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abstract

We argue that the gauge theory dual to the Type IIB string theory in ten-dimensional
pp-wave background can be thought to ‘live’ on an Euclidean subspace spanning four of the
eight transverse coordinates. We then show that light-cone time evolution of the string is
identifiable as the RG flow of the gauge theory — a relation facilitating ‘holography’ of the pp-
wave background. The ‘holography’ reorganizes the dual gauge theory into theories defined over
Hilbert subspaces of fixed R-charge. The reorganization breaks the SO(4,2)×SO(6) symmetry
to a maximal subgroup SO(4)× SO(4) spontaneously. We argue that the low-energy string
modes may be regarded as Goldstone modes resulting from such symmetry breaking pattern.
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1 Overview

It was known for some time that there is a certain limit, the so-called Penrose limit, in which

any spacetime which solves the Einstein’s field equation is reduced to a plane-wave background

[1]. Roughly speaking, the plane-wave background refers to spacetime close to a null geodesic.

This assertion was extended to supergravity backgrounds [2], involving, in addition to the

metric, dilaton, p-form gauge fields, and fermionic superpartners. It was also realized [3] that

maximally supersymmetric pp-wave backgrounds [4, 5, 6, 7, 8] are obtainable as the Penrose

limits of the AdSp×Sq backgrounds in ten-dimensional IIB supergravity and eleven-dimensional

supergravity. Remarkably, the first-quantized superstring is exactly solvable in the pp-wave

background [9, 10], as the Green-Schwarz string action is quadratic in the worldsheet variables.

Recently, Berenstein, Maldacena and Nastase (BMN) [11] argued that IIB string theory on

such a pp-wave background with eight transverse directions is dual to the large R-charge sector

of N = 4 supersymmetric gauge theory in the large N limit. They identified a certain class of

long supermultiplet operators in the gauge theory with various string states. By summing over

a class of Feynman diagrams, they claimed that anomalous contributions to the scaling dimen-

sion of these operators indeed reproduce the dispersion relations predicted by the light-cone

quantization. More significantly, they proposed a concrete construction of the ten-dimensional

string in terms of the four-dimensional gauge theory variables. If correct, the construction

marks a significant progress beyond the AdS/CFT correspondence [15], as it provides a dictio-

nary for associating the gauge theory operators for not just supergravity modes, but for higher

string modes as well. The BMN proposal has been also extended to backgrounds with less

supersymmetry [12, 13, 14].

In this paper, we substantiate aspects of the BMN proposal. Specifically, we clarify holo-

graphic relations between the bulk string states and the boundary gauge theory operators. In

doing so, we emphasize the crucial role played by the choice of the gauge theory vacuum, on

which both the superconformal symmetry and the R-symmetry are spontaneously broken. In

section 2, we contrast the bulk-boundary relations displayed in the AdS/CFT correspondence

and those in the pp-wave / gauge theory correspondence. In section 3, we illustrate this by

working out the profile of the supergravity modes in the pp-wave background. In section 4,

we elaborate the pattern of the aforementioned spontaneous breaking of conformal and R-

symmetries. We emphasize that the dual gauge theory can be thought to be defined on a

Euclidean four-dimensional space. We argue that holography relates the light-cone time in the

pp-wave background to the renormalization group scale in the dual gauge theory. We show

that this newly identified holography facilitates the nature of the string in terms of the dual

gauge theory. In section 5, we discuss aspects of the enhanced supersymmetry in the dual gauge

theory. We conclude with remarks in section 6.
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2 AdS/CFT versus PP-Wave/Yang-Mills

In the AdS/CFT correspondence, the dual conformal field theory resides on the boundary of

the AdS-space [16, 17], and the radial direction of the AdS-space plays the role of scale of the

boundary theory [18, 19, 20, 21, 22, 23]. Consider the global coordinates in AdSd+1 × Sd+1

space with metric

ds2 = R2

[

− (1 + r2) dt
2
+ dr2

(1+r2)
+ r2dΩ2

d−1 + (1 − ρ2) dθ
2
+ dρ2

(1−ρ2)
+ ρ2dΩ2

d−1

]

, (1)

where the first and the second parts express the AdSd+1 and the Sd+1 subspace, respectively.

A bulk single particle state of a given mass and spin, satisfying the classical field equation,

is specified by several “momenta”: angular momentum quantum numbers (ℓ, m1, · · ·md−2) for

the Sd−1 part in AdSd+1 space and
(

ℓ, m1 · · ·md

)

for the Sd+1, respectively, and a principal

quantum number n for the remaining radial coordinate r in AdSd+1 space. The bulk energy ω is

then given in terms of these quantum numbers by a dispersion relation. In the dual conformal

field theory, we have composite operators O{ℓ,m} (t, φ1 · · ·φd−1), where (t, φ1, · · · , φd−1) denote

coordinates of R × Sd−1. These operators are decomposable into Fourier modes with a given

energy ω and Sd−1 spherical harmonics (l, m1, · · · , md−2). The remaining quantum numbers
(

ℓ, m1, · · · , md

)

are encoded in the structure of the operators. For instance, in AdS5 × S5, the

S5 quantum numbers are encoded in the manner the six Higgs fields Φ1, · · · , Φ6 of the N = 4

gauge theory appear in the operator. As a concrete example, a bulk dilaton mode in AdS5×S5

with S5 angular momentum
(

ℓ, m1, · · · , md

)

is described by a set of chiral primary operators

whose bosonic component is given by

Tr
[

FmnF
mnΦ(i1 · · ·Φi

ℓ
)
]

(t, φi, · · · , φd−1), (2)

in which the indices i1 · · · iℓ are decomposed into irreducible representations of SO(d). Fmn

denotes the gauge field strength. Likewise, chiral primary operators

Tr
[

Φ(i1 · · ·Φi
ℓ
)
]

(t, φi, · · · , φd−1) (3)

describe modes of a linear combination of the four-form self-dual potential and the trace of the

longitudinal graviton in ten-dimensions.

