region, a;r > 1,7 = {1,3---2n—1}.
In this region

1 R~}

hi—= g 7a = a2 (6.6)

Rescaling yi,i+1 — 7#i,i+1 then gives (B:2)

- p R - 2n
ds* = (%)Td (—dt* + Z dz?) + (?)Td (Z dy; +dr? +r2dQ3_,_5,)- (6.7)
i=1 i=1

The NS field, B, goes to constant asymptotically and the dilaton is given by

R7—p 3—p

20 _ 2 3-p
2 = 2T (6.5)

In comparison the metric and dilaton background dual to a p dimensional ordinary
gauge theory are
ds®> =HY?(dt? + zp: dz?) + H'Y?(dy?)
i=1 (6.9)
e*® = g°H E
Here, H denotes the appropriate harmonic function which in general can depend on the
9 — p transverse coordinates, y;. When the p branes are uniformly distributed in 2n of

these 9 — p transverse directions the harmonic function is given by

g T
rip : (6.10)
5—p —
where R;_p = (4W)TF(Tp)gle_p.

In (6.10) p is the number density of p branes along the 2n directions and r is the transverse
distance in the remaining 9 — p — 2n transverse directions.
Comparing (6.7) (6-8) with (6.9) (6.10) shows that they are identical, with,

L I(3) N IT b (6.11)

- n T—p\ 74n
(4r) F(Tp)lg i odd

In short, asymptotically, the background (p.2) (f.5), becames identical to multicene-

terd version of the dual for an ordinary p+1 dimensional Yang Mills theory, with the branes
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distributed uniformly along 2n transverse directions. This behavior is in accord with our
description in section 2 of the non-commutative p 4+ 2n + 1 diemsnional gauge theory as
a particular state in the p dimensional ordinary Yang Mills theory. In the N — oo limit,
matrices which satisfy (B.2) have eigenvalues which are uniformly distributed between —oo
and 4o00. This is in agreement with what we have found above where the branes are
uniformly distributed in the 2n directions.

The discussion above implies that supergravity modes which are perturbations about
(6-2) (b.3) must asymptotically map in a one to one manner to modes about the background
(6-7) (6-8). The latter background is considerably simpler, and being the dual of the
multicentered ordinary Yang Mills theory, in some cases better understood. This simplies

the task of classifying the sugra modes in the noncommutative background.

6.2. Normal modes and dual operators

The background (f-3)(p-4) has nonzero values for several of the supergravity fields. As
a result the analysis of small fluctuations around such a background is rather complicated
and it is difficult to find normal modes which satisfy decoupled equations. On the other
hand these normal modes should be dual to independent gauge invariant operators of the
holographic theory on the boundary.

One such mode is known for supergravity duals of 3 + 1 dimensional NCYM with
noncommutativity matrix of rank 2. In the notation of (f.9) we now have p = 1,n =1
and the noncommutativity is in the (yi,y2) direction. In that case denote the component
of the ten dimensional graviton polarization along the (¢, z) directions by hiy, (ku; ki; ka)-
We have used the notation of section 3 : k, denotes momenta along the commutative
directions t, z1, k;,i = 1,2 denote momenta along the noncommutative directions 1, yo
and ky,,a =1, ---6 denote the momenta transeverse to the three-brane which may be also
written in terms of a radial momentum along r and the angular momenta on the S°. When
ke = 0 the angular momentum along the S° is zero and this is a decoupled mode [HI].
To extract the dual operator in the gauge theory, we use the fact that the asymptotic
geometry is that of an infinite set of D1 branes along x; which are smeared in the two
transverse directions 1, ¥y2. In the D1 brane the operator which couples to the s-wave

graviton with polarization along (¢, 1) would be given by

/ d2¢ Tr [e%X" Ty, ] (6.12)
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where 7;,, is the operator whose trace gives the energy momentum tensor component 73, .
The exponential factor gives the the operator a R-charge or equivalently momentum along
the directions y1, yo.

Such decoupled modes are, however, rare. In general it is rather difficult to find these
from the supergravity equations. The observation of the previous subsection, however,
relates this problem to a possibly easier problem of decoupling the equations around the
background of a set of lower dimensional branes with no B fields. It would be intersting

to see whether this approach is indeed fruitful.

7. Conclusions

We have proposed a definitive way to identify operators which couple supergravity
modes to noncommutative branes. These are operators smeared along straight Wilson
tails. It is gratifying that these operators involve the simplest form of nonlocality required
by gauge invariance. We have tested our proposal in a rather simple setting, viz. for an
abelian theory and in the DBI approximation. Contrary to naive expectations even this test
is rather nontrivial. We expect the couplings of supergravity modes to non-commutative
branes found in this paper to be true in general, beyond these approximations as well, since
it only relies on the construction of non-commutative branes theory from lower dimensional
non-abelian branes. It is important to check this by comparing with direct string amplitude
computations.

