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Abstract

Background: Cytochrome P450s (CYP450s) are hemoproteins catalysing diverse biochemical reactions important for
metabolism of xenobiotics and synthesis of physiologically important compounds such as sterols. Therefore, they are
functionally important for survival of invading pathogens. One such opportunistic pathogen Leishmania donovani causes
visceral leishmaniasis worldwide, which is an important public health problem due to significant disease burden. The
parasite genome database, Gene DB, annotates 3 CYP450s in Leishmania, however, the functional role of cytochrome P450
enzymes in Leishmania spp. remains elusive.

Methodology/Principal Findings: A CYP450-like gene cloned from Leishmania donovani was identified as a novel CYP450,
the CYP5122A1. Upon co-localization with organelle specific markers, CYP5122A1 distribution was shown to be localized in
the promastigote ER, mitochondria and the glycosomes. Replacement of one allele of CYP5122A1 with either neomycin or
hygromycin gene by homologous recombination in Leishmania promastigotes induced substantial reduction of CYP5122A1
expression. These parasites showed impaired growth, lower mitochondrial Ca2+ and membrane potential resulting in low
ATP generation. Also, these parasites were less infective in vitro and in vivo than their wild-type counterparts as assessed by
incubation of Leishmania promastigotes with macrophages in vitro as well as through administration of parasites into
hamsters. The HKOs were more susceptible to drugs like miltefosine and antimony, but showed reduced sensitivity to
amphotericin B. Removal of two alleles of CYP5122A1 did not allow the parasites to survive. The mutant parasites showed
3.5 times lower ergosterol level as compared to the wild-type parasites when estimated by Gas chromatography/mass
spectrometry. Complementation of CYP5122A1 through episomal expression of protein by using pXG-GFP+2 vector
partially rescued CYP5122A1 expression and restored ergosterol levels by 1.8 times. Phenotype reversal included restored
growth pattern and lesser drug susceptibility.

Conclusions/Significance: In summary, this study establishes CYP5122A1 as an important molecule linked to processes like
cell growth, infection and ergosterol biosynthesis in Leishmania donovani.

Citation: Verma S, Mehta A, Shaha C (2011) CYP5122A1, a Novel Cytochrome P450 Is Essential for Survival of Leishmania donovani. PLoS ONE 6(9): e25273.
doi:10.1371/journal.pone.0025273

Editor: Mauricio Martins Rodrigues, Federal University of São Paulo, Brazil

Received April 30, 2011; Accepted August 30, 2011; Published September 23, 2011

Copyright: � 2011 Verma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the Department of Biotechnology, New Delhi, India (http://dbtindia.nic.in/index.asp) to the National Institute
of Immunology (Grant No. BT/03/033/88) and Centre for Molecular Medicine, New Delhi (Grant No. BT/PR/14549/MED/14/1291). The author SV was supported by
a fellowship from the Council of Scientific and Industrial Research (CSIR), India (Award No. 9/485(142)/05-EMR-I). The author AM was supported by fellowship from
Life Science Research Board, New Delhi (Grant No. DLS/81/48222/LSRB-169/ID/2008). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: cshaha@nii.ac.in

¤ Current address: Research and Development Unit, National Heart Centre, Singapore, Singapore

Introduction

For survival within host cells, parasites are required to eliminate

host generated oxidative stress products, maintain biosynthesis of

essential molecules and resist lethal drugs. Leishmania donovani, a

kinetoplastid parasite, causes visceral leishmaniasis (VL) in humans

and the disease remains a significant problem in the tropics due to

emergence of drug resistance [1]. This situation is compounded by

overlap of endemic regions of VL with regions of HIV infection

where the opportunistic pathogen Leishmania presents a major

problem [2]. Leishmania parasites have a digenetic life cycle where

infectious metacyclic promastigotes differentiate within the sand

fly and following transfer to the mammalian host through sandfly

bite, the parasites thrive as non-motile amastigotes within the

macrophages [1,3] Earlier studies from this laboratory and others

have shown that both the promastigote and the amastigote forms

of Leishmania donovani are sensitive to oxidative and nitrosative stress

and use specialized defense systems unique to themselves to

survive when exposed to such conditions [4–7]. In the absence of

an effective vaccine, limited chemotherapeutic drugs and growing

drug resistance, it has become important to increase the

understanding of the physiology of the Leishmania parasite to

explore for new drug targets. Although several aspects of

Leishmania cellular defense are known, the role of CYP450-like

proteins in the survival of this parasite remains to be explored.

CYP450s are hemoproteins catalysing a variety of chemical

reactions including biotransformation of drugs, bioconversion of

xenobiotics, chemical carcinogen metabolism and the synthesis of

physiologically important compounds such as sterols and fatty

acids [8]. A clear indication of CYP450 involvement in Leishmania
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survival comes from studies where CYP450 inhibitors, the azole

antifungals namely itraconazole, ketoconazole and fluconazole,

have been used as successful antileishmanial agents [9]. Azole

antifungals also cause radical parasitological cure in murine

models of Chagas’ disease, caused by a related parasite, the

Trypanosoma cruzi through inhibition of CYP51, a sterol C14 alpha-

demethylase [9–10]. Reportedly, Leishmania cell lysates catalyse

CYP450-like reactions [11]. The above studies clearly indicate a

functional role of CYP450s in kinetoplastid parasite biology;

however, no reports are available on the actual functional

involvement of these molecules. Due to their involvement in

multiple functional systems, CYP450s are potential drug targets as

shown in Mycobacterium tuberculosis [12] and are reportedly

associated with drug resistance in Candida albicans [13].

One of the important functions of CYP450s is biosynthesis of

ergosterol [14] which is the primary component of the Leishmania

membrane and is functionally linked to maintenance of structural

integrity and protection from biotic stress [15]. Therefore,

interference with ergosterol biosynthesis could result in disruption

of parasite function and molecules involved in this pathway could

serve as potential drug targets [16]. Interestingly, Leishmania can

survive altered sterol levels [17] but changes in sterol profile have

been linked to amphotericin B and fluconazole resistance [9,18].

The genome database of the kinetoplastid parasites annotate three

putative CYP450-like proteins amongst the members of the genus

Leishmania and Trypanosoma, however, functional information on

none of the three CYP450-like proteins is available which could

have important role in Leishmania survival related to drug response,

synthesis of biologically important molecules and elimination of

xenobiotics. Therefore, it is important to analyse the function of

Leishmania CYP450s to understand multiple functional aspects of

parasite physiology that contribute to cell survival and drug

resistance.

In this study, we identify CYP5122A1 as a novel CYP450 of

Leishmania donovani playing a role in several important events in

parasite function including response to drugs and the ability to

infect.

Results

CYP5122A1 is well conserved within Leishmania spp.
To probe into the function of one of the CYP450-like proteins

in Leishmania donovani, the gene was cloned using primers designed

from the sequence of its orthologue in L. major (Lmj F27.0090,

Gene DB, Wellcome Trust Sanger Institute, Hinxton, UK). The

sequence of the full length clone (Acc. No. DQ267494) was

classified by the ‘Cytochrome P450 Nomenclature Committee’

[19] as CYP5122A1 (Nelson D.R. at The Cytochrome P450

Homepage, http://drnelson.uthsc.edu/CytochromeP450.html;

personal communication). The CYP5122A1 sequence shared

close identities with CYP450–like proteins of other members of

the Leishmania spp. like Leishmania major, Leishmania infantum,

Leishmania mexicana, Leishmania braziliensis (87–98%) as well as with

the Trypanosoma spp. (50–53%). A phylogenetic tree comparing

CYP5122A1 with CYP450s from other species show Leishmania

CYP450s as a separate cluster from Trypanosoma which is the

closest neighbour, the evolutionary distance from mammals being

large (Fig. S1).

A characteristic feature of P450 superfamily is a high

conservation in their general topology and structural fold despite

low sequence similarity; however, no two CYP450s are structurally

identical [20]. The CYP5122A1 sequence showed the presence of

a transmembrane domain (TM; amino acids 38–60), a proton

transfer groove (PTC; amino acid 348–353), a motif for

stabilization of the core (SC; amino acid 418–421) and a heme

binding loop (HBL; amino acid 516–525) (Fig. 1A) that are

characteristics of CYP450 proteins. Homology modelling attempts

for CYP5122A1 on the RCSB (Research Collaboratory for

Structural bioinformatics) PDB (www.pdb.org/) server identified

several templates of CYP102 (BM-3) usable for homology

modelling of CYP5122A1. One such template 1ZOA generated

a model of CYP5122A1 spanning from 70 to 590 of 592 residues

including the active site heme binding motif containing the

characteristic P450 consensus sequence represented by Phe-Ile-

Asn-Gly-Pro-Arg-Asn-Cys-Leu-Gly (amino acids 516 to 525). The

conserved catalytic cysteine (marked by arrow), a ligand for the

heme iron, occupies position 523 (Fig. 1B, Fig. S2), in the heme

binding loop (Fig. 1A), and is exposed in a pocket just before the L

helix (Fig. 1B; Fig. S2), as is observed in all the cytochrome P450s

in general. The conserved motif for stability of the CYP450s (SC;

Fig. 1A) was represented by Glu-Thr-Leu-Arg (amino acids 418 to

421; Fig. S2) located in the helix K on the proximal side of the

heme binding domain (Fig. 1B, Fig. S2). The proton transfer

groove (PTG; Fig. 1A) containing amino acids Ala-Gly-His-Glu-

Thr-Ser (amino acids 348 to 353; Fig. S2), located on the distal

side of the heme in the central part of I-helix was close to the

substrate binding site (Fig. 1B). The overall packing quality of the

model assessed using WHATCHECK server was within normal

range (z = 21.329). Further analysis of the Ramachandran plot of

the same generated by PROCHECK, showed majority (85%) of

amino acids in the highly favourable region (Fig. S3). Therefore,

the above data shows that CYP5122A1 of L. donovani contains

CYP450 consensus sequences and shares close identity with

CYP450 proteins of both the old and the new world Leishmania

spp.

CYP5122A1 shows no major change during
differentiation of metacyclics and is located at different
subcellular locations

Parasite growth and differentiation into infective forms

(metacyclics) within the insect host can be mimicked in vitro by

culturing flagellated promastigotes [21]. To check intracellular

levels of CYP5122A1, a specific antibody raised against the most

immunodominant sequence stretch on CYP5122A1 that recog-

nized a single band in Leishmania donovani whole cell lysates was

used. When the presence of CYP5122A1 in the promastigotes and

the amastigotes was checked, both forms showed the presence of

CYP5122A1, where the total concentration of the protein

appeared to be higher in the amastigotes (Fig. 2A). As shown in

Fig. 2B, no major change in the intracellular CYP5122A1 levels

was observed during differentiation of the metacyclics with the

constitutive levels remaining fairly constant in an unsynchronized

culture (Fig. 2C, bar graph). However, when we looked at protein

levels in metacyclic parasites from logarithmic (day 3) and

stationary phase (day 5), a higher CYP5122A1 protein level was

observed in the metacyclics isolated from stationary phase cultures

(Fig. 2D, lane 2) in comparison to those isolated from log phase

cultures (Fig. 2D, lane 1).

CYP5122A1 was associated with the lipid fraction and not the

aqueous fraction of cell extracts prepared with Triton-X114

(Fig. 3A) suggesting membrane association of the protein which is

in concurrence with the presence of a membrane spanning domain

between amino acids 38–60 (Fig. 1A). Promastigotes from log

phase cultures stained with anti-CYP5122A1 and counter-stained

with BIP, an hsp70 family protein found in ER, and ER Tracker

BlueH, a dapoxyl dye that stains ER in live cells, showed co-

localization of ER and CYP5122A1 stain indicating localization of

the protein to the ER (Fig. 3B, a–e, BIP and ER Tracker blue). In

CYP5122A1, a Novel Cytochrome P450 of Leishmania
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addition, although less predominant, co-localization of

CYP5122A1 staining was also seen in the mitochondria identified

using MitoTracker RedH or glycosomes marked with glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH) (Fig. 3B, a–e, Mito-

Tracker red and GAPDH). Therefore, these observations show

that CYP5122A1 distribution is confined predominantly to the

endoplasmic reticulum and in smaller amounts to the mitochon-

dria and the glycosomes. The metacyclic forms of the parasite

were isolated and stained with anti-CYP5122A1 antibody and

anti-BIP antibody to see if the staining pattern was similar to log

phase promastigotes. Co-localization of CYP5122A1 with BIP was

observed indicating that there was no apparent difference in the

localization of the protein as cells differentiated into metacyclics

(Fig. S7).

CYP5122A1 is essential for optimal growth of the parasite
To determine the importance of CYP5122A1 in the survival of

Leishmania donovani, the CYP5122A1 encoding sequence was

disrupted by ORFs encoding for neomycin or hygromycin

resistance. Gene replacement vectors (pBSK+CYP5122A1Neo or

pBSK+CYP5122A1Hyg) were constructed such that ORFs encod-

ing neomycin/hygromycin resistance were flanked by sequences

homologous to 59 and 39 region of the target gene. These vectors

were used to transform wild-type (WT) cells where homologous

recombination resulted in one allele being replaced by the antibiotic

resistance gene and the resultant parasites had only one functional

allele of CYP5122A1 (half knockout, HKO). These parasites with

one allele of CYP5122A1 were re-transfected with the vectors

containing the second antibiotic resistance gene to obtain

replacement of the remaining allele so that parasites expressing no

CYP5122A1 could be obtained. These double knockout parasites

did not survive in culture suggesting that the gene may be essential

for parasite survival. Therefore, we used the HKOs containing one

allele of CYP5122A1 for further functional experiments. For

characterization of these HKO parasites, the successful deletion

one WT copy of the CYP5122A1 gene was confirmed by PCR with

genomic DNA of the HKOs using primers (primer positions marked

in the schematic, Fig. 4A) for neomycin (Fig. 4B, lane 2), as well as a

forward primer spanning the 59 end of the CYP5122A1 gene and

reverse primer for the neomycin (Fig. 4B, lane 5) or hygromycin

ORF (Fig. S4A (i), lane 1) and 59-hygromycin fragment (Fig. S4A (i),

lane 3). This confirmed the presence of the neomycin/hygromycin

resistance gene. To confirm the correct targeting of the replacement

construct to the CYP5122A1 locus, a forward primer was designed

from the intergenic region upstream of CYP5122A1 gene that has

not been included in the replacement construct (Primer F2 59-

GTTGCGACTTACCTTCTACGTGTG-39; Fig. 4A). Two re-

verse primers were designed, one for each allele of the half knock

out. The first reverse primer corresponded to sequences in the

antibiotic resistance marker neomycin (Neo Internal Primer, 59-

CAAGGTGAGATGACAGGAGATC-39; Fig. 4A) or the hygro-

mycin resistance marker (Hyg Internal Primer, 59-CAAGCAC

TTCCGGAATCGGGC-39) used to replace the CYP5122A1 gene

and would identify the allele that has undergone homologous

recombination. To identify the other allele, we designed a reverse

primer (Primer P2 59-CCTTCTTCCACTGCTCATCC-39;

Fig. 4A) in the region of CYP5122A1 gene that has been replaced

on the corresponding allele and hence would only amplify

fragments from the intact allele. We therefore expected amplifica-

tion with primer pair F2/P2 only (Fig. 4C, lane 1) in the WT while

the HKO parasites would give positive PCR reactivity with both

F2/P2 as well as F2/Neo Int (Fig. 4C, lanes 3 and 4) or F2/Hyg Int

(Fig. S4A (ii)).

To check the functional output of knockout of one allele, cell

extracts from WT and HKO parasites were probed with anti-

CYP5122A1 antibody to detect the extent of CYP5122A1

expression. Significantly lower amount of CYP5122A1 was

expressed in the HKOs where replacement was made with the

neomycin cassette (Fig. 4D, lane 1, Fig. 4E) and the hygromycin

cassette (Fig. S4B, lane 2; S4C) as compared to WTs in respective

blots. This knockdown was specific for CYP5122A1 because HKO

parasites did not show any down-regulation of CYP710C1, another

CYP450 gene of Leishmania donovani that was used as a CYP450

control (Fig. S4D). Protein expression was further confirmed by

comparative fluorescence microscopy where staining intensity for

CYP5122A1 was lower in HKO cells (Fig. 4F, c–d) as compared to

WTs (Fig. 4F, a–b). To rule out the possibility of apparent higher

staining due to larger size of the cell, mean fluorescence intensity per

unit area per cell was measured microscopically. Fig. 4G shows the

mean fluorescence intensity per unit area of the stained cells where

the amount of CYP5122A1 staining in the HKOs/unit area was

significantly less as compared to the WTs.

To assess if the reduced expression of CYP5122A1 compro-

mised cellular physiology, various parameters were checked in the

HKO parasites. Morphologically, the HKOs were smaller in size

than their WT counterparts at all stages of the in vitro life cycle

(Fig. 5A). The division rate of the HKO cells was substantially

Figure 1. Structural analysis of CYP5122A1. A: Protein sequence
based schematic representation of CYP450 conserved motifs in
CYP5122A1 sequence. TM, Trans-membrane domain; PTG, Proton
transfer groove; SC, Stabilization core; HBL, Heme binding loop. B: A
ribbon representation of folded CYP5122A1 protein structure generated
using SWISS-MODEL server. a-helix, coiled ribbon; b-sheet, arrow;
random coil and loop, line. The motifs shown are, stabilization of the
core (pink) in the K helix; the proton transfer groove in central part of
the I-helix, mauve; heme binding loop, purple; conserved Cys (523),
indicated by an arrow.
doi:10.1371/journal.pone.0025273.g001
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slower than the WT cells showing a slower growth curve (Fig. 5B

and Fig. S4E). HKO parasites in general were less motile unlike

the highly motile WTs. Constitutive ROS level was higher in the

HKOs as compared to WTs (Fig. 5C) when measured on various

days of cycle. Impaired mitochondrial function in the HKOs was

evident from lower mitochondrial membrane potential (DYm) and

lower ATP levels as compared to WTs (Fig. 5D and E).

Mitochondrial Ca2+, a known inducer of the generation of DYm

as well as the utilization of the ATP [22] was also lower in the

HKO parasites (Fig. 5F). As evident from the above data, reduced

expression of CYP5122A1 in the promastigotes compromised

growth and mitochondrial function.

Knockdown of CYP5122A1 compromises the parasites
ability to infect both in vitro and in vivo

Next, we sought to compare the infective abilities of the WT

and the HKO parasites to assess if lesser CYP5122A1 expression

would impair the parasites’ ability to infect. Parasites containing

the pBSK+ Neo cassette as replacement of one allele of

CYP5122A1 showed reduced infecting abilities as compared to

WT cells in terms of attachment at 2, 4 and engulfment at 6 h

(Fig. 6A–C). Similarly, parasites containing the pBSK+Hyg

cassette also showed a reduced ability to infect (Fig. S4G; %

macrophages infected, control, 7466; hygromycin HKO, 2263,

n = 3, *P#0.05). The engulfed HKO parasites were cleared within

10 h of infection as suggested by the reduction in the number of

macrophages containing internal parasites (Fig. 6B). This could be

due to clearance by the macrophage generated ROS where HKO

parasites would be more susceptible to such stress. This is further

supported by the increased death of HKO promastigotes in vitro as

compared to WTs when exposed to H2O2 (Fig. S5A). To assess the

number of metacyclics in the inoculum of the HKO parasites to

see if low number of metacyclics reduced infective abilities, peanut

agglutinin based separation was used to isolate the infective forms.

Lower numbers of metacyclics were recovered from the HKO

cultures as compared to WT cultures (Fig. 7A) suggesting lesser

differentiation if one allele of CYP5122A1 was removed. When

the total number of metacyclics in the HKO inoculum was raised

by increasing multiplicity of infection, there was a moderate

increase in the number of macrophages infected but the infection

was comparatively lower than infection achieved with the WT

parasites (Fig. S5B). To investigate if the difference in infection

rate was only due to the lesser number of metacyclics in the HKO

cultures, macrophages were infected with equal numbers of

metacyclics alone, isolated from both the WT and the HKO

cultures. The infection pattern observed was similar to that

obtained with total cellular cultures (Fig. 7B–D). This clearly

showed that the HKO parasites cultures produced fewer

metacyclics that were comparatively less efficient to infect as

compared to metacyclics isolated from WT cultures.

Subsequently, to confirm the in vitro infection data in vivo,

hamsters were used as a model system. Eight weeks after parasite

administration to adult hamsters, significant splenomegaly was

observed in animals infected with WT parasites as compared to

the spleens in hamsters infected with HKO parasites as reflected in

the comparative spleen weight (Fig. 7E). In consonance with the

above observations, microscopic counts of splenic smears from

HKO infected hamsters showed lesser number of macrophages

containing parasites whereas splenic smears from WT parasite

infected hamsters showed a large number of macrophages loaded

with parasites (Fig. 7F). This data suggested that in the absence of

full constitutive expression of CYP5122A1, the parasites demon-

strated a compromised ability to infect both in vitro and in vivo.

Knockdown of CYP5122A1 alters the parasites ability to
withstand drug pressure

In the absence of vaccines, the treatment of visceral leishmaniasis has

centred around several drugs like sodium stibogluconate (pentavalent

antimony), amphotericin B and more recently, miltefosine [23]. The

HKO parasites showed increased susceptibility to potassium antimony

tartrate (PAT) the active form of pentavalent antimony and miltefosine

(Fig. 8A–B, Fig. S4F) suggesting a role of CYP5122A1 in drug

response. Therefore, based on the aforementioned results, WT

parasites were checked for cellular level of CYP5122A1 after drug

treatment. PAT was unable to induce any change in CYP5122A1

levels (Fig. 8C, (i) and (ii) whereas miltefosine was able to induce an up-

Figure 2. Expression of CYP5122A1 in amastigotes and promastigotes of L. donovani. A: Western blot analysis of equal protein quantities
from whole cell lysates prepared from L. donovani amastigotes (A) and promastigotes (P) probed with anti-CYP5122A1 antibody. B: Western blots of
total cell lysates prepared from L. donovani promastigotes at different time points during an in vitro growth cycle, probed with anti-CYP5122A1
antibody. Loading was normalized with Tubulin–a (50 kDa). C: Bar graph; right hand y-axis represents quantitation of immunoblots shown in B, mean
6 SE, n = 3. Line graph, left hand y-axis represents the number of metacyclic parasites formed during the in vitro growth cycle. D: Western blot
analysis of whole cell lysates prepared from L. donovani metacyclic prepared from logarithmic (L) and stationary (S) phase culture probed with anti-
CYP5122A1 antibody indicating marginal up-regulation of CYP5122A1.
doi:10.1371/journal.pone.0025273.g002
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regulation of CYP5122A1 at doses of 10–40 mM (Fig. 8D, i and ii) with

maximal induction at 24 h with 20 mM of miltefosine (Fig. 8D, iii).

Multiple drugs act via generation of ROS [24–25]. ROS levels

measured after miltefosine exposure showed increased ROS in both

the WT and the HKOs, generation in the HKOs being higher

(Fig. 8E). Scavenging this ROS with the antioxidant N-acetyl cysteine

(NAC, 20 mM), resulted in a substantial reduction of cell death in the

HKOs (cell death %, control, 260.3; HKO, 3564.0; HKO+NAC,

1561.0, n = 3) suggesting that ROS generation was linked to drug

efficacy. Therefore, the above observations strongly imply that a

normal complement of CYP5122A1 is required by the Leishmania

parasite for defense against drugs.

Figure 3. Subcellular localization of CYP5122A1. A: Western blot of aqueous (Aq) and detergent (Det) phases of Triton X-114 extracts of
Leishmania promastigotes probed with anti-CYP5122A1 antibody. B: Photomicrographs of Leishmania donovani promastigotes stained with anti-
CYP5122A1 antibody and organelle specific markers. BIP & ER Tracker Blue-White DPX, ER marker; MitoTracker Red, mitochondrial marker; GAPDH,
glycosome marker. a: Nomarski; b: cells stained with anti-CYP5122A1 antibody; c: cells stained for organelle specific marker; d: merge of b and c; e:
mask of colocalization for d. Scale represents 10 mm.
doi:10.1371/journal.pone.0025273.g003
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Figure 4. Generation of CYP5122A1 half knock-outs. A: Schematic representation of replacement construct inserted into the genome with
positions of primers used for confirmation marked by arrows. 59: 59 homologous sequence; 39: 39 homologous sequence; Neomycin: ORF encoding
for resistance to neomycin; F2: forward primer designed in the intergenic region upstream of CYP5122A1 gene; P2: internal primer in CYP5122A1
encoding sequence that has been replaced in the replacement construct; NI: primer designed in the internal sequence of ORF for neomycin
resistance; Neo: primer pair amplifying neomycin resistance ORF, 59-Neo: Primers that amplify sequence spanning the 59 homologous region through
to the end of neomycin resistance ORF. B: Insertion of allelic replacement construct was confirmed by PCR for neomycin and knockout-neomycin
construct (59-Neo) using primers that span the 59 homologous sequence (Forward primer) and the neomycin gene (Reverse primer). Lane 1: positive
control (Pos) for neomycin resistance gene (plasmid); Lane 2: fragment obtained after amplification of neomycin resistance gene from genomic DNA
(G DNA); Lane 3: 1 kb DNA Ladder; Lane 4: Positive control for knock out–neomycin construct (plasmid); Lane 5, Fragment amplified for the knockout-
neomycin construct. C: Confirmation of insertion of the replacement construct at the correct locus was assessed by PCR. Lane 1: amplicons generated
from WT genomic DNA as template with primers F2/P2 indicating the presence of intact CYP5122A1 allele; Lane 2: Primers F2/NI did not generate any
amplicons with WT genomic DNA as template, showing the absence of neomycin resistance ORF; Lane 3: amplicons generated from HKO genomic
DNA as template with primers F2/P2 indicating the presence of an intact CYP5122A1 allele; Lane 4: amplicons generated from HKO genomic DNA as
template with primers F2/NI indicating the presence of insertion of neomycin resistance ORF at the correct locus. D: Western blot analysis of cell
lysates from WT and HKO parasites probed with anti-CYP5122A1 antibody showing decreased level of CYP5122A1 protein in the HKO parasites.
Loading was normalized with Tubulin–a (50 kDa). E: Bar graph representing averaged densitometric analysis of immunoblots represented in D
(mean6 SE, n = 3), * P#0.05. F: Photomicrographs of L. donovani WT (a, b) and HKO (c, d) parasites immunostained with anti-CYP5122A1. Scale,
10 mm. G: Bar graph representing mean fluorescence intensities of CYP5122A1 fluorescence in WT versus HKO parasites (mean6 SE, n = 3), * P#0.05.
doi:10.1371/journal.pone.0025273.g004
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Complementation of CYP5122A1 rescues phenotype
HKO parasites were complemented with WT copy of

CYP5122A1 through episomal expression with the pXG-GFP+2

vector (expressing the CYP5122A1 gene). Fig S6A shows the

presence of mRNA for CYP5122A1 in the transfected cells and

the presence of the fusion protein was demonstrated by western

blot and flow cytometry (Fig. S6B, C). The complementation

resulted in rescue of morphology from shorter HKO cells to

elongated forms resembling WTs (Fig. S6D). When drug

susceptibility of the HKO parasites was compared to the parasites

Figure 5. Morphology and biochemistry of HKO parasites. A: Photomicrographs of L. donovani WT and CYP5122A1 HKO cells during in vitro
growth cycle. Scale 5 mm. B: Growth pattern of WT and HKO parasites in vitro over a period of 6 days in culture. Mean 6 SE, n = 3. C: Comparison of
average constitutive levels of intracellular ROS in WT and HKO parasites. Mean 6 SE, n = 3, * P#0.05. D: DYm measured by the potentiometric probe
JC-1. Mean 6 SE, n = 3; * P#0.05. E: Bar graph showing the basal level of ATP produced by the WT and the HKO cells. Mean 6 SE, n = 3; *P#0.05. F:
Bar graph shows mitochondrial Ca2+ levels. Mean 6 SE, n = 3; * P#0.05.
doi:10.1371/journal.pone.0025273.g005
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Figure 6. In vitro infective abilities of WT and HKOs. A. Photomicrographs of macrophage infected with WT and HKO parasites for different
time points. b: 1 h; d: 2 h; f: 4 h; h: 10 h; a, c, e, g: nomarski of b, d, f, h respectively. Scale, 5 mm. P: promastigote, A: amastigote. B. Bar graph
showing percentages of macrophages infected with WT and HKO parasites. Mean 6 SE, n = 3, * P#0.05. C. Number of parasites present in infected
macrophages over a period of time. Mean 6 SE, n = 3, * P#0.05.
doi:10.1371/journal.pone.0025273.g006
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with CYP5122A1 complementation, the complemented parasites

were comparatively more resistant to drugs as compared to the

HKOs but not as efficient as WTs to resist drug induced death

(Fig. S6E). This fusion protein also localized in the ER of the

parasites as seen by a co-localization with ER Tracker blue white

DPX stain (Fig. S6F).

Changes in ergosterol occur with alterations in
CYP5122A1 levels

Since several CYP450s are functionally related to sterol

biosynthesis [26], the HKOs carrying one allele of CYP5122A1

were checked for ergosterol content. HKO parasites expressed 3.5

Figure 7. HKOs are impaired in metacyclogenesis and their ability to infect in vivo. A. Number of WT and HKO metacyclics during in vitro
life cycle represented by bar graph. Mean 6 SE, n = 3, * P#0.05. B: Bar graph showing percentages of macrophages infected with WT and HKO
metacyclics at an MOI of 1:10. Mean 6 SE, n = 3, * P#0.05. C: Number of parasites present in infected macrophages when infection was carried out
with equal number of WT and HKO metacyclics. Mean 6 SE, n = 3, * P#0.05. D: Photomicrographs of macrophage infected with metacyclics (arrows)
isolated from WT and HKO parasite cultures. Scale, 10 mm. E: Bar graph shows spleen weights of hamsters infected for 8 weeks. Control: uninfected
hamsters; WT: hamsters infected with WT parasites, HKO: hamsters infected with HKO parasites. Mean 6 SE ,n = 3, * P#0.05. F. Infected macrophage
numbers represented as the number of infectious foci per field in splenic smears from hamsters infected with WT (WT) and HKO parasites (HKO). Data
represents mean 6 SE, n = 5; in which 10 different fields were analysed. * P#0.05.
doi:10.1371/journal.pone.0025273.g007
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Figure 8. Effect of drug exposure. A: Bar graph shows percentage viability of WT and HKO parasites in response to treatment with PAT. Mean 6

SE, n = 4; * P#0.05. B: Bar graph shows percentage viability of WT and HKO parasites in response to treatment with miltefosine. Mean 6 SE, n = 4;
* P#0.05. C. Western blot analysis (i) and its quantitation (ii) of total cell lysate from Leishmania donovani promastigotes post treatment with different
doses of PAT (100 mg/mL, 200 mg/mL and 300 mg/mL) for 24 h probed with anti-CYP5122A1 antibody. D. (i) Western blot analysis of Leishmania total
cell lysate post treatment with different concentrations of miltefosine for 24 h, (ii) quantitation of immunoblots in (i); (iii) western blot analysis of
L. donovani whole cell lysate upon treatment with 20 mM miltefosine for different time periods. Mean 6 SE, n = 4. E. Levels of intracellular ROS in
response to treatment with miltefosine measured using the fluorogenic probe CMH2DCFDA. Mean 6 SE, n = 3.
doi:10.1371/journal.pone.0025273.g008
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times lesser ergosterol than the WTs as evident from GC-MS

based analysis of organic solvent extracts of the cells (Fig. 9A).

Although it is not known if the Leishmania parasite can incorporate

ergosterol in vitro, a related kinetoplastid parasite, Trypanosoma brucei

takes up sterol precursors in the host [27]. Ergosterol supplement-

ed in vitro during Leishmania culture showed an uptake of ergosterol,

and a higher HKO parasite growth rate in contrast to those

cultured without ergosterol supplementation (Fig. 9B). Presence of

a higher level of ergosterol in CYP5122A1 complemented HKO

parasites indicated CYP5122A1 involvement in maintaining

ergosterol levels, although the extent of recovery was not

equivalent to the WTs (Fig. 9A). The alteration of sterol levels

could have important implication in drug response because

ergosterol is required for action of some drugs. For example,

amphotericin B, a polyene antifungal drug also used for the

treatment of leishmaniasis [1] associates with ergosterol for its

action [28], arguably therefore, cytotoxic effect of amphotericin B

would be lesser in the HKO parasites. There was a distinct

lowering of amphotericin B cytotoxicity in CYP5122A1 HKOs in

comparison to the WTs (Fig. 9C) as evident from the percentage

viabilities. Therefore, this data clearly indicated that deficiency in

CYP5122A1 resulted in lowering of ergosterol levels consequently

making them less susceptible to amphotericin B.

Discussion

Cytochrome P450s are an important group of proteins involved

in the synthesis of physiologically active compounds, drug

Figure 9. Synthesis of ergosterol in HKO and WT parasites. A. Chromatogram of ergosterol profile from sterol extracts of WT, HKO and CMPL
strains subjected to GC-MS analysis. Insets. Table showing the approximate ergosterol content as calculated using a standard curve. TLC analysis of
ergosterol from WT (Lane 1), HKO (Lane 2) and complemented parasites (Lane 3). Rf value of ergosterol: 0.588. Standard ergosterol dilutions (Lane 4:
0.05 mg, Lane 5: 0.1 mg, Lane 6: 0.5 mg, Lane 7: 1 mg). B. Comparative growth pattern of WT and HKO parasites in vitro over a period of 6 days in
culture, in the presence and absence of ergosterol. Mean 6 SE, n = 3. C. Bar graph shows percentage viability of WT, HKO and CMPL parasites in
response to treatment with amphotericin B for 6 h. Mean 6 SE, n = 3.
doi:10.1371/journal.pone.0025273.g009
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metabolism and bioconversion of xenobiotics. Although the

parasite genome database annotations identify 3 distinct CYP450s

in Leishmania donovani, no data is available on the possible functions

of these proteins in this medically important parasite. Both from

the point of view of identifying drug targets and understanding the

physiology of the Leishmania parasite, CYP450s need to be

investigated. In this study, we report the involvement of one of

the CYP450s, the CYP5122A1 in the survival and function of the

Leishmania donovani parasite.

The sequence of the cloned CYP450 from L. donovani obtained

using primers designed from L. major showed the presence of

signature motifs of CYP450 proteins. Designated CYP5122A1 by

the CYP450 Nomenclature Committee, the sequence of the

protein showed close identity within the subgroup of Leishmania but

shared ,50% identity with the Trypanosoma sequences. For

functional studies, the free-swimming L. donovani promastigotes

were selected as an ideal model system to analyse the function of

CYP5122A1 because promastigotes differentiate into infective

metacyclics that eventually infect mammalian macrophages. No

significant alterations in the CYP5122A1 levels during in vitro life

cycle suggested constitutive levels to be sufficient for growth and

metacyclogenesis. However, the higher expression of the protein in

stationary phase metacyclics as compared to the log phase ones

implied that accumulation of this protein was coincident with

increase in infective abilities of the parasites. Interestingly, the

intracellular amastigotes also expressed a higher quantity of the

protein than promastigotes. The requirement of CYP5122A1 for

normal growth of the parasite was substantiated by impaired

differentiation and growth of the HKO parasites where one allele

of CYP5122A1 was replaced by antibiotic resistance resulting in

expression of half the amount of the protein as is present in the

WTs. When HKO parasites were transfected to episomally express

CYP5122A1 to compensate the reduced expression in them,

improved growth as compared to the HKOs further validated the

requirement of CYP5122A1 for development of the parasite. The

sharp decline in ergosterol levels in the HKO parasites coupled

with their inability to tolerate oxidative stress indicated that the

lowered ergosterol could be a reason for lesser parasite growth and

lack of resistance to drug-induced stress. While the improved

growth rate upon supplementation of ergosterol could be looked

upon as an indication of a positive role of the sterol, the HKO

parasites episomally expressing CYP5122A1 showing increased

ergosterol content and improved growth rate further confirmed

the importance of ergosterol. In another kinetoplastid parasite, the

Trypanosoma spp. alterations in ergosterol levels through enzymatic

inhibition induce reduction in cell growth [29–30]. Although

Leishmania parasites can survive with lower sterol levels, normal

supplement of sterol is required for optimal parasite function [17]

which is reinforced by this study. Since sterol biosynthesis

inhibitors are projected as attractive drug targets [16,31], lower

ergosterol in the HKOs suggest a link of CYP5122A1 to sterol

biosynthesis which makes a strong case for CYP5122A1 to be

investigated further for evaluation as a possible drug target.

Efficient ability to bind to the macrophages and invade the cells

determines the extent of infection and finally, disease pathogenesis.

Reduced infective ability of the HKO parasite when compared to

WT parasite could be due to several reasons. Firstly, reduced

infectivity could be related to lower number of infective forms

present in the HKO parasite inoculum, secondly, defects in host-

parasite membrane interaction or thirdly, a rapid parasite

clearance by host generated ROS. The lower recovery of

metacyclics from the HKO cultures as compared to the WT

cultures indicated that formation of fewer metacyclics could be a

reason for lower infectivity. Since metacyclics from HKOs were

less efficient for infection as compared to the WT metacyclics, the

quality of their membrane could also be a reason for impaired

ability to infect. Therefore, it is likely that a combination of factors

like lesser number of infective forms in a given inoculum and

defective membrane fusion events were responsible for lower

infection rate by the HKO parasites. Altered lipid composition of

membranes is known to affect membrane binding events in

general like in yeast where ergosterols play an important role in

plasma membrane fusion [32–33]. HKO parasites expressing low

ergosterol were cleared faster by the host possibly because of

compromised resistance to oxidative stress as sterols are proposed

to be crafted by natural selection as an early defense mechanism to

ROS [15]. The notion that parasites with low ergosterol are

vulnerable to oxidative stress is further supported by increased

susceptibility of these parasites to H2O2 induced stress in vitro.

Since the extent of sterol oxidation is defined by the sterol content

itself, the low ergosterol cells would be prone to increased ROS

induced damage [34].

As low CYP5122A1 levels in the HKO parasites increased

oxidative stress susceptibility, it was of interest to investigate how

the WT parasites expressing normal CYP5122A1 levels handled

drug exposure. The WT parasites resisted lower doses of

miltefosine more efficiently because they could up-regulate

CYP5122A1 in response to the drug. Altered lipid content by

the action of miltefosine [35–36] combined with increased

miltefosine-generated ROS increased the susceptibility of the

HKO parasites to the drug. It was obvious that ROS played a

major role in miltefosine induced cell death because presence of an

antioxidant during miltefosine exposure protected the cells. In

contrast, PAT treatment could not induce CYP5122A1 increase

and caused higher death. Although the difference in response

could be due to the dissimilar mode of action, these observations

lend credence to the suggestion that CYP5122A1 levels are critical

for combating drug effects. Arguably, drugs using cellular sterols to

exert their action should show impaired effects in the HKO cells

with lower ergosterol. Consistent with this view, HKO parasites

were less susceptible to amphotericin B, an anti-leishmanial drug

that requires association with membrane ergosterol for action

[9,18]. This provides an important possibility that CYP5122A1

deficiency could be linked to resistance to amphotericin B as

changes in sterol profile is known to accord amphotericin B

resistance [9,18].

The mitochondria primarily sequesters Ca2+ to stimulate and

control the rate of oxidative phosphorylation to induce mitochon-

drial permeability transition, regulate cytosolic Ca2+ pulses and

drive apoptotic cell death [22]. The partially functional mito-

chondria, with the lower DYm, low ATP production, low Ca2+

and higher ROS generation in HKO parasites possibly reflected

consequences of lower ergosterol content as well because

ergosterol is found in the membranes of intracellular organelles

including Leishmania mitochondria [37].

The close similarity in CYP5122A1 sequences between the old

and the new world Leishmania spp. with the conserved heme

binding domain suggest commonality of function with its

orthologues in the Leishmania and Trypanosoma species. Therefore,

how can this data be integrated in a model of Leishmania survival?

The information obtained clearly establishes that interference with

CYP5122A1 levels have deleterious consequences for the parasite

in terms of compromised organellar function, increased suscepti-

bility to drugs and impairment of the ability to infect, firmly

establishing CYP5122A1 as an essential protein for Leishmania

survival. Therefore, it would be of interest to check the status of

this protein in Leishmania field isolates from endemic regions to

relate if alterations of this protein is linked to drug resistance. The
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data presented here strongly suggests that CYP5122A1 could be a

possible drug target as it is functionally important for parasite

survival and does not share identity with host CYP450s making it

amenable to interception. Moreover, this protein could play an

important role in resistance to drugs that use sterols to exert their

effects, for which the levels of this protein in drug resistant isolates

from endemic areas needs to be investigated.

Materials and Methods

Reagents
ERTrackerTM Blue-White DPX, MitoTrackerH Red, Rhod –

2AM, JC-1 (5,59,6,69-tetrachloro-1,19,3,39-tetraethylbenzimidazo-

lylcarbocyanineiodide), CM-H2DCFDA, SYTO 11 Green, ATP

determination kit and pluronic acid were obtained from Molecular

Probes (Eugene, OR). pGEM-TEasy vector system was procured

from Promega (Madison, WI). Trizol, First strand c-DNA

synthesis kit and Hi-fidelity Taq polymerase were from Invitrogen

(Carlsbad, CA). Restriction enzymes, dNTPS, Quick ligase, T4

DNA ligase, and Taq polymerase were from New England

BioLabs (Beverley, MA). Miltefosine was purchased from Cayman

Chemicals (Ann Arbor, MI). Potassium antimony tartrate (PAT),

Dulbecco’s Modified Eagles Medium (DMEM), ergosterol, peanut

agglutinin, MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetra-

zolium bromide), triton-X-114, amphotericin B, BSTFA (N,O-bis

(trimethylsilyl) trifluoroacetamide), TMCS (trimethylchlorosilane),

foetal bovine serum and genomic DNA isolation kit were obtained

from Sigma Aldrich. Western blotting reagents and enhanced

chemiluminescence kit were from Amersham Life Sciences

(Piscataway, NJ). CB-XTM Protein assay kit was obtained from

G-Biosciences (Maryland Heights, MO). Silica G plates were from

Analtech Inc. (Newark, DE). Peptides were commercially

synthesized by USV Peptides Ltd. (Bangalore, India). All other

chemicals, unless otherwise specified, were from Sigma Aldrich.

Antibodies
Anti-CYP5122A1 antibody was raised in rabbits using a peptide

specific for the CYP5122A1 protein (Gly-Pro-Arg-Gly-Val-Pro-

Ser-Val-Asn-Asp-Val-Arg-Asp-Leu). This stretch was selected for

raising antibodies for its high antigenicity, hydrophobicity, the

presence of coils in the secondary structure and sequence

specificity for CYP5122A1 distinct from the other CYP450s

annotated in the Leishmania spp. database. Similarly antibody was

also raised against another CYP450 of L. donovani, CYP710C1

using the peptide (Cys-Asp-Glu-Lys-Thr-Val-Val-Pro-Lys-Gly-

Met-Ile). Rabbit anti-tubulin-a antibody was obtained from

Neomarker (Fremont, CA). Anti-BIP antibody was a kind gift

from Dr. J. D. Bangs, University of Wisconsin (Madison, WI).

Secondary antibodies conjugated to Alexa Flour 488 and 594 and

horse radish peroxidase were obtained from Invitrogen (Carlsbad,

CA) and Jackson Immunoresearch Laboratories (West Grove, PA)

respectively. Anti-GAPDH was from Santa-Cruz Biotechnology

(Santa Cruz, CA).

Animals
Syrian hamsters (Mesocricetus auratus), 3–6 weeks old, were used

for in vivo infection.

Ethics statement
All procedures in this study were carried out as per the

guidelines laid down by the ‘‘Institutional Animal Ethics

Committee’’ of the National Institute of Immunology, New Delhi.

The protocol for this specific study was approved by the same

committee via permit no. IAEC/168/07. This study was also

approved by the ‘‘Institutional Biosafety Committee’’ via permit

no. IBSC110#07.

Cells, treatments, extraction and MTT assay
Leishmania donovani promastigotes, amastigotes and J774A.1

murine macrophages (ATCC No. TIB-67) were cultured as

described earlier [6,7,38]. Metacyclics were isolated by incubating

107 cells in 100 mg/mL peanut agglutinin (PNA) and cells non-

adhered to PNA (metacyclics) were separated by centrifugation

[21]. To study effects of drugs, parasites in the logarithmic phase

were treated with different doses of miltefosine (10 mM to 40 mM),

potassium antimony tartrate (100–300 mg/mL) and amphotericin

B (1–2.5 mg/mL). For extraction of membrane proteins, cells were

resuspended in 0.5% Triton X-114, homogenized and incubated

on ice for 90 mins. The insoluble material was removed by

centrifugation and the supernatant was incubated at 37uC for one

hour following which the aqueous and detergent phases were

separated. Ergosterol was added to culture medium at a final

concentration of 3 mg/mL. To estimate cytotoxicity, MTT assay

was carried out as described previously [38].

Cell lysates, SDS-PAGE and western blotting
Cell lysis was performed in a lysis buffer (0.125 M Tris HCl,

(pH 6.8) 4% SDS, 20% v/v glycerol, 10% b-mercaptoethanol)

and protein content was quantitated using CB-XTM Protein Assay

Kit. SDS PAGE, western blots and densitometry were carried out

as described previously [6,38]. For western blots, antibodies were

used at various dilutions; anti-CYP5122A1 antibody (1:20,000),

anti-tubulin-a antibody (1:10,000), secondary antibodies (1:20,000

dilutions). Reactivity was visualized by enhanced chemilumines-

cence.

Cloning, sequencing and analysis
Overlapping sets of primers for the CYP450 protein genes were

designed from sequence available with the Leishmania major genome

database (LmjF27.0090, Gene DB hosted by the Wellcome Trust

Sanger Institute, Hinxton, UK). Using L. donovani genomic DNA

as template, an insert was amplified with relevant primers and

cloned into pGEM-TEasy vector. Sequencing was carried out by

the di-deoxy method [39], at sequencing facility of Delhi

University (New Delhi, India). The sequence was submitted to

the CYP450 Nomenclature Committee [19] (http://drnelson.

uthsc.edu/cytochromep450.html) for assignment. Alignment of

the L. donovani sequence with other CYP450s was performed using

ClustalW hosted at the European Bioinformatics Institute [40].

The protein sequence derived was subjected to secondary structure

prediction program PSIPRED hosted at the Bloomsburry Center

for Bioinformatics [41]. The derived protein sequence of

CYP5122A1 was also submitted to the SWISS-MODEL homol-

ogy modelling server hosted at the Swiss Institute of Bioinformatics

[42]. The model generated was viewed in Pymol molecular

graphic software (educational use). The stereochemical qualities of

this 3D model were checked using Ramachandran plot [43]

generated by PROCHECK (EMBL-EBI, UK) (http://www.ebi.

ac.uk/thornton-srv/software/ PROCHECK/). WHATCHEK

(http://www.cmbi.kun.nl/gv/whatcheck/) server was used to

assess the packing quality of the protein model [44].

For CYP5122A1 allelic replacement constructs, ORFs encoding

neomycin and hygromycin resistance were inserted between

0.4 kb of 59 and 0.37 kb of 39 of CYP5122A1 homologous

regions in the pBlueScript SK+ vector to generate the constructs

pBSK+CYP5122A1Neo and pBSK+CYP5122A1Hyg respective-

ly. Half knockouts (HKOs) were generated with these constructs

through transfection of log phase promastigotes as described
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previously [38]. To generate double knockout parasites, second

allelic replacement construct was transfected into the HKO

parasites. Proper insertion of cassettes was confirmed by PCR to

detect the presence of replacement constructs into the transfor-

mant genomic DNA. Primers were also designed using the

intergenic sequence upstream of CYP5122A1 gene, the antibiotic

resistance marker ORFs and the CYP5122A1 gene, such that

amplification using these primers of expected molecular weight

would only occur upon insertion at the correct locus. The

leishmanial expression vector pXG-GFP +2 (a kind gift from Dr.

S. Beverley) containing the CYP5122A1 gene was used for

complementation of CYP5122A1 through episomal expression in

the HKO parasites. Complementation was confirmed by GFP

expression and detection of fusion m-RNA and GFP-fusion

protein in the transformants.

Immunocytochemistry and growth curve
Fixed (2% formaldehyde), digitonin or saponin (0.01%)

permeabilized cells were stained using rabbit anti-CYP5122A1

antibody (1:500) followed by labelling with Alexa Fluor 488

conjugated secondary antibody (1:750). For co-localization,

MitoTrackerH Red (0.5 mM/106 cells) was used to visualize

mitochondria while ER-TrackerTM Blue-White DPX (1 mM/106

cells), anti-BIP antibody (1:1000) were used to identify the

endoplasmic reticulum (ER). Anti-GAPDH antibody (1:50) was

used to identify glycosomes. Stained cells were analysed with a

Nikon Eclipse TE2000E microscope (Nikon, Japan). FACS

Calibur (Becton Dickinson, NJ) equipped with a 488 nm air

cooled argon ion laser was used for flow cytometric analysis as

described previously [45]. Mean fluorescence intensities per unit

area of WT and HKO cells stained with anti-CYP5122A1

antibody were measured using the software ImagePro Plus (Media

Cybernetics). For growth curve, equal number of cells (107 or

56106) was plated and cell numbers analysed by haemocytometer

based counting every 24 h.

Measurement of DYm, Ca2+, ROS and ATP
Ca2+ and DYm was measured using Rhod-2 AM and JC-1 as

probe as described previously [6]. For measurement of ROS, the

cells (107) were loaded with the cell permeant probe CM-

H2DCFDA (2 mg/mL) as described previously [6] and fluores-

cence measurements were taken at 507/530 nm using a FluoStar

Optima fluorescence reader (BMG Labtechnologies Inc., Ger-

many). ATP was measured in a reaction buffer containing 1 mM

dithiothreitol, 0.5 mM luciferin and 12.5 mg/mL luciferase using a

Fluostar Omega multi-label detection system as described

previously [6].

Infection
In vitro Leishmania-macrophage infection was carried out as

described previously [7] at a parasite: macrophage ratio of 10:1.

For in vivo infection, Syrian golden hamsters were injected intra-

cardially with 108 parasites in stationary phase of growth. After 8

weeks, the animals were euthanized and spleen slices were used to

prepare splenic smears. Smears were stained with Giemsa stain

and scored for infected macrophages.

Estimation of ergosterol
Sterols were isolated as described by Arthington-Skaggs et al.

[46], with slight modifications. Briefly, cells were suspended in

25% alcoholic KOH and incubated at 85uC (1 h) followed by

cooling to room temp and addition of sterile distilled water and n-

heptane mixture. Standard ergosterol dilutions and sterol

extraction samples from WT, HKO and complemented strain of

parasites were spotted on a Silica Gel G plate, resolved using a

binary solvent (hexane/ethyl acetate (75/25)) and visualized using

Mo’s stain (12.5 g of ammonium molybdate (VI) tetrahydrate,

5.0 g of ammonium cerium (IV) sulphate, 50 ml of concentrated

sulfuric acid volume raised to 500 mL with water). For GC-MS,

the sterol extracts were dried under nitrogen gas, resuspended in n-

hexane and derivatized with BSTFA containing 1% TMCS at

70uC for 1 h. The derivative mixture was dried under nitrogen to

remove excess BSTFA and subsequently re-dissolved in n-hexane.

Agilent 7890A gas chromatography instrument coupled to an

Agilent 5975C mass spectrometer and an Agilent ChemStation

software (version G1701EA, Agilent Technologies, Palo Alto, CA)

was used for GC-MS. For separation, a HP-5MS capillary column

(30 m60.25 mm i.d) was used with the column temperature was

set at 100uC (held for 5 min for injection) programmed at

20uC min21 to 200uC (held for 10 min, followed by 10uC min21

to 230uC) and finally at 5uC min21 to 320uC (5 min). Injection

temperature was set at 260uC. High purity helium was used as

carrier gas of 1.0 mL min21 flow-rate. The spectrophotometers

were operated in electron-impact (EI) mode, full scan of 40–

550 amu or selected ion monitoring (SIM) was used, the ionization

energy was 70 eV. Calibration curve was generated using n-

hexane stock solutions of standard ergosterol dilutions (5- 500 ng/

mL) in duplicates and plotting the peak area versus the

concentration.

Statistical analysis
Data were analysed by student’s unpaired t-test. Values were

considered significantly different at P#0.05. All experiments were

repeated 3–4 times. Data are expressed as the mean 6 SE of

several independent experiments.

Supporting Information

Figure S1 Phylogenetic analysis of CYP5122A1. A phylo-

gram generated from CYP450-like sequences analysed by

ClustalW showing distances between CYP450-like proteins of

various species. Scale represents 0.06 nucleotide substitutions per

site.

(TIF)

Figure S2 Predicted secondary structure. Schematic

representation of the predicted secondary structures in and around

the active site generated using the PSIPRED server hosted at the

Bloomsburry Centre for Bioinformatics (University College,

London and Birkbeck college). PTG, Proton transfer groove;

SC, stabilization core; HBL, Heme binding loop are highlighted in

yellow. Active site cysteine indicated by arrow.

(TIF)

Figure S3 Ramachandran plot of CYP5122A1. Ramachan-

dran plot generated for CYP5122A1 protein structure modelled

using SWISS-MODEL shows majority of the residues to fall into

the favourable region of the plot.

(TIF)

Figure S4 Analysis of pBSK+CYP5122A1-Hyg HKO. A: (i)
Insertion of allelic replacement construct into the genomic DNA

was confirmed by PCR for hygromycin and knockout-hygromycin

construct using primers that span the 59 homologous sequence

(Forward primer) and the hygromycin gene (Reverse primer).

Lane 1: fragment amplified for the hygromycin resistance gene;

lane 2: 1 kb DNA ladder; lane 3: fragment amplified for the knock

out hygromycin construct. (ii) Confirmation of insertion of the

replacement construct at the correct locus was assessed by PCR.
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Lane 1: amplicons generated from HKO genomic DNA as

template with primers F2/P2 indicating the presence of an intact

CYP5122A1 allele (primer positions indicated in schematic in

Fig. 4A); Lane 2: amplicons generated from HKO-Hyg genomic

DNA as template with primers F2/HI indicating the presence of

insertion of hygromycin resistance ORF at the correct locus. B:
Western blot analysis of cell lysates from WT and HKO parasites

with anti-CYP5122A1 antibody showing the decreased level of

CYP5122A1protein in the HKOs. Loading was normalized with

Tubulin–a (50 kDa). C: Bar graph representing averaged

densitometric analysis of immunoblots represented in B, mean6

SE, n = 3. D: Western blot analysis of cell lysates from WT and

HKO parasites using anti-CYP710C1 antibody showing equal

levels of the CYP710C in the WT and the HKO parasites.

Loading was normalized with tubulin-a (50 kDa). E: Comparison

of growth and survival of WT and HKO parasites in vitro over a

period of 6 days in culture. Mean 6 SE, n = 3. F: Bar graph

showing percentage viability of WT and HKO parasites in

response to treatment with PAT. Note the increased susceptibility

of HKOs as compared with WT. Mean 6 SE, n = 4; * P#0.05. G:
Photomicrographs of macrophage infected with WT and HKO

parasites stained with Syto 11 Green fluorescent nucleic acid stain.

a: nomarski image; b: Syto 11 Green stained image; c: merge of a

and b. Scale, 5 mm.

(TIF)

Figure S5 A: Bar graph shows percentage viability of WT and

HKO parasites in response to treatment with H2O2. Mean 6 SE,

n = 4; * P#0.05. B: Photomicrographs of J774A.1 macrophages

infected with WT and HKO L. donovani parasites at multiplicity of

infection at 1:25 and 1:50, stained with Syto 11 Green. Scale,

20 mm.

(TIF)

Figure S6 Effects of complementation of CYP5122A1 in
HKOs. A: Agarose gel (1.5%) showing expression of GFP-

CYP5122A1 fusion mRNA (GFP Forward primer & CYP5122A1

internal primer) in 2 clonally selected strains of CYP5122A1

complemented parasites. Lane 1: negative control; lane 2 & 3:

fusion product amplified from c-DNA prepared from comple-

mented parasites; lane 4: 1 kb DNA Ladder; lane 5: Positive

control amplified using pXG-GFP+2CYP5122A1 plasmid as the

template. B: Western blot analysis of lysates of HKO and CMPL

cells probed for the fusion protein show the presence of GFP-

CYP5122A1 protein at expected molecular weight of approxi-

mately 96KDa in lysates of complemented parasites. C: Flow

cytometric analysis of complemented parasites. D. Photomicro-

graphs of HKO (a) and complemented (b) parasites. Scale, 5 mm.

E: Bar graph showing percentage viability of WT, HKO and

complemented parasites in response to treatment with miltefosine

and PAT. Mean 6 SE, n = 4; * P#0.05. F: Photomicrographs of

CMPL promastigotes stained with anti-CYP5122A1 antibody and

ER-specific markers, ER Tracker Blue-White DPX. Scale, 5 mm.

(TIF)

Figure S7 Subcellular localization of CYP5122A1 in
metacyclic parasites Photomicrographs of Leishmania donovani

metacyclic parasites stained with anti-CYP5122A1 antibody and

ER-specific marker, BIP. Scale represents 10 mm.

(TIF)
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