One can obtain the Penrose limit of Eq.(1) along a generic null geodesic as follows. Boost

along the two isometry directions:

t = cosh α t − sinh α θ

θ = − sinh α t + cosh α θ, (4)

and rescale two ‘radial’ and light-cone coordinates:

r = Rr, ρ = Rρ and x± =
R√
2
(θ ± t). (5)

2



Then, take the limit

R → ∞ and α → ∞, (6)

while holding

x±, r, ρ = fixed and
eα

√
2R

≡ µ = fixed. (7)

The resulting spacetime is then reduced to

ds2 = 2dx+dx− − µ2(r2 + ρ2)(dx+)2 + dr2 + r2dΩ2
d−1 + dρ2 + ρ2dΩ2

d−1

= 2dx+dx− − µ2(x2 + y2)(dx+)2 + dx · dx + dy · dy, (8)

where we have defined transverse coordinates x, y which describe the Rd made out of r and

Sd−1, and Rd made out of ρ and Sd−1, respectively. Even though the metric exhibits SO(d+d)

isometry, it turns out the RR five-form field strengths break it to SO(d)×SO(d).

A novel feature of the pp-wave background is that the single particle bulk states are now

given in terms of certain harmonic oscillator quantum numbers (n1 · · ·nd) and (m1 · · ·md) for a

given value of the momentum conjugate to x−, which we call p− ≡ 2p+. The light-cone energy

p+ ≡ 2p− is then given by a dispersion relation. We will illustate this later in this section.

According to the BMN proposal, with these harmonic oscillator quantum numbers, the chiral

primary operators dual to a single-particle bulk state with the lowest light-cone energy, which

turns out to be a linear combination of the self-dual RR four-form potential and trace of the

graviton, take the form of ‘Z-string’:

∑

Tr [Z · · ·ZZ (Di1Z) ZZ · · ·ZZ Φa1 ZZ · · ·ZZ (Di2Z) ZZ · · ·ZZ Φa2 ZZ · · ·] . (9)

Here, along a string of J factors of Z ≡ (Φ5 + iΦ6), one distributes ni insertions of (DiZ)

and ma insertions of ‘transverse’ Higgs fields Φa (a = 7, · · ·10). Then, Φ5 and Φ6 are the two

remaining, ‘longitudinal’ Higgs fields in the N = 4 gauge theory. The sum is over all distinct

(up to cyclic permutation) locations of the operators DiZ and Φa in the string of Z’s. The light

cone momentum p− = −i ∂
∂x−

and the light cone energy p+ = i ∂
∂x+ are related to the dimension

∆ and J of the operator Eq.(9) by the relations

p− =
1

2µR2
(∆ + J) =

1

2µR2



2J +
d
∑

i=1

ni +
d
∑

a=1

ma





p+ = µ(∆ − J) = µ





d
∑

i=1

ni +
d
∑

a=1

ma



 . (10)
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On the other hand, the coordinate transformations, Eqs.(4-7), imply

p− =
1

2µR2

(

i
∂

∂t
− i

∂

∂θ

)

p+ = µ

(

i
∂

∂t
+ i

∂

∂θ

)

. (11)

As J = −i ∂

∂θ
, Eq.(11) is consistent with Eq.(10) since ∆ = i ∂

∂t
2.

For other single-particle supergravity states such as the dilaton, one needs to insert an

operator FmnF
mn inside the Z-string. For higher string-mode states, each term in the sum

of Eq.(9) should be weighted by a phase-factor, which depends on the locations of various

operators in the Z-string.

Note that all the bulk quantum numbers appear in the structure of the dual gauge theory

operators, Eq.(9). This is in sharp contrast to the AdS/CFT correspondence, where only half of

the quantum numbers reside in the operator structure. There, the remaining half were encoded

as dependence of the operator on coordinates of the four-dimensional spacetime, the boundary

of AdS5, on which the dual gauge theory resides. Evidently, the operators in Eq.(9) cannot be

regarded as functions of the coordinates of the four-dimensional spacetime, as that would result

in more quantum numbers than needed for specifying a given single particle supergravity/string

state in the bulk.

In subsequent sections, we will argue that the gauge theory dual to the pp-wave background

Eq.(9) can be thought of as “living” in a Euclidean four-dimensional space R4 spanned by the

x coordinates. The precise form of the dual gauge theory operators are then given in terms of

the Hermite transformation of local operators defined on R4. The fact that this space has to

be Euclidean, rather than Minkowski spanned by light-cone coordinates and part of R4, follows

from the correspondence between the operators Eq.(9) and the one-particle states of the bulk

supergravity/string theory. The latter states are described in terms of (d + d) set of simple

harmonic oscillator operators with indices in a Euclidean space. For a string theory defined

in the bulk, these oscillators also carry a label for the level number [9]. As we will see, this

observation leads naturally to an interpretation of x+ as the holographic bulk coordinate in the

Penrose limit, so that evolution in x+ in the bulk generates scale transformation in the dual

gauge theory.

We will argue that in the gauge theory selecting a sector with fixed SO(2) charge J is

tantamount to a spontaneous breaking of the conformal group SO(4,2) to SO(4) and the R-

symmetry group to SO(4) as well. The low-energy fluctuations are then the Goldstone modes of

the broken symmetries. The representation of these operators in terms of Hermite transforms

then follows automatically.

2Here we assume that (9) means that the operator is evaluated at the origin of a R
4
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3 Supergravity Modes in pp-Wave Backgrounds

Consider a minimally coupled, massless scalar field D whose field equation is given in the global

coordinates Eq.(8) as


2∂+∂+ + µ2(x2 + y2)∂2
− +

d
∑

i=1

∂2
xi +

d
∑

a=1

∂2
ya



 D
(

x+, x−,x,y
)

= 0. (12)

The normal-modes with p− > 0 are given by

Dp+,p
−

,n,m

(

x+, x−,x,y
)

= e−
1

2
µp

−
(x2+y

2

)
d
∏

i=1

Hni

(√
µp−xi

)

d
∏

a=1

Hma
(
√

µp−ya)

× exp
(

ip−x− + p+x+
)

, (13)

where Hn(x), Hm(y) denote the Hermite polynomials 3. The states of this scalar field theory

are therefore created from the bulk Fock-space vacuum by creation operators a†(ni,ma, p
+) in

the light-cone quantization. In a first-quantized theory of particles in this background, states

are created by creation operators ci†, ca†:

ci = (pi + ixi)/
√

2 and ci† = (pi − ixi)/
√

2,

ca = (pa + iya)/
√

2 and ca† = (pa − iya)/
√

2, (14)

where the indices i, a refer to the transverse directions along Rd × Rd, spanning a (d + d)-

dimensional transverse space. The bulk dispersion relation is then given by

2p− = p+ = µ





d
∑

i=1

ni +
d
∑

a=1

ma +
1

2
(d + d)



 . (15)

Note that the value of p+ is independent of the value of p−. This is because the supergravity

modes are massless. For massive, string oscillation fields, the dispersion relation depends ex-

plicitly on p−. The sum over zero-point energies is standard. We will see that, for the explicit

example of ten-dimensional pp-wave background, this zero-point energy is precisely what is

required for precise correspondence with appropriate operators in the dual gauge theory. We

note, for future reference, that the dispersion relation for the mode which is a linear combina-

tion of the four form RR potential and the trace of the longitudinal graviton does not contain

this zero-point fluctuation.

As we will elaborate more, the dual gauge theory has operators which are Hermite transforms

of local operators defined on the R4 spanned by x.

O[n] = H.T. [O] , (16)
3Note that, due to the harmonic potential provided by the second term in Eq.(12), there is no real distinction

between normalizable and non-normalizable modes for p− > 0. The modes with p− = 0 are not L2 normalizable,
but are δ-function normalizable.
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where the Hermite transform of a generic operator O(x) on Rd is defined as

H.T.
[

O
]

=
1

N
∫

dµ[x]
d
∏

i=1

Hni

(√
µp−xi

)

O(x),

where N is a normalization factor, and the measure is given by

dµ[x] := ddx e−
1

2
µp

−
x

2

.

Using the standard recursion relation for Hermite polynomials, the Hermite transform can

be reduced to expressions involving derivatives acting on O and no factors of the Hermite

polynomials.

It may be useful to formally define operators on a Rd ×Rd by introducing a set of fiducial

coordinates y for the Rd. Performing the Hermite transform on this eight-dimensional space,

H.T.
[

O
]

=
1

N
∫

dµ[x]dµ[y]
d
∏

i=1

Hni

(√
µp−xi

)

d
∏

a=1

Hma
(
√

µp−ya) O(x,y).

Using recursion relations obeyed by the Hermite polynomials, one can then express the Hermite

transform in terms of derivatives with respect to y, which in turn become commutators with

Higgs fields inside the operator.

3.1 Dilaton

In the ten-dimensional pp-wave background, the dilaton field equation take the same form as

Eq.(12). Thus, the light-cone energy spectrum of the dilaton state is given by

Edilaton = µ

(

4
∑

i=1

ni +
4
∑

a=1

ma +
1

2
(4 + 4)

)

. (17)

According to the BMN proposal, the light-cone energy (measured in unit of µ) ought to match

with (∆ − J) of a gauge theory operator dual to the dilaton. A single insertion of FmnF mn,

which carries ∆ = 4 and J = 0, inside the Z-string in Eq.(16) is precisely what we need

to match the zero-point light-cone energy. Interestingly, in providing the requisite zero-point

energy (4 + 4)/2 = 4, four-dimensionality of the internal space R4 has played a crucial role.

The single particle dilaton ground-state corresponds to n = m = 0. For the states with

higher energy, using the recursion relation of Hermite polynomials, we deduce that the corre-

sponding operators are precisely insertions of the ‘transverse’ Higgs fields and covariant deriva-

tives, viz. a set of operators of the form

Tr [FmnF mnZZ · · ·ZZΦa1ZZ · · ·ZZ(DiZ)ZZ · · ·ZZΦa2ZZ · · ·] .

6



3.2 Longitudinal Graviton and Four-Form Potential

The pp-wave background is supported by a homogeneous RR 5-form field strength

F+1234 = +F+5678 = µ,

giving rise to Eq.(1) through the Einstein’s field equation. As such, degrees of freedom of the

graviton and the four-form RR potentials would mix each other. More precisely, expanding

Type IIB supergravity field equations of the metric and the RR four-form potential to linear

order fluctuations, hµν , cµναβ , and taking the light-cone gauge hµ− = 0, cµνα− = 0, we find that

the mixing takes place between the traces of the graviton and the scalars of the RR four-form

potential. We thus denote these modes as

h := hijδ
ij and c :=

1

4!
ǫijklcijkl

h := hmnδ
mn and c :=

1

4!
ǫmnpqcmnpq.

These fields are singlets of the two SO(4)’s on R4 × R4, respectively.

Then, the linearized field equations exhibiting the mode mixing are given by

∆Lh − 16µ∂−c = 0

∇2c − 2µ∂−h = 0,

where ∆L stands for the Lichnerowitz operator for the spin-2 graviton. Utilizing the fact that

(ΛLh)ij = −1
2
∇2hij and diagonalizing the two coupled equations, we obtain scalar-mode field

equations

[

∇2 − 8iµ∂−

]

(h + 4ic) = 0 (18)

and its complex conjugated equation for (h − 4ic). Exactly the same set of equations hold for

h̄ and c̄ as well.

The field equation Eq.(18) is soluble exactly as in the dilaton case. We find that the light-

cone spectrum of the (h + 4ic) ‘complex scalar’ field is given by

EZ−scalar = µ

(

4
∑

i=1

ni +
4
∑

a=1

ma +
1

2
(4 + 4)

)

− 4µ

= µ

(

4
∑

i=1

ni +
4
∑

a=1

ma

)

≥ 0.

On the right-hand side of the first expression, the first and the second terms are contributions

from ∇2 and −8iµ∂−, respectively. Evidently, the zero-point energy arising from fluctuations

along the eight transverse directions is cancelled precisely by the classical contribution −4µ to

7



the light-cone energy. Hence, along with the second set of complex ‘scalar’ field (h̄ + 4ic̄), we

conclude that there are two bulk ‘scalar’ modes yielding the minimum of the light-cone energy

to be zero. These bulk ‘scalar’ fields are then identified with the dual gauge theory operators

Tr [ZZ · · ·ZZ · · ·ZZ] ,

viz. the Z-string, first introduced by BMN.

In contrast, the complex-conjugate ‘scalar’ fields (h − 4ic) and (h̄ − 4ic̄) are subject to

the classical contribution +2µ to the light-cone energy. It implies that the minimum of the

light-cone energy is +8µ, instead of 0, rendering the corresponding dual gauge theory operator

involving eight powers of Φa’s distributed along the Z-string.

4 Penrose Contraction, Spontaneous Symmetry Break-

ing & Euclidean Dual Gauge Theory

We now turn to the dual N = 4 supersymmetric gauge theory. This theory is invariant under

SO(4,2) ⊗ SO(6), where SO(6) refers to the internal R-symmetry. Denote the generators of

SO(4,2) as JAB with A, B = 1, · · · , 6, where 5, 6 are the directions with negative signature, and

those of SO(6) as JUV with U, V = 7, · · · , 12. In terms of JAB, the generators of the conformal

group are

Jij, Pi = J5i + J6i, Ki = J5i − J6i, D1 = J56 (19)

with i, j = 1, · · · , 4. The same can be done for the generators of SO(6), and we define

Jab, Pa, Ka, D2 accordingly, where a, b = 7, · · · , 10 and D2 = J11,12.

Let us now assume that there exists a vacuum state, on which the SO(4,2)⊗ SO(6) is bro-

ken spontaneously to SO(3,1) ⊗ SO(4), viz. standard symmetry breaking pattern preserving

Lorentz plus ‘transverse’ internal symmetries. The number of generators of broken symmetries

is eighteen, viz. nine nonlinearly realized symmetries for each product group. The genera-

tors of the broken symmetries are Pi, Ki, Pa, Ka, D1, D2 and the generators of the unbroken

symmetries are the Jij for the Lorentz group SO(3,1) and the Jab for the internal symmetry

group SO(4). One easily finds that generators of the broken symmetries satisfy the following

commutation relations

[Pi, Ki] = D1 and [Pa, Ka] = D2.

These commutation relations are very suggestive. If one were to put aside the fact that D1 and

D2 do not commute with the P ’s and K’s, one may try to interpret the previous commutation

relations as defining two Heisenberg algebras h(4)⊕ h(4), each one with eight generators, for

which the D1 and D2 as the two central extensions. This interpretation, as it stands, is not

8



viable if one just considers the standard symmetry breaking pattern SO(4,2) ⊗ SO(6) to SO(3,1)

⊗ SO(4) : D1 and D2 are not central terms and we can not organize the generators of the

broken symmetries in terms of two Heisenberg algebras. It is precisely at this point where the

existence of supergravity/string duals and concept of the Penrose contraction can help us to

define a different pattern of the symmetry breaking.

4.1 Penrose Contraction

As is well known, the symmetry algebra SO(4,2) ⊗ SO(6) of N = 4 gauge theory are realizable

as isometries of the AdS5×S5 spacetime. The Penrose limit recapitulated in secton 2 preserves

the total number of Killing vectors but can change their algebraic relations. In particular,

if we perform the Penrose limit on a generic light geodesic in AdS5 × S5 the Killing vectors

define the algebra [h(4)⊕h(4)]⊕so(4)⊕so(4), where the bracket is to emphasize the fact that

two Heisenberg algebras share the same central extension. The extra Killing vector defines an

outer-automorphism of the Heisenberg algebras. We interpret the Penrose limit as defining a

sort of spontaneous symmetry breaking from SO(4,2)⊗SO(6) to SO(4)⊗SO(4) with the eighteen

generators of the broken symmetries defining the two Heisenberg algebras h(4)’s and the outer-

automorphism.

As the simplest illustration, consider AdS2 × S2, relevant for the near-horizon geometry of

four-dimensional BPS black holes. In this case, the symmetry group is SO(1,2)⊗ SO(3) with six

generators that we will denote P1, K1, P2, K2, D1, D2. They satisfy, in particular, [P1, K1] =

D1 and [P2, K2] = D2
4. In the Penrose limit, Pi, Ki become the generators of two Heisenberg

algebras and the Di’s produce the common central term and the outer automorphism. In fact,

denoting the Penrose scaling by Ω, we get Di(Ω) = di,0Ω−2 + di,1 + di,2Ω2 + ... with d1,0 = d2,0.

The central term is defined by di,0 and the outer-automorphism by (di,1 − di,2). Expansion

of Di(Ω) is then interpretable as a perturbative expansion in powers of the Penrose scaling

parameter, Ω.

An important aspect of the Penrose limit in the case of AdS5 × S5 considered by BMN is

that the unbroken symmetry is SO(4)⊗SO(4). In other words, if we want to use the Penrose

contraction as a pattern of the symmetry breaking for the dual N = 4 gauge theory, we should

assume that the vacuum is invariant not under the Lorentz group but under a rotation group in

a four-dimensional Euclidean space. Insight to this possiblity can be gained by recalling aspects

of spontaneous conformal symmetry breaking, studied thoroughly some time ago [24]. The idea

was to assume an underlying theory invariant under the conformal group and, after spontaneous

conformal symmetry breaking, to study the low-energy physics of the corresponding Goldstone

bosons. The first peculiar aspect of the spontaneous conformal symmetry breaking, SO(4,2)

4 In [6] the generators Pi Ki, Di correspond respectively to the Killing vectors Ei, E
∗
i
, ǫi.
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to SO(1,3), is that the generators of translations are part of the broken symmetries. Being

so, only the generators of special conformal transformations and dilatations were considered

[24] as real Goldstone bosons. A consequence of this is that these Goldstone bosons, contrary

to the standard case, are not massless as the broken symmetries do not commute with the

Hamiltonian, viz. with translations in time. In the Penrose contraction, we are facing a

similar problem. If we consider N = 4 gauge theory and the standard spontaneous breaking

pattern to SO(3,1) ⊗ SO(4), we are including among the broken symmetry generators, the

translation generators in physical time as well as the spatial translation generators. If we

try to understand this breaking in the old-fashioned approach [24], we need to organize the

eighteen broken symmetries into a set of nine massless Goldstone bosons, corresponding to

the spontaneous breakdown of the internal symmetry SO(6), five massive Goldstone bosons

corresponding to the special conformal transformations and dilatations that do not commute

with the Hamiltonian and four translations. This is certainly not the picture we get if we use

Penrose contraction. In the Penrose contraction, we organize the eighteen broken symmetries

into a Heisenberg algebra tt h(8) and an outer-automorphism. What now remains is a concrete

interpretation of the Heisenberg algebra h(8) and the outer-automorphism entirely within the

dual gauge theory formulation.

4.2 Dual Gauge Theory is Euclidean

Let Φi i = 5...10 be the Higgs fields of N = 4 super Yang Mills theory. Following BMN, define

the field Z = (Φ5 + iΦ6), and denote by J the SO(2) R-charge corresponding to rotations in the

internal (5,6)-plane. Consider decomposing the gauge theory Hilbert space into infinite towers

of Hilbert subspaces of definite J quantum number. Evidently, on each subspace, Fock-space

“ground state” breaks the internal SO(6) spontaneously to SO(4). We denote the Fock-space

vacuum with R-charge equal to J as |0〉J . We will be interested in the Hilbert space of quantum

fluctuations around this vacua. The first thing to be done is characterizing the state |0〉J . The

simplest way to define this state is, in radial quantization,

Tr
(

ZJ
)

(x = 0)|0〉YM,

where |0〉YM refers to the perturbative vacuum of the dual N = 4 gauge theory. The operators

should be considered as functions of the coordinates of a four dimensional Euclidean space, R4,

and is not related a priori to Euclideanized N = 4 super Yang-Mills theory defined on R3 ×Rt

after the Wick rotation. On R4, a local operator Tr
(

ZJ
)

(x) is expandable in a complete basis

of the Hermite polynomials

Tr
(

ZJ
)

(x) =
∑

{n}

cn
4
∏

i=1

(

e−Λ2x2
i Hni

(Λxi)
)

, (20)
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where Λ is a scale defined within the dual gauge theory, which will be determined later. Thus,

we can write

|0〉J = cn=0 |0〉YM. (21)

The Hilbert space of quantum fluctuations is generated by states |n〉J = cn|0〉YM. For instance,

we get:

∑

ℓ

Tr
(

Zℓ(DiZ)ZJ−ℓ
)

(0)|0〉YM = |ni = 1〉J .

One can define creation and annhilation operators bi
0 and bi†

0 obeying the canonical commutation

relation
[

bi
0, b

j†
0

]

= δi,j such that

bi†
0 |0〉J = |ni = 1〉J . (22)

These operators generate the Heisenberg algebra h(4). As we are working in N = 4 gauge

theory, we can also consider fluctuations with respect to the internal directions, namely,

∑

ℓ

Tr
(

ZℓΦaZZJ−ℓ
)

(0)|0〉YM (23)

with a = 7, · · · , 10. In the large-J limit, one can represent these states in terms of the same

type of creation and annhilation operators as before, viz. |na = 1〉J = ba†
0 |0〉J . Both bi

0 with

i = 1, · · · , 4 and ba
0 with a = 7, · · · , 10 transform as vectors under the two SO(4)’s respectively.

¿From now on, we will denote them collectively as bi
0, b

i†
0 with i = 1, · · · , 4, 7, · · · , 10. These

operators generate the Heisenberg algebra h(8). Note that this is true only in the large-J limit

and for Euclidean gauge theory. In view of the BMN proposal, it is quite natural to identify

this Heisenberg algebra h(8) with the similar Heisenberg algebra encountered in the Penrose

contraction of SO(4,2)⊗SO(6).

The next step would be to identify, within the dual gauge theory, the physical meaning

of both the central extension and the outer-automorphism. In the original theory invariant

under SO(4,2)⊗ SO(6), there are two generators of the symmetry algebra that are of special

importance, viz. the generator of dilatations of the space-time coordinates and the generator J

of the SO(2) R-symmetry. Inferring from the discussion on the Penrose contraction in section 2,

we should expect that both the central extension and the outer-automorphism are associated

with these two generators. In the dual gauge theory, these generators have a clear physical

meaning: generator of the space-time dilatations defines scaling dimension ∆ of the operators,

and the generator J defines the corresponding R-charge. Note that in the AdS5 realization of

SO(4, 2) the embedding coordinates XA(A = 1, · · ·6) with (X1)2 +(X2)2− (X3)2−· · · (X6)2 =

R2 are given in terms of the global coordinates (t, r, φi) as

X1 = R
√

1 + r2 cos t

11



X2 = R
√

1 + r2 sin t

Xα = Rrωα. (α = 3, · · · , 6) (24)

Here, ωα denote the embedding coordinates of a unit S3. The standard ”dilatation” generator

of the SO(4,2) group, which is J12, generates translation in global time t. In the Penrose limit,

r → 0, while r = Rr held fixed. Thus, Xα (α = 3, · · · , 6) are O(1) and become unconstrained,

while X1, X2 are of O(R). The dual gauge theory is now defined on the Euclidean plane

X3, · · · , X6 and J12 generates the scale transformations on this R4-subspace as in the standard

realization of the SO(4,2) group. Let us denote the eigenvalues of these generators, for a given

operator, as ∆ and J , respectively. For the state |0〉J , we have

∆|0〉J = J |0〉J and J |0〉J = J |0〉J ,

while, for states of type bi†
0 ...bi†

0 |0〉J , we have ∆ = (J + n), where n refers to the number of

b†-oscillators and J = J . Thus, on these states, we have (∆ + J) = 2J + n and (∆ − J) = n.

If we work in the large-J , large-N, and small-n limits with

4πg2
YMN := R2 → ∞, J2 → ∞ and

R2

J2
:= g2

eff → finite, (25)

we observe that, in appropriate units, (∆ + J)/R2 becomes the true central extension commut-

ing with the bi
0 and bi†

0 operators 5, and that (∆ − J) is simply the number operator for the

bi
0, bi†

0 oscillators and therefore is a true outer-automorphism of the Heisenberg algebra.

In summary, built only upon Euclidean gauge theory residing on R4 subspace, we succeeded

in finding a SO(4)⊗SO(4) invariant vacuum and a representation of the Heisenberg group H(8)

in terms of creation and annhilation operators acting on the Hilbert space of small quantum

fluctuations. The corresponding outer-automorphism is just the number operator. Note that

the vacuum state |0〉J is not only invariant under SO(4)⊗ SO(4) but also with respect to the

one-parameter group generated by the outer-automorphism.

So far, we have considered only the modes which are chiral primaries. The scaling dimension

∆ of the corresponding operator is

∆ =

(

J +
4
∑

i=1

ni +
4
∑

a=1

ma

)

, (26)

where there are ni insertions of DiZ, and mj insertions of Φj . Supersymmetry descendants of

these would contain factors involving the gauge field, as discussed in section 3. Consider, for

example, the dilaton. The operator dual to this should be the integral of

Tr[FmnF mnΦ(i1 · · ·Φi
ℓ
)](t, φi · · ·φd−1).

5 Note that once we identify this term with the central extension of the Heisenberg algebra, we need to
normalize the bi

0
and b

i†
0

so that they obey the canonical commutation relations.
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For such operators, the scaling dimension ∆ is given by

∆ = J +
4
∑

i=1

ni +
4
∑

m=1

ma + 4. (27)

These relations are consistent with our interpretation of the holographic coordinate.

The scaling dimension ∆ of the dual operator is, however, the eigenvalue of the operator

i∂t in the bulk theory. The R-charge is of course the eigenvalue of −i∂θ. These relations are in

accord with the solutions of the bulk wave equations. Take the dilaton as an example. From

Eq.(15) with d = 4 and d = 4, we have

2p− = µ (∆ − J) = µ

(

4
∑

i=1

ni +
4
∑

a=1

ma + 4

)

(28)

and find precise agreement with Eq.(27). From the bulk point of view, the additive factor 4

appears as a zero point energy. From the gauge theory viewpoint, this reflects the presence

of FmnF
mn in the operator. For the bulk mode which is a fluctuation of the four-form RR

potential, this zero point energy is absent, which is consistent with the absence of any factor of

the gauge field strength in the dual operator. In the J → ∞ limit, ∆ → ∞ as well. However,

p+ = µ(∆ − J) remains finite. This is the reason why, though it appears natural to consider t

as a holographic direction from the bulk point of view, it is actually more natural to consider

x+ as the holographic direction from the gauge theory point of view.

Finally, it should be clear from the definition of the operators that one needs to introduce

a cutoff mass scale Λ. Inferring from the expressions for the normal modes of the bulk fields,

it is natural to choose the scale to be given, up to O(1) numerical factor, by

Λ = µp− . (29)

At first sight, this identification appears strange. It would mean that one needs a priori a

different scale for each operator as p− is defined by (∆ + J)/2µR2. However, in the approxi-

mation adopted in Eq.(25), ni, ma ≪ J . As such, p− ∼ J/R2 ∼ O(1). This implies that all the

operators involved are governed universally by a common renormalization scale.

4.3 Where does the dual gauge theory “live” ?

For the ten-dimensional pp-wave, the states created by the cn defined in Eq.(20) are to be

identified with the states in the light-cone gauge quantized Type IIB string in the bulk created

by transverse oscillators. It is thus natural to identify one of the transverse R4’s of the pp-wave

with the space on which the Euclidean gauge theory “resides”. Furthermore, as the gauge

theory operator Tr(ZJ) does not contain any of the Higgs fields Φ7 · · ·Φ10, the transverse R4

in question would be identifiable with the R4 formed by the Xα, α = 3 · · ·6 in Eq.(24).
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To understand the meaning of this interpretation, let us trace back the process of taking the

Penrose limit. The starting bulk theory, the AdS5 × S5 supergravity theory, is dual to N = 4

supersymmetric gauge theory, which is defined on Lorentzian manifold, S3 ×Rt, where the S3

and Rt denotes a foliation leaf at r = r0, with large r0, and the global time t in AdS5. One

possible way to obtain a gauge theory on a R4 is by Wick-rotating the global time t → iτ , and

then performing the standard conformal transformation of the resulting Euclidean S3 × Rτ .

We will refer the euclidean space obtained in this way by R̂4 and its coordinates by zi. One

may then try to interpret the derivatives Di appearing in the operator in Eq.(9) as derivatives

with respect to the zi. However, this cannot be right if the insertion of a DiZ corresponds

in the bulk to a state obtained (in a first quantized description of particles) by applying an

operator ci† defined in Eq.(14). First, the description of string or supergravity states in the

light-cone gauge does not, of course, involve any analytic continuation. We should not perform

any analytic continuation in the gauge theory as well. Secondly, the index i in ci† clearly

refers to a direction transverse to the pp-wave : in this case the transverse R4 is formed by

(r, φ1, · · · , φ3). In other words, the symmetry of the set of states created by ci† includes a SO(4)

and this SO(4) does not involve the global time, Wick rotated or not.

In concrete terms, our statement that the dual theory can be thought of as living on the

transverse R4 = (r, φ1, · · · , φ3) means that the derivatives which appear in Eq.(9) should be

derivatives with respect to this transverse R4. This provides a manifest linear realization of

the symmetries SO(4)×SO(4) and the associated Heisenberg algebra h(8).

However, the Penrose limit is supposed to be a sector of the original Yang-Mills theory

defined on the S3 ×R = (t, φ1 · · ·φ3). How can we then regard the operators of this theory to

depend on (r, φ1, · · · , φ3) ? The answer is provided by the IR-UV connection in AdS holography.

In the gauge theory composite operators are functions on the space on which the theory is

defined, O(z) = O(t, φ1, · · · , φ3). At the quantum level, however, these local operators also

depend on the (position space) ultraviolet cutoff a , or equivalently a renormalization scale. So,

these local operators should really be expressed as O(z; a) = O(t, φ1 · · ·φ3; a). The AdS/CFT

correspondence identifies this operator with a bulk operator (e.g. for one of the supergravity

fields) Φ(t, φ1, · · · , φ3, r) evaluated at large r = r0 = 1/a. We can thus think of the transverse

R4 = {~x} above as being formed by combining the spatial coordinates φi with the scale a. In

terms of the original Yang-Mills theory living on S3 × Rt derivatives which appear in Eq.(9)

therefore involve derivatives with respect to the scale.

Before considering any Penrose limit, it is natural to arrange ‘twist’ expansion of operators

as in O(z = 0; a) and Dz · · ·D+zO(z = 0; a), while, after the Penrose limit, the more convenient

‘twist’ expansion is with respect to xi, viz. Dx · · ·DxO(x = 0, t). Upon swapping r with the

light-cone time, we are also led to do so for the ‘holography’ direction. In this sense, the light-

cone time plays the role of the ‘holography’ direction, while r is now part of the Euclidean base
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space R4.

Evidently, the above two choices of ‘twist’ expansions are intimately related. Schematically,

the renormalization group equation of the operator O takes the form

a
d

da
O(a) = γ · O(a).

By virtue of the AdS/CFT correspondence the renormalization group equations of the gauge

theory are related to the (suitably formulated) bulk equations of motion. Replacing 1/a with

the radial coordinates r, the renormalization group can then be recasted as a first-order light-

cone time evolution obeyed by a data specified on R4 formed out of r and (φ1, · · · , φ3). An

implicit assumption in the two alternative ‘twist’ expansions is that the locality, which was

automatically built in the Minkowski gauge theory on S3 ×Rt, is maintained in the Euclidean

gauge theory on R4. This is highly nontrivial, as, in the standard AdS5 holography, map

between the gauge theory scale and the AdS5 radial position is given in a complicated and

nonlocal manner. Apparently, in the Penrose limit, the map becomes simplified dramatically

and becomes local, as inferred from the precise matching between the light-cone string dynamics

and the Euclidean gauge theory dynamics.

Summarizing, we emphasize that the question regarding where the gauge theory dual to

a pp-wave light-cone string lives is intimately connected with the way we identify the string

transverse oscillators into the Hilbert space of quantum fluctuations of a fixed R-charge ground-

state in the gauge theory. Because we are focusing on each Hilbert subspace of fixed R-chrage,

the question is also intimately tied with the realization of the pp-wave isometries in the gauge

theory. The normal subgroup of the latter is SO(4)⊗SO(4), where one SO(4) originating

from the kinematical conformal group in four dimensions and the other from the internal R-

symmetry. These symmetries are manifest once operators and states in the dual gauge theory

are formulated on the transverse R4. In doing so, we interchange the role between the light-

cone time t and the bulk radial coordinate r, and now view the former as the ‘holography’

coordinates of the dual, Euclidean gauge theory.

4.4 Light-Cone Holography

Once we have defined the outer-automorphism, call it H , we can trivially use it to define a one

parameter family of operators. In fact, we can introduce a formal parameter x+ as a conjugate

variable to H and define

∑

ℓ

Tr
(

Zℓ(DiZ)ZJ−ℓ
)

(0, x+)|0〉 = e−ix+Hbi†
0 |0〉J .
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This is the prescription for introducing an extra holographic light-cone time coordinate in the

Euclidean gauge theory. In fact, what we get is simply

∑

ℓ

Tr
(

Zℓ(DiZ)ZJ−ℓ
)

(0, x+) |0〉YM = e−ix+(∆−J)
∑

ℓ

Tr
(

Zℓ(DiZ)ZJ−ℓ
)

(0)|0〉YM (30)

and the outer-automorphism H = i∂x+ . If we wish, we can also introduce an another holo-

graphic coordinate, say, x− conjugate to the central extension C = (∆ + J)/λ by

∑

ℓ

Tr
(

Zℓ(DiZ)ZJ−ℓ
)

(0, x+, x−)|0〉YM = eix−Ce−ix+H bi†
0 |0〉J .

This dependence on x− is trivial, as it is the same for all operators. It depends only on the

particular finite value we choose for R2/J2 in the double large-J and large-N limit. Once we

introduce the coordinate x−, the central extension C can be represented as −i∂x− .

We can readily make a contact with the spacetime Killing vectors in the Penrose limit.

To illustrate this, consider the case of AdS3 × S3. In the Penrose limit, the isometry group

SO(2,2)⊗SO(4) is contracted to [H(2)⊗H(2)]⊗SO(2)⊗SO(2). We are interested in the genera-

tors of the Heisenberg groups H(2)’s:

Pi

(

x+
)

= cos
(

µx+
) ∂

∂xi
+ µxi sin

(

µx+
) ∂

∂x−
,

Ki

(

x+
)

= sin
(

µx+
) ∂

∂xi
− µxi cos

(

µx+
) ∂

∂x−
.

These are the generators that we should put in correspondence with the operators bi
0 and bi†

0

in the dual gauge theory. As discussed above, the operator −i∂x− plays the role of the central

extension C of the Heisenberg algebra. In the standard coordinate-momentum notation, we

can write

Pi

(

x+
)

= pi cos
(

µx+
)

+ µCxi sin
(

µx+
)

Ki

(

x+
)

= pi sin
(

µx+
)

− µCxi cos
(

µx+
)

,

where the parameter C represents the central extension term, and

[

pi, x
j
]

= −iδj
i .

Evidently, we can write

Pi(x
+) = e−ix+H Pi(0) e+ix+H (31)

for H the light-cone Hamiltonian defined by H = i∂x+ . This shows that the Hamiltonian H is

an outer-automorphism of the Heisenberg algebra.

We close this section with comments. Quantum mechanically, the value ∆ of the scaling

dimension is corrected by the contribution of anomalous dimensions, whereas the value J of
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the R-symmetry charge remains unchanged. As such, one ought to expect quantum corrections

to the outer-automorphism (∆−J). How is it corrected? The interaction part of N = 4 gauge

theory contains a term of the type 1
2πg2

YM

Tr[Z, Φa][Z, Φa]. This term induces a non-vanishing

transitions of the type:

〈

Tr
(

ZℓΦaZ
J−ℓ

)

(x) Tr
(

Zℓ+1ΦbZ
J−(ℓ+1)

)

(0)
〉

= δab 2πg2
YMNI(x)

1

4π2x2J−2
(32)

and

〈

Tr
(

ZℓΦaZ
J−ℓ

)

(x) Tr
(

ZℓΦbZ
J−ℓ)

)

(0)
〉

= δab 2πg2
YMN I(x)

1

4π2x2J−2
.

The function I(x) is given by

I(x) =
1

4π2
log|x|Λ + finite,

where Λ defines the ultraviolet cutoff. Both contributions cancel each other, meaning that, for

operators of the type
∑

ℓ Tr
(

Zℓ(DiZ)ZJ−ℓ
)

or
∑

ℓ Tr
(

ZℓΦaZ
J−ℓ

)

, the value of (∆ − J) is not

corrected at least at first-order in the weak coupling perturbation theory. As pointed out by

BMN already, the situation is different for operators of the type

∑

ℓ

ei 2πnℓ

J Tr
(

Zℓ(DiZ)ZJ−ℓ
)

or

∑

ℓ

ei 2πnℓ

J Tr
(

ZℓΦiZ
J−ℓ

)

, (33)

modulated by the ‘separation-dependent’ phase-factors. We will discuss aspects of these cor-

rections in the next subsection.

4.5 Strings out of Dual Gