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1. Introduction

One of the interesting recent discoveries in string theory is the fact that objects that

are naively pointlike may in fact be extended branes. The Myers effect [1] implies that

in the presence of field strengths of the gauge fields in string theory, certain branes can

expand into higher dimensional branes. McGreevy, Susskind and Toumbas [2] considered

the behavior of gravitons in the near horizon geometries produced by branes. They argued

that while these gravitons may appear pointlike at low angular momentum, one could (at

a classical level) find extended brane states - called “giant gravitons” - carrying the same

energy and angular momentum, and these extended objects could be the correct picture

of the graviton at large angular momenta. For AdSm × Sn spacetimes these can be a

(n − 2)-brane wrapped around a Sn−2 contained in Sn [2] or a (m − 2)-brane wrapped

around a Sm−2 contained in AdSm [3][4]. The equilibrium configuration consists of the

brane rotating rigidly without a change of its size, and saturates a BPS bound for the

energy E for a given angular momentum Pφ, E ≥ Pφ/L where L is the radius of the

Sn [5]. The angular velocity is independent of the angular momentum and depends only

on L. When embedded in a supersymmetric theory these configurations respect half of

the supersymmetries of the background [3],[4] and therefore the BPS bound follows from

supersymmetry. The structure of the final quantum state representing the gravitons is not

yet clear, as there can be tunneling between these various classical configurations [3],[4],[5],

and also to multiple brane states with the same quantum numbers [5]. Interestingly, brane

states with energies equal to gravitons with the same angular momentum have been also

found to occur in spacetimes other than AdSm × Sn [6]. In some of these cases there are

also extended branes with nonzero D0 brane charge which are degenerate with pointlike

D0 branes and in this situation the phenomenon may be understood quantitatively in

terms of the magnetic analog of Myers’ effect [6].

An important issue related to these ‘giant graviton’ states is whether they can provide

an interpretation of the stringy exclusion principle [7] in terms of the limits on the allowed

size of the expanded brane configurations [2]. It has been argued that the stringy exclusion

principle implies that the supergravity should live on a noncommutative spacetime, e.g.

quantum deformations of AdSm × Sn [8]. Structures similar to expanded branes can also

be obtained using the non-abelian interactions of multi-particle systems in string theory [9]

[10][11][12][13] where a nonocommutative structure arises. Indeed for the giant gravitons

there are hints of such a noncommutativity of space emerging [5],[14].
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Extended objects possess a set of low energy excitations arising from small vibrations

about their equilibrium configuration. Such modes have been very important in string

theory in the study of black holes. If we regard a black hole as a point singularity sur-

rounded by empty space then we cannot account for its microscopic degrees of freedom.

But a string theory description of charged holes replaces the pointlike matter by extended

branes, and vibration modes of these branes can be used to derive the microscopic entropy

[15] and unitary low energy Hawking radiation for these black holes [16].

There are several reasons why we would like to study the vibration spectrum of gi-

ant gravitons. First, if there is a family of solutions with the same energy and angular

momentum, then it would show up as a corresponding mode of the vibration spectrum.

Thus looking at such modes would provide a way of checking whether the spherical brane

ansatz used in [2] captures all the states that are classically BPS. Secondly, the branes

in AdS space with angular momentum greater than the exclusion principle bound pose a

puzzle [3]; we would like to check if these configurations are unstable to some harmonic of

vibration (we do not in fact find such an instability). Thirdly, such vibration modes give

a closely spaced set of low energy motions of the graviton that could be excited in inter-

actions - thus these modes appear to be essential to finding the inclusive cross section for

the interaction of two gravitons. In particular, one finds the following aspect of the stringy

exclusion principle in the D1−D5 system. One can compute the 3-point function of chiral

primaries in the boundary CFT, for operators that are dual to supergravity modes in the

bulk theory [17] [18]. It was found in [18] that the three point function starts dropping

significantly below the naive supergravity expectation when the angular momenta are in

fact much smaller than the allowed upper bound. If the giant graviton picture is right,

then it could shed some light on this drop in the 3-point function.

In this paper we study the vibration spectrum of giant gravitons in AdSm × Sn. We

focus on the excitations arising from motion of the branes in spacetime, and thus do not

consider here the excitations that arise from fermionic modes, or from any gauge fields

that may live on the brane representing the giant graviton. The embedding geometry has

the structure of an anti-de-Sitter (AdS) spacetime times a sphere. We consider both the

case where the brane expands in the AdS spacetime, and the case where it expands on the

sphere. In the former case the radius of the brane can be much larger than the curvature

scale of the embedding spacetime, while in the latter case the radius of the brane is limited

by the size of the sphere.
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One of the questions that we shall focus on is the scale which gives the vibration

frequencies. There are several scales in the problem: the microscopic string scale or planck

scale, the radius of the brane, and the curvature scale of the spacetime (the AdS spacetime

and the sphere have curvatures of the same order). A priori the frequency of vibration

can be any combination of these scales which has the right dimension. Since we are

extremising the classical action we will not encounter the string or planck scales, but it is

not immediately obvious which of the other scales should give the vibration frequencies.

We find that the frequencies are all real and, somewhat surprisingly, indpendent of

the size of brane. They depend only on the AdS scale L̃ and the radius of the sphere

L. The system thus has low energy excitations with spacings independent of the angular

momentum of the brane. This gives a prediction for the holographic dual: for a given

R-charge sector of the dual theory, one should find a non-BPS spectrum of excitations

with level spacings independent of the R charge.

The plan of this paper is the following. In section 2 we set up notation and describe the

equilibrium configurations about which we will study the vibrations. In section 3 we find

the spectrum for the branes that expand in the AdS spacetime, and in section 4 we repeat

this calculation for branes that expand on the sphere. Section 5 studies some aspects of

the frequencies and section 6 is a general discussion of the implications of the spectrum.

2. The equilibrium configurations

We will for the most part follow the notation of [3]. The spacetime will have the

form AdSm × Sn. In particular we have the D = 11 supergravity backgrounds with

(m, n) = (4, 7) and (m, n) = (7, 4), and the D = 10 background of IIB supergravity with

(m, n) = (5, 5). In the first two cases the graviton can expand into 2-branes and 5-branes

of M-theory, while in the last case it can expand into the D-3 brane of type IIB string

theory. In addition we have (m, n) = (3, 3) for the cases AdS3 × S3 × M4, though this

case is more involved since since the 1-branes can be various combinations of strings and

5-branes wrapped on the compact 4-manifold (T 4 or K3).
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2.1. Branes expanding in AdS spacetime

We will find it convenient to use slightly different coordinates when looking at branes

expanding in the AdS and when looking at branes expanding on the sphere. The AdS

space and the sphere are orthogonal to each other

ds2 = ds2
AdS + ds2

sph (2.1)

(In the case of AdS3 × S3 × M4 the M4 is orthogonal to the other two components as

well.)

For branes in AdS, we write the AdS metric in global coordinates as

ds2
AdS = −(1 +

r2

L̃2
)dt2 +

dr2

(1 + r2

L̃2
)

+ r2dΩ2
m−2 (2.2)

We can further write the metric dΩ2
m−2 as

dΩ2
m−2 = dα2

1 + sin2 α1(dα2
2 + sin2 α2(. . . + sin2 αm−3dα2

m−2)) (2.3)

The sphere Sn has radius L. We write

ds2
sph = L2dΩ2

n (2.4)

where dΩ2
n is the metric on the unit n sphere. We further describe this unit sphere by

using coordinates z1, z2, yi, i = 1 . . . n − 1

z2
1 + z2

2 + y2
1 + . . . y2

n−1 = 1 (2.5)

z2
1 + z2

2 = cos2 θ,

n−1
∑

k=1

y2
k = sin2 θ (2.6)

z1 = cos θ cos φ, z2 = cos θ sin φ (2.7)

A complete set of cordinates for Sn is φ, yk. In these coordinates the metric for Sn is

ds2
sph = L2[(1 −

∑

k

y2
k)dφ2 + (δij +

yiyj

1 −
∑

k y2
k

)dyidyj ] (2.8)

The brane in its unexcited configuration moves at θ = 0, which gives yk = 0. Further,

φ = ω0t, ω0 =
1

L
(2.9)
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r = r0 (2.10)

The worldsheet extends for all t, and wraps the m − 2 sphere in (2.2), covering all values

of the coordinates αi, i = 1 . . .m − 2. The angular momentum Pφ is given by

Pφ = Ñ(
r0

L̃
)m−3 (2.11)

where

Ñ = Vm−2Tm−2LL̃m−2 (2.12)

and Vm−2 is the volume of the unit Sm−2 and Tm−2 is the tension of the (m − 2)-brane.

The energy of this state is given by

E =
Pφ

L
(2.13)

2.2. Branes expanding on the sphere

For this case we must essentially interchange the roles of the AdS and sphere metrics

in the above discussion, and so we adopt the following coordinates. We describe an AdSm

spacetime of unit radius through

−(u2
1 + u2

2) + (v2
1 + . . . v2

n−1) = −1 (2.14)

u2
1 + u2

2 = cosh2 µ,

m−1
∑

k=1

v2
k = sinh2 µ (2.15)

u1 = cosh µ cos
t

L̃
, u2 = cosh µ sin

t

L̃
(2.16)

A complete set of coordinates for the AdS space is t, vk. In these coordinates the metric

for AdSm is

ds2
AdS = −(1 +

∑

k

v2
k)dt2 + L̃2(δij +

vivj

1 +
∑

k v2
k

)dvidvj (2.17)

(We pass to the covering space where t runs over (−∞,∞) instead of (0, 2π) to recover

the complete AdS spacetime.)

The metric of the sphere Sn is

ds2
sph = L2[dθ2 + cos2 θdφ2 + sin2 θdΩ2

n−2] (2.18)

Here θ, φ are the same coordinates as introduced in (2.6), (2.7) and where we can write

dΩ2
n−2 = dχ2

1 + sin2 χ1(dχ2
2 + sin2 χ2(. . . + sin2 χn−3dχ2

n−2)) (2.19)
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This time the unexcited brane will have a fixed value of θ between 0 and π. We write

sin θ =
q

L
(2.20)

Then the metric on Sn becomes

ds2
sph = L2(1 − q2

L2
)dφ2 +

dq2

1 − q2

L2

+ q2dΩ2
n−2 (2.21)

which resembles the form (2.2) of the AdS metric. The brane has a radius determined by

q = q0. (2.22)

φ(t) is again given by (2.9), and the brane extends over the coordinate t, and over the

coordinates χi in (2.19). The angular momentum is now

Pφ = N(
q0

L
)n−3 (2.23)

where

N = Ln−1Vn−2Tn−2 (2.24)

is the quantized flux of the n-form field strength. The energy is still given by (2.13).

The length scales of the AdS and the sphere are related by

L̃

L
=

m − 1

n − 1
(2.25)

3. Vibration spectrum - branes in AdS

The action for the brane is

S = SDBI + SCS (3.1)

where SDBI is the Dirac-Born-Infeld action, and SCS is the Chern-Simons term.

For a p brane, SCS is

SCS = Tp

∫

P [A(p+1)] (3.2)

where P denotes the pullback of the p+1 form gauge potential onto the brane worldvolume.

We will consider a m − 2 brane. The gauge potential in spacetime gives a constant field
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strength on AdSm and its dual (constant) field strength on Sn. The potential on AdSm

is1

A
(m−1)
tα1...αm−2

=
rm−1

L̃

√
gα (3.3)

where
√

gαdα1 . . . dαm−2 is the volume element on the m−2 sphere. Thus the field strength

is

F
(m)
rtα1...αm−2

= (m − 1)
rm−2

L̃

√
gα (3.4)

In a local orthonormal frame the value of F is

F
(m)

r̂t̂α̂1...α̂m−2

=
(m − 1)

L̃
= constant (3.5)

The potential on the sphere is

A
(n−1)
φχ1...χn−2

= Ln−1 sinn−1 θ
√

gχ = qn−1√gχ (3.6)

where
√

gχdχ1 . . . dχn−2 is the volume element on the n−2 sphere (2.19), and q was defined

in (2.20). The field strength is

F
(n)
qφχ1...χn−2

= (n − 1)qn−2√gχ (3.7)

In a unit orthonormal frame we get

F
(n)

q̂φ̂χ̂1...χ̂n−2

=
(n − 1)

L
(3.8)

Using (2.25) we see that (3.5) and (3.8) are dual forms.

3.1. The action

The configuration of the brane is described by giving the spacetime coordinates as a

function of the worldsheet coordinates τ, σ1, . . . σm−2. We choose the static gauge, where

t = τ (3.9)

αi = σi, i = 1 . . .m − 2 (3.10)

The remaining coordinates are given by

r = r0 + ǫ δr(τ, σ1, . . . σm−2) (3.11)

1 We choose signs of the gauge potentials that are different from those in [3].
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φ = ω0τ + ǫ δφ(τ, σ1, . . . σm−2) (3.12)

yk = ǫ δyk(τ, σ1, . . . σm−2), k = 1 . . . n − 1 (3.13)

Recall that we are describing AdSm by t, r, α1, . . . αm−2 and Sn by φ, y1, . . . yn−1.

Let GMN be the metric of AdSm ×Sn, and let gij be the induced metric on the brane

gij =
∂XM

∂ξi

∂XN

∂ξj
GMN (3.14)

where XM are coordinates on AdSm × Sn and ξi are coordinates on the worldsheet. The

DBI action is

SDBI = −Tm−2

∫ √−gdτdσ1 . . . dσm−2 (3.15)

The Chern-Simmons term has two possible contributions, from the two nonvanishing

components (3.3) and (3.6); we call them SCS1 and SCS2 repectively. We are interested

only in the action to quadratic order in the fluctuations, and we will find that SCS2 does

not contribute if n > 3, since its contribution becomes higher order than quadratic in the

fluctuation. Thus the case n = 3 will have to be treated separately when computing the

vibration frequencies. (We do not consider n < 3 or m < 3.)

The pullback of the gauge field is

P [A(m−1)]τσ1...σm−2
= A

(m−1)
M1...Mm−1

∂XM1

∂τ

∂XM2

∂σ1
. . .

∂XMm−1

∂σm−2
(3.16)

Using (3.9) - (3.13) we get

SCS1 = Tm−2

∫

A
(m−1)
tα1...αm−2

dτdσ1 . . . dσm−2

= Tm−2

∫

1

L̃
(r0 + ǫδr(τ, σ1, . . . σm−2))

m−1√gσdτdσ1 . . . dσm−2

(3.17)

where
√

gσdσ1 . . . dσm−2 is the volume element on a constant τ hypersurface on the world-

sheet.

For SCS2 we write down only the terms that contribute to lowest nonzero order in ǫ.

For small values of q, yk we see from (3.8) that we can write the gauge potential on Sn as

A
(n−1)
φy2...yn−1

≈ Ln−1(n − 1)y1 (3.18)

8



Then we get

SCS2 ≈ Tm−2L
n−1

∫

(n − 1)y1
∂φ

∂τ

1

(m − 2)!
ǫi1...im−2

∂y2

∂σi1

. . .
∂ym−1

∂σim−2

dτdσ1 . . . dσm−2

≈ Tm−2L
n−1 ω0(n − 1)

∫

y1
1

(m − 2)!
ǫi1...im−2

∂y2

∂σi1

. . .
∂ym−1

∂σim−2

dτdσ1 . . . dσm−2

(3.19)

For this to be nonvanishing, we need n = m. But further, the order of this term is

m − 1 in the perturbation, so for m > 3 it is not relevant for the linearised perturbation

analysis. It would be relevant for AdS3 × S3, though this case is more involved since the

1-branes can be various combinations of strings and 5-branes wrapped on the compact

4-manifold (T 4 ot K3). We will analyze these aspects of the AdS3 × S3 case elsewhere,

but for completeness work out here the frequencies that follow from an action of the form

S = −T1

∫ √−g + T1

∫

P [A(2)].

3.2. Linearised equations for m > 3

First we look at the linear term in ǫ in the action (3.1). A straightforward calculation

gives

SDBI ± SCS1 = − ǫ Tm−2

∫

dτdσ1 . . . dσm−2
√

gσ

rm−3
0

L̃
[{ (m− 1)r2

0 + (m − 2)L̃2(1 − L2ω2
0)

√

r2
0 + L̃2(1 − L2ω2

0)
∓ r0(m − 1)}δr

− L2L̃2ω0r0
√

r2
0 + L̃2(1 − L2ω2

0)

∂δφ

∂τ
]

(3.20)

As is clear from this formula, the action of the equilibrium configuration vanishes.

The coefficient of the term ∂δφ
∂τ

is a constant, and so this term gives no contribution

to the variation of the action with fixed boundary values. The coefficient of the term δr

vanishes if we take

ω0 = ± 1

L
(3.21)

and the + sign on the LHS of (3.20). We choose the positive sign in (3.21) for concreteness;

the frequncies we find are independent of this choice.

Looking at the linear order variation (3.20) we see that we also get the coefficient of

δr to vanish if we choose

ω2
0 =

1

L2
[1 +

r2
0

L̃2

(m − 1)(m − 3)

(m − 2)2
] (3.22)
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These solutions should correspond to the maxima of the potential in [3][4], and thus de-

scribe unstable configurations. We will not consider perturbations around these configu-

rations.

With the choices given in (3.21) (and immediately following that equation) we find

that the zeroth order term in ǫ vanishes, while the second order term in ǫ is

S =ǫ2 Tm−2 rm−3
0

∫

dτdσ1 . . . dσm−2
√

gσ

[
L̃3

2(r2
0 + L̃2)

(
∂δr

∂τ
)2 − L̃

2(r2
0 + L̃2)

∂δr

∂σi

∂δr

∂σi

gσiσj

+
L2L̃(r2

0 + L̃2)

2r2
0

(
∂δφ

∂τ
)2 − L2(r2

0 + L̃2)

2L̃r2
0

∂δφ

∂σi

∂δφ

∂σi

gσiσj

+
LL̃(m − 3)

r0
δr

∂δφ

∂τ

+
L2L̃

2

∂δyk

∂τ

∂δyk

∂τ
− L2

2L̃

∂δyk

∂σi

∂δyk

∂σi

gσiσj − L̃

2
ykyk]

(3.23)

Let Yl be spherical harmonics on the unit m − 2 sphere

gσiσj
∂

∂σi

∂

∂σj

Yl(σ1 . . . σm−2) = −QlYl(σ1 . . . σm−2) (3.24)

For example, on a 2-sphere we have Ql = l(l + 1).

We expand the perturbations as

δr(τ, σ1 . . . σm−2) =δ̃re−iωτYl(σ1 . . . σm−2)

δφ(τ, σ1 . . . σm−2) =δ̃φe−iωτYl(σ1 . . . σm−2)

δyk(τ, σ1 . . . σm−2) =δ̃yke−iωτ Yl(σ1 . . . σm−2)

(3.25)

We see that the δyk perturbations decouple from δr, δφ, and have frequencies given

by

ω2 =
Ql

L̃2
+

1

L2
(3.26)

The δr, δφ perturbations are seen to be coupled. The resulting frequencies are given

by the equation




L̃

(r2

0
+L̃2)

(−ω2L̃2 + Ql) iω(m − 3)LL̃
r0

−iω(m − 3)LL̃
r0

L2(r2

0
+L̃2)

L̃r2

0

(−ω2L̃2 + Ql)





(

δ̃r
δ̃φ

)

= 0 (3.27)

which yields

ω2
± =

1

L̃2
[Ql +

(m − 3)2

2
± (m − 3)

√

Ql +
(m − 3)2

4
] (3.28)
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3.3. The case n = 3, m = 3

In this case the m − 2 sphere is just a circle, which is parametrized by only one

coordinate σ1 ≡ σ. Thus we have

Yl(σ) = eilσ , Ql = l2 (3.29)

From (3.19) we get an additional contribution to the action

SCS2 = 2T1L
2ω0

∫

y1
∂y2

∂σ
dτdσ (3.30)

The δr, δφ perturbations are unaffected by SCS2, and so we get the equation (3.27)

with m = 3. Thus the δr and δφ perturbations decouple, and each has a frequency given

by

ω2 =
Ql

L̃2
=

l2

L̃2
(3.31)

There are two y coordinates, y1 and y2. The frequencies of their fluctuations are given

by
(

L2

L̃
(−ω2L̃2 + l2) + L̃ −2iLl

2iLl L2

L̃
(−ω2L̃2 + l2) + L̃

)

(

δ̃y1

δ̃y2

)

= 0 (3.32)

which gives the frequencies

ω2
± =

1

L̃2
(l ± L̃

L
)2 =

1

L̃2
(l ± 1)2 (3.33)

where in the last step we have used the fact that by (2.25) L = L̃ in this case.

4. Vibration spectrum - branes on the sphere

In this case the brane worldsheet has dimension n−1, and we describe it by coordinates

τ, σ1, . . . σn−2. We choose the static gauge

t = τ (4.1)

χi = σi, i = 1 . . . n − 2 (4.2)

The remaining coordinates are given by

q = q0 + ǫ δq(τ, σ1, . . . σn−2) (4.3)
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φ = ω0τ + ǫ δφ(τ, σ1 . . . σn−2) (4.4)

vk = ǫ δvk(τ, σ1 . . . σn−2), k = 1 . . .m − 1 (4.5)

Recall that now AdSm is described by the oordinates t, v1, . . . vm−1 and Sn is described

by φ, q, χ1, . . . χn−2.

The DBI action is

SDBI = −Tn−2

∫ √
−gdτdσ1 . . . dσn−2 (4.6)

The gauge field again can give two kinds of terms. This time we will call SCS1 the term

arising from the gauge field on the sphere Sn, and SCS2 the term from the gauge field on

AdSm. Then

SCS1 =Tn−2

∫

Aφχ1...χn−2

∂φ

∂τ

∂χ1

∂σ1
. . .

∂χn−2

∂σn−2
dτdσ1 . . . dσn−2

=Tn−2

∫

(ω0 + ǫ
∂δφ(τ, σ1 . . . σn−2)

∂τ
)Aφχ1...χn−2

dτdσ1 . . . dσn−2

=Tn−2

∫

(ω0 + ǫ
∂δφ

∂τ
)(q0 + δq)n−1√gσdτdσ1 . . . dσn−2

(4.7)

To compute SCS2 we write the form of the gauge potential on AdSm for small vk

A(m−1)
τv2...vm−1

≈ L̃m−2(m − 1)v1 (4.8)

We write the lowest order term for SCS2

SCS2 ≈ Tn−2L̃
m−2(m − 1)

∫

v1
1

(n − 2)!
ǫi1...in−2

∂v2

∂σi1

. . .
∂vn−1

∂σn−2
dτdσ1 . . . dσn−2 (4.9)

Again, this term is nonvanishing only for n = m, and is of order higher than quadratic in

ǫ if n > 3.

4.1. Linearised equations for n > 3

Expanding the action to the linear order term in ǫ we get

SDBI ± SCS1 = −ǫ Tn−2

∫

dτdσ1 . . . dσn−2
√

gσ

qn−3
0 [{ (n − 1)q2

0ω2
0 + (n − 2)(1 − L2ω2

0)
√

1 − L2ω2
0 + q2

0ω
2
0

∓ (n − 1)q0ω0}δq

+ { (q2
0 − L2)q0ω0

√

1 − L2ω2
0 + q2

0ω
2
0

± q2
0}

∂δφ

∂τ
]

(4.10)
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The coefficient of the term ∂δφ
∂τ

is a constant as before, and so this term gives no contribution

to the variation of the action with fixed boundary values. The coefficient of the term δq

vanishes if we take

ω0 = ± 1

L
(4.11)

and the + sign on the LHS of (4.10). We again choose the positive sign in (4.11) for

concreteness; the frequencies will be independent of this choice. With these choices the

zeroth order term in ǫ vanishes, while the second order term in ǫ is

S =ǫ2 Tn−2 qn−3
0

∫

dτdσ1 . . . dσn−2
√

gσ

[
L3

2(L2 − q2
0)

(
∂δq

∂τ
)2 − L

2(L2 − q2
0)

∂δq

∂σi

∂δq

∂σi

gσiσj

+
L3(L2 − q2

0)

2q2
0

(
∂δφ

∂τ
)2 − L(L2 − q2

0)

2q2
0

∂δφ

∂σi

∂δφ

∂σi

gσiσj

+
L2(n − 3)

q0
δq

∂δφ

∂τ

+
LL̃2

2

∂δvk

∂τ

∂δvk

∂τ
− L̃2

2L

∂δvk

∂σi

∂δvk

∂σi

gσiσj − L

2
vkvk]

(4.12)

Let Yl be spherical harmonics on the unit n − 2 sphere

gσiσj
∂

∂σi

∂

∂σj

Yl(σ1 . . . σn−2) = −QlYl(σ1 . . . σn−2) (4.13)

We expand the perturbations as

δq(τ, σ1 . . . σn−2) =δ̃re−iωτYl(σ1 . . . σn−2)

δφ(τ, σ1 . . . σn−2) =δ̃φe−iωτYl(σ1 . . . σn−2)

δvk(τ, σ1 . . . σn−2) =δ̃vke−iωτYl(σ1 . . . σn−2)

(4.14)

The vk perturbations decouple from δq, δφ, and have frequencies given by

ω2 =
Ql

L2
+

1

L̃2
(4.15)

The δq, δφ perturbations are coupled. The resulting frequencies are given by the

equation
(

L
(L2−q2

0
)
(−ω2L2 + Ql) iω(n − 3)L2

q0

−iω(n − 3)L2

q0

L(L2
−q2

0
)

q2

0

(−ω2L2 + Ql)

)

(

δ̃q
δ̃φ

)

= 0 (4.16)

which yields

ω2
± =

1

L2
[Ql +

(n − 3)2

2
± (n − 3)

√

Ql +
(n − 3)2

4
] (4.17)
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4.2. The case n = 3, m = 3

The spherical harmonics are again given by (3.29). We get an additional contribution

to the action

SCS2 = 2T1L̃

∫

v1
∂v2

∂σ
dτdσ (4.18)

The δr, δφ perturbations are unaffected by SCS2, and setting n = 3 we see that they

decouple from each other. Each of these perturbations has a frequency given by

ω2 =
Ql

L2
=

l2

L2
(4.19)

There are two v coordinates, v1 and v2. The frequencies of their fluctuations are given

by
(

L̃2

L
(−ω2L2 + l2) + L −2iL̃l

2iL̃l L̃2

L
(−ω2L2 + l2)+

)

(

δ̃v1

δ̃v2

)

= 0 (4.20)

which gives the frequencies

ω2
± =

1

L2
(l ± L

L̃
)2 =

1

L2
(l ± 1)2 (4.21)

5. Comments on the excitation spectrum

In this section we discuss some aspects of the vibration modes. We do not discuss

however the case m = 3, n = 3 since as mentioned above there is a richer set of issues in

that case and we will discuss those details elsewhere.

5.1. Qualititive comments on the frequency spectrum

At first glance one might think that the larger the radius r0 of the brane, the lower

would be the frequency of its normal modes of vibration. But we have seen that these

frequencies (measured in the coordinate τ) are in fact independent of r0. The reason for

such behavior can be traced to the following. Consider first the case of branes in AdS. If

the graviton were pointlike it would be placed at r = 0, where |gττ | = 1, but because of

its size the surface of the brane is near r = r0 where |gττ | ≈ (1 + r2

L̃2
)−1. Thus if we look

at large r0 we will have |gττ | ∼ r−2
0 , which is the same as the behavor gαα ∼ r−2

0 . Thus

the frequencies, which see the ratio of tension to density of any extended object, become

independent of r0 in this limit. When we take into account the motion in the φ direction

as well in the complete analysis, then this rough statement in fact becomes exactly true.
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The induced metric for the equilibrium configuration also includes a contribution from the

angular velocity which in fact precisely cancels the 1 and leaves us with a result which is

simply gττ = − L̃2

r2

0

. Since the contribution from the angular momenta of the fluctuations

to the action also scale as 1
r2

0

, the curvature scale of the background determines all the

frequencies of the giant graviton. For branes in Sn there is a similar effect. Now the

contribution of the angular velocity to the induced gττ is (1− q2

0

L2 ) and this combines with

the usual contribution from the target space metric to lead to a final gττ = −L2

q2

0

. In fact

it may be easily verified that by a suitable rescaling of the fluctuation fields all the r0 or

q0 dependences can be completely scaled out of the small fluctuations action.

5.2. Modes arising from shift of BPS configuration

We do not find any unstable modes in the system at this quadratic order in the anal-

ysis, as all the ω2 are real and nonnegative. In the formulae for ω2 the Ql are nonnegative

numbers. Further, Ql = 0 for l = 0 (which is the mode constant over the σ coordinates),

and Ql > 0 for l > 0.

We can see in the spectrum the consequence of the fact that we have several parameters

that can be varied in the equilibrim configuration. Let us examine such modes in turn.

(a) From (3.28) and (4.17) we see that ω2 = 0 is one of the solutions when Ql=0,

in the δr, δφ system and in the δq, δφ system. This zero mode corresponds to the fact that

the radius r0 or q0 of the equilibrium configuration can be taken to have any chosen value

allowed by the geometry. Different values of r0 and q0 have different energies, but the same

value of the action, viz. zero.

(b) Consider branes expanding in the AdS. We have taken the brane to move along

the φ direction at θ = 0 on the sphere Sn. But we could let the brane rotate along some

other great circle on Sn. We can achieve this by a rotation

z′1 = z1 cos α − y1 sin α, y′

1 = z1 sin α + y1 cos α (5.1)

with α a constant. For small α we find that starting with the configuration with z1 =

cos θ cos φ = cos φ = cos(ω0τ) (see eq. (2.7)) and y1 = 0 we get a configuration with

z′1 ≈ z1, y′

1 ≈ α cos(ω0τ) = α cos(
1

L
τ) (5.2)

This pertubation has l = 0 (since the deformation is independent of the σi) and agrees

with the frequency ω2 = 1/L2 obtained from (3.26) for the yi vibrations with l = 0.
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(c) By a similar analysis, if we study the branes on the sphere and look at vi

perturbations with l = 0 we find the frequency ω2 = 1/L̃2, in agreement with (4.15). We

interpret these modes as ‘boosts’ in the AdS space, and the frequency corresponds to the

natural period in time t of this space.

Thus we have found all the expected families of solutions: the different values of r0 or

q0 (corresponding to different Pφ), the different orientations of angular momenta and the

possible motions in the AdS space of the center of mass of the brane.

(Note that we have not discussed here the details of the case m = 3, n = 3, where

there are additional zero modes seen at l = ±1 in (3.33) and (4.21).)

5.3. Excitation spectrum in a Hamiltonian analysis

Now let us ask the question: What would be the excitation energies of the brane

that would result from a quantization of the small vibrations around the configuration

with E = |Pφ| = J? When there are are continuous family of equilibrium solutions as

in this case, one should do the following. Fix the values of conserved quantities, and

for any choice of these quantities write down the classical Hamiltonian. If fixing the the

conserved quantities gives a unique lowest energy state, then the Hamiltonian for small

perturbations will be a quadratic form in the coordinates and momenta describing the

perturbation. Then one does the usual diagonalisation of quadratic forms and extracts the

classical frequencies of oscillation ω. If we then consider the quantum problem, the energy

of an excited configuration will be

E ≈ E0 + h̄ω = J + h̄ω (5.3)

The value of E0 = J will be itself quantised too, since the angular momentum operator in

quantum mechanics has a discrete spectrum.

Our analysis has been Lagrangian rather than Hamiltonian, and we did not fix the

values of conserved quantities; we found all solutions near the equilibrium configuration.

Of course if there is an oscillation with frequency ω found from the Hamiltonian with

fixed values of the conserved quantities, then this oscillation and its frequency will be

found among our Lagrangian solutions. But some of the solutions found in the Lagrangian

method will not appear in the Hamiltonian analysis, since they will not hold fixed the

values of the conserved quantities. After we locate these latter modes and remove them

from the spectrum, we will be left with the modes that will correspond to the excitation

levels (5.3).
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We will now see that the modes to be removed are precisely those that we looked at

in the last subsection. The conserved quantities to be held fixed are all the components

of the angular momentum Jab, and the conserved quantities corresponding to generators

of the isometries of AdSm (which we loosely call ”momentum”). The mode of type (a)

in the above subsection leads to a change in the magnitude of J (without changing its

direction). The mode in (b) gives a nonzero value of the angular momentum in the z1 −y1

plane, (while the original angular momentum was in the z1 − z2 plane); thus it also does

not hold the angular momentum fixed. Similarily the mode of type (c) leads to a change

of ‘momentum’ in the AdS space. Thus these modes will not appear in the analysis of the

Hamiltonian with fixed values of conserved quantities.

All the above modes had l = 0. Note that if l 6= 0, then there will be no change

in the conserved quantites when we excite the mode. This is because these conserved

quantities appear as an integral over a τ = constant hypersurface of the worldvolume,

with the integrand being for example the angular momentum density. If l 6= 0 then we get

no contribution to the conserved quantity at linear order in the perturbation.2

Thus the only modes that we could lose when working with fixed values of the con-

served quantities are modes with l = 0. Apart from the modes (a)-(c) of the above

subsection, there is only one such mode with l = 0 for the brane expanding in AdS space

and one for the brane expanding on the sphere. Consider for concreteness the case of the

brane expanding in AdS space. From (3.28) we see that this mode has frequency

ω = ±m − 3

L̃
(5.4)

But a short calculation reveals that under this mode the shift of the value of Pφ = J is

in fact zero. In this mode the value of r changes with time, but the value of φ̇ changes as

well, so that the net change in angular momentum ends up being zero. To verify this we

first find the eigenvector for this eigenvalue from (3.27); we choose ω = (m − 3)/L̃ from

(5.4) for concreteness. Then we get

δ̃r

δ̃φ
= i

L

L̃

r2
0 + L̃2

r0
(5.5)

2 We may still get a contribution of order ǫ
2 to the value of a conserved quantity like J

(under the perturbation of order ǫ), but we can undo this change by an order ǫ
2 change in the

equilibrium value of r0, and so can regard the perturbation as one that gives no change in the

conserved quantity.
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But we have for the angular momentum density on the brane

pφ = Tm−2
L2rm−2φ̇

√

1 + r2

L̃2
− L2φ̇2

(5.6)

where we have dropped terms like ṙ2 and ẏ2 from the denominator that will vanish to

linear order around the equilibrium configuration.

Using (5.5) we find that under the perturbation,

δpφ =
∂pφ

∂r
δr +

∂pφ

∂φ̇
δφ̇ = 0 (5.7)

Thus the angular momentum does not change, under this perturbation, and the pertur-

bation will survive in the Hamiltonian analysis that gives the vibration spectrum. Due to

the symmetry between the cases of branes on the AdS space and branes on the sphere, we

expect that a similar conclusionwill hold for the l = 0 mode for branes expanding on the

sphere; this mode has ω = ±n−3
L

from (4.17).

Thus we conclude that the vibration spectrum at fixed values of angular momenta

and AdS momenta is given by all the modes found in the Lagrangian analysis with the

exception of those discussed in (a)-(c) in the previous subsection.

6. Discussion

We have not found any families of BPS solutions besides the known ones, so the

ansatz using spherical branes for BPS configurations appears to be an adequate one. The

excitaion modes all have real positive ω2, so we have not found any instabilties, for any size

of the brane. Thus this analysis does not shed light on the issue of whether BPS branes

can exist in the AdS space with arbitrarily large angular momentum. Note however that

when branes expand in the AdS space then we use very little knowledge of the sphere in

the spacetime - we just use the motion around the equator of the sphere. Thus if the

compactification had a torus in the internal space (as in the case AdS3 ×S3 ×T 4) then we

could let the brane move along a circle on the torus instead. Then the question of whether

we should have an upper bound to the brane size would be related to whether we expect

a limit on the total U(1) charge of the graviton state.

In [6] it was found that the giant graviton phenomenon occurs in spacetimes other

than AdS × S. In particular, consider p-branes wrapping the transverse Sp+2 of the near
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horizon geometry of D(6 − p) branes (both extremal and near-extremal) in string theory.

In Poincare coordinates there is now an equilibrium solution where the brane has a fixed

size, carries angular momentum on the Sp+2 and moves in the radial direction transverse

to the D(6 − p) brane. The energy of this system as a function of the radial and angular

momenta is exactly the same as that of a graviton moving in this geometry. Note that

generically these states are not BPS, though they are the lowest energy states for a given

angular momentum. It would be interesting to examine the issue of small fluctuations

around these configurations.

Let us comment on a significant implication of our result. The gravitons with high

angular momentum correspond to chiral operators with high scaling dimensions in the

dual CFT: ∆ ∼ E, where E is the energy (and angular momentum) of the graviton

(measured in units of the curvature length scale). The fact that the excitation spectrum

of this graviton has spacings of order the curvature scale means that, if the giant graviton

picture is right, these chiral operators have a set of associated nonchiral operators with

dimensions increasing in steps of order unity. It would be interesting to look for such a

spectrum explicitly in a strongly coupled CFT, for example in the d = 4 super-Yang-Mills

theory.

In [18] it was found that in the orbifold CFT corresponding to a D1-D5 system, the

correlation function of three chiral primaries drops significantly below the naive supergrav-

ity expectation when the spin of the chiral primaries becomes comparable to the square

root of N = Q1Q5. This phenomenon is a manifestation of the stringy exclusion principle,

which truncates the spectrum of chiral primaries at spin equal to N . Let us assume for the

moment that in the supergravity limit of the theory, this decrease in coupling continues

to be valid. One possible explanation for the drop in coupling could be that when the en-

ergy of two interacting supergravity quanta becomes very high, we produce particles other

than supergravity modes, and thus the amplitude to produce just a third BPS graviton by

colliding two gravitons becomes very small.3

If the giant graviton picture describes supergravity quanta at high energy, then we

see that some of the energy of interaction may in fact go into exciting the vibration modes

of the gravitons. Since the spacing between excitations of the graviton excitations is

comparatively small, a large number of modes are available to be excited, and the effect of

exciting these modes can be quite significant. (A typical graviton mode in AdS space has

3 We thank E. Martinec for a discussion on this point.
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a frequency that is of the order of the AdS scale or higher, so interactions will generally

be able to excite these vibration modes.)
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