Discovery of a micromammal-yielding Deccan intertrappean site near Kisalpuri, Dindori District, Madhya Pradesh

A. Khosla1, G. V. R. Prasad2,3, O. Verma2, A. K. Jain3 and A. Sahni1

1CAS in Geology, Panjab University, Chandigarh 160 014, India
2Department of Geology, University of Jammu, Jammu 180 006, India
3No. 487, Sector-12A, Pancaulkha, India

An intertrappean section exposed along the right bank of Kharmer river near Kisalpuri village (Dindori District) in Madhya Pradesh has yielded a rich microvertebrate assemblage. This assemblage consists of fishes: Igadabatis indicus, Lepisosteus cf. L. indicus, Pycnodontiformes, Osteglossiformes, Siluriformes; anurans: ?Leptodactylidae gen. et sp. indet.; squamates: indeterminate lizards, Serpentes indet., Bothremydidae group of chelonians, neosuchian crocodiles, sauropod ornithoids, and theropod dinosaur egg-shell fragments and an eutherian mammal. This is one among the few mammal-yielding Late Cretaceous sites reported so far from India. Preliminary study of a single mammalian lower molar indicates a close affinity to the Laurasian boreosphenidan eutherians.

The last one and half decades witnessed extensive and focused research on Deccan intertrappean biota of peninsular India, primarily aimed at understanding the response of the biosphere to the stressed environmental conditions at the end of the Cretaceous. As a result, many new microvertebrate-bearing intertrappean beds (Marepalli, Timispanalli, Dongargaon, Pisdura, Nand, Jabalpur) and intertrappean beds (Upparhatti, Gurmukal, Naskal, Rangapur, Duddukuru, Asifabad, Nagpur, Bombay, Anjar) have been reported and diverse vertebrate groups have been described from these beds.1,2 Despite such extensive work on these beds, only a few sections have yielded micromammals, which are poorly known from the Mesozoic deposits of the world. Prasad and Sahni1 reported the first Late Cretaceous mammal (Deccanolesistes hisplori) from the intertrappean beds of Naskal. This mammal has been assigned to the Laurasian group of palaecoryctid mammals. Subsequent to this, another species of Deccanolesistes, D. robustus, has been documented from the same site.3 Das Sarma et al.5 reported the occurrence of one eutherian molar from the intertrappean beds of Upparhatti and a couple of hypsodont sudamerid molars from the intertrappean beds of Naskal, but with little morphological description. Following this, Krause et al.6 described a sudamerid mammal from the Naskal site and discussed in detail its paleobiogeographic signifi-

ance. More recently, Rana and Wilson7 documented upper and lower molars of Deccanolesistes and an upper molar of a new genus, Sahniatherium (family incertae sedis), from the intertrappean beds of Rangapur close to the Naskal mammal site.

The present find of an intertrappean section yielding micromammalian remains from the right bank of Kharmer river near Kisalpuri village, Dindori district, Madhya Pradesh (Figure 1), therefore, assumes significance as it is expected to improve the Late Cretaceous fossil record of mammals from India and their biogeographic relationships. This intertrappean section has been assigned to Maastrichtian age based on the presence of typical Maastrichtian fish Igadabatis indicus Prasad & Cappetta, 1993 and ostracods Paracypretta bhatiai Khosla & Sahni, 2000 and Paracundonia jabalpuresis Sahni & Khosla, 1994. It is thus considered as the northernmost Late Cretaceous mammal-bearing locality within the Deccan volcanic province. Wet screen-washing of about 500 kg of sediments from this intertrappean section resulted in the recovery of the following fauna, which includes one lower molar tooth of a new mammal.

Ostracods: Paracypretta bhatiai Khosla & Sahni, 2000 Paracundonia jabalpuresis Sahni & Khosla, 1994

Pisces
Selachians: Myliobatidae Igadabatis indicus Prasad & Cappetta, 1993 (Figure 2 f)

Holostees: Lepisosteidae Lepisosteus cf. L. indicus Woodward, 1908 (Figure 2 d, e)

Figure 1. Map showing the location of mammal-bearing intertrappean section of Kisalpuri.

*For correspondence. (e-mail: pguntupalli@rediffmail.com)
Pycnodontiformes:
 Pycnodontidae gen. et sp. indet. (Figure 2 a)

Teleostei:
 Osteoglossiformes:
 Osteoglossidae gen. et sp. indet. (Figure 2 b, c)
 Siluriformes incertae sedis (Figure 3 c)

Amphibians
 ? Leptodactylidae gen. et sp. indet. (Figures 2 g and 3 d)

Reptiles
 Squamates:
 Lacertilia indet. (Figure 2 f)

Chelonians:
 Bothremydidae
 Taphrosphys group
cf. Carteremys

Archosaurs:
 Crocodylidae indet. (neosuchians) (Figure 2 h, i)
 Sauropod egg-shell fragments
 Megaloolithus baghensis Khosla & Sahni, 1995
 Ornithoid egg-shell fragments
 Subtiliolithus kachchhensis Khosla & Sahni, 1995
 Theropod egg-shell fragments

Mammals:
 Family ?Otolestidae
 Gen. et sp. indet.
 (Figures 2 k, l and 3 a, b)

One incompletely preserved ultimate left lower molar (VPL/JU/IM/31) has been recovered from this site. In the reduced height difference of trigonid and talonid, the arrangement of trigonid cusps in an acute-angled triangle, relatively large paraconid conuate at its base with the metaconid and placed at an anterolingual margin of the crown, hypoconulid closer to the entoconid than to the hypoconid and presence of deep hypoflexid and development of roots, it is comparable to Otlestes meimani known from the Lower Cenomanian of Uzbekistan. However, it appears to be more derived than Otlestes in having inflated cusps, relatively shorter (anteroposteriorly) talonid with respect to trigonid and the absence of entoconulid. In its inflated cusps, VPL/JU/IM/31 is more derived than Deccanolestes. A detailed description of this will be presented elsewhere. In light of its close morphological resemblance to Otlestes, the specimen is

Figure 2. a, Pycnodontidae gen. et sp. indet., lateral view of bran-
chial tooth; b and c, Osteoglossidae gen. et sp. indet., internal view of squamule (b), and external view of squamule (c); d and e, Leptospondylus cf. L. indicus Woodward, 1908, lateral view of tooth (d) and scale from the caudal segment in external view (e); f, Iglabatis indicus Prasad & Cappetta, 1993, lateral tooth in occlusal view; g, ?Leptodactylidae gen.
et sp. indet., lateral view of left ilium; h and i, Crocodylidae indet, tooth of intermediate series in lingual view (h) and tooth of posterior series in lingual view (i); j, Premaxilla of indeterminate lizard in lingual view; k and l, ?Otolestidae gen. et sp. indet, lingual view (k) and occlusal view (l). Bar equals 500 μm.

Figure 3. a–b, ?Otolestidae gen. et sp. indet. lingual view (a) and occlusal view (b). c, Sphiriformes indet., anterior view of pectoral spine d, ?Leptodactylidae gen. et sp. indet., lateral view of left ilium.
tentatively referred to the family Otlesidae, representing a boreothenian mammalian group, pending the recovery of well-preserved specimens.

The microvertebrate assemblage recovered from the site is broadly similar to that of other known inter-trappean beds of peninsular India. However, the presence of micromammal in this site is of paramount importance, as Mesozoic mammals are relatively rare in the fossil record of former Gondwanaland and any new find from these continents is bound to augment our knowledge on their diversity and biogeographic relationships. For long, it was widely accepted that trisphenic mammals (mammals with dentition capable of both shearing and grinding) had originated and diversified in Laurasian continents and were excluded from the southern continents until latest Cretaceous or early Palaeocene. The fossil record of Mesozoic mammals documented up to 1999 supported this. Until this period, the earliest trisphenic mammals (both placental and metatherians), such as Prokenalestes from Aptian or Albain Khobor beds, Gobi Desert, Mongolia, Montanalestes from Aptian–Albian Cloverly Formation, Montana, USA, Delthatheridium from North America and Asia only. The latest discoveries of trisphenic mammals from much older (Middle Jurassic) deposits of Madagascar (Ambondro), and from the Early Cretaceous of Australia (Ausktrisphosphenos) and Early Cretaceous (? Berriasian) of Morocco (Tribotherium) countered the traditional view of Laurasian origin for trisphenic mammals. On the other hand, Luo et al. argued for independent evolution of trisphenic mammals on both Gondwanan and Laurasian continents. They named the Gondwanan clade as Australosphenida and here they included Ausktrisphosphenos, Ambondro, Stereopodon and living monotremes. Their Laurasian clade named as Boreothenia includes living placental, marsupials and their fossil relatives.

The new tooth from Central India lacked a continuous, mesial cingulum wrapping around and extending onto the lingual side of the crown. Absence of this cingulid is characteristic of boreothenian mammals. Therefore, VPL/JU/IM/31 is referred to the Boreosphenida clade. The presence of a boreothenian mammal in the Late Cretaceous of India assumes great palaeobiogeographic significance, because the Indian plate was drifting northwards as an island at this point of time and was separated from Asia by a wide (about 1000 km) Tethys sea. Previous works have demonstrated the presence of Laurasian vertebrate fauna in the Late Cretaceous of India. However, Thewissen and McKenna questioned the referral of Deccanolestes to the North American family Palaeoryctidae on the grounds that the similarities with palaeoryctids are only in pleiomorphic characters and the fossil material is inadequate. The boreothenian affinity of the mammalian find from Central India, particularly with Otlesidae, confirms the presence of mammals with non-Gondwanan affinities in the Cretaceous of India.

The presence of Laurasian taxa in the northward-drifting Indian plate has been explained either by an early India/Asia contact or by dispersals across intermittent islands between India and Asia. More recent molecular studies favoured an “out of India dispersal” for ratite birds, acrodon lizards, and ranoid frogs. Molecular phylogeny has also favoured a long history for placental mammals on the Gondwanan continents. As the current Mesozoic fossil record of the Gondwanan continents is too sketchy, more work remains to be done before a synoptic biogeographic model can be developed.

ACKNOWLEDGEMENTS. We thank the anonymous referee for his valuable suggestions on the manuscript. This work was supported by grants from the Department of Science and Technology and University Grants Commission to A.K. and G.V.R.P., respectively. O.V. thanks the Geological Society of India for a L. Rama Rao Research Grant.

Received 5 December 2003; revised accepted 3 March 2004

CURRENT SCIENCE, VOL. 87, NO. 3, 10 AUGUST 2004