By the nature of our construction, we obtain the operators in the ® = — B description
of the noncommutative gauge theory. The operators in some other description may be in
principle obtained by using the Seiberg Witten map between these two descriptions. In
fact, in the DBI approximation we have argued that the operators in any other description
may be written down by a straightforward replacement of the parameters. It is not clear
what happens beyond the DBI approximation. One possibility is to consider the Seiberg-
Witten low energy limit. In this case, one may hope to obtain the operators in some other
description - in particular the ® = 0 description by using the Seiberg Witten map in a low
energy approximation. It would be interesting to see whether the resulting operators have
again a simple form.

One might hope that our proposal can be used to identify the operators which are
involved in the holographic map as well. Here the fact that the supergravity duals asymp-
tote to geometries which are those of lower dimensional branes smeared over some of the

directions may be helpful.
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8. Appendix

In this appendix we give the details of the calculations which lead to the result (5.19)

both from the expansion of (p-§) and (p-14).

We will use the following properties

(1) The noncommutative field strength may be written in terms of the ' product as in
(e}

(2) The +" product is commutative

Furthermore since we are dealing with the DBI approximation and working to only O(A?)

(3) In terms which are O(A) we have to keep the full expression for Fj; as in (p.I3).
However in terms which are O(A?) we can replace F;; by 0;A; — 0, A;.

(4) In terms which involve only the F;; with no explicit A; we can replace the x and '
product by ordinary products.

In the following we will refer to these as rules (1)-(4) respectively.

Consider first the expansion of the integrand of (p.§), which we denote by I.om,

\/det(g + B 1 .. 1 ... 1 ..
Icom = #[1 T QNUfji N ZNZ]fjkalf“ T gNljfjiNklflk] + O(fg) (8'1)

gs
where we have defined
g 1
NY = v 8.2
(5 (52
We have to now use (2.I7) to write
N9 = MY + 99 (8.3)

where M is defined in (5.17). Now use the Seiberg-Witten map to express this in terms of
F;;. In the second term of (BZ]]) we have to use equation ([LT1]) to get

SN fis =g MUE;; 4 J09[(0;A; — 0iA7) + 0 (0, A; ' 1A
+ %Mﬂekl(Ak * O F;j — Fy %' Fyp) (8.4)

+ %eﬂekl(Ak * O Fij — Fyp ¥ Fj) + O(A?)

In the first line we have kept the Fj; as it is when it multiplies the matrix M, but have

used the expansion in terms of A; in (p.I3) when it multiplies §. The reason will become
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clear soon. Using the observations (1)-(4) we can now write this (after some simplification)
L i Lo i ij
SNV fii =5 (MY Eyi) + 69(0;4:)

1 . 1 g
+ §M“9M(Ak * 8;Fij) + §<M]1Fik9lelj)

+ %eﬂ'iekl(Ak * O Fi;) + %eijekl(akAj * O A;) — %eﬂ‘ieleikFﬂ + O(A?)
(8.5)
In the third and fourth terms of (B]) already contain two powers of F'. Thus to O(A?) we
can set f;; = Fj; and we get

1 .. 1 - 1 .. g
—ZN” finNF fy = —Z(M”ijM’“lFli) — Z(eijke’flEi) Q(M”ij@“Fli)

SOV L) (Vi) = SOFIF) MM Fi) 4 569 F3) (04 Fu) + 5 (M Fy) (6 F)
(

1

8.6)
Adding these various contributions and using the realation between g5 and G, in (B.17)
we get (B.14).
Now consider the expansion of the integrand of (f.10)
1 iy 1 ..
I,.= G—[P(x) +60Y0;(P(x) * A;) + 50”9“@05 [P(x)A;(x)Ak(z)].s] (8.7)

where

P(x) = v/det(G — B + F(z)) (8.8)

In the first term of (B-7) we will need the expansion of the determinant to O(F?), in the
second term we need the expansion to O(F) and in the last term to O(F°). The first term

becomes

P(z) = VARG~ BI[1 + (MYE;) — J(MIFR MM ) + LMY E) (MM )] (89)

We have replaced star products by ordinary products in accordance to our rule (4) above.
The second term in (B7) becomes

y y 1 y
090;(P ' Ai) = v/AeW(G = B)[09;A; + 5 MM07 (9, Fiy #' 4:)

L (8.10)
+ §Mkl01] (Flk *' 8]142)]
Using rules (2)-(4) above this may be written as
090;(P«" A;) = \/det(G — B)[0"0;A; + iMklew(ajFlk * A s

1 y
+ (MM ) (09 F)
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Finally we consider the third term in (8.7). Here we can replace P by \/det(G — B) since

the other terms can contribute only O(A?) terms. Then the triple product collapses to a
*" product by virtue of ([.q]). Using this one finds

%eijeklajal [PA;Aklis = %\/det(G — B)0"0k 9,0, A; %' Ap + A; %' 9,05 Ay, 512)

+ ain * 01 Ay + 01 A; * 8JAk]
Since this is already O(F?) we can use rule (3) above and then use the rule (4) to write

1. 1
5070 0,01 [PA A = /det(G = B)[5070" (i Fy +' Ax)
(8.13)

. 1 ..
+ = (09 Fy) (08 Fy) + 5ewe’“(alAi * 0jA) + O(A?)]

ol

Adding the contributions (B.9),(B.10)and (B.13) and using the commutative nature of the
*" product one again gets (p-14)).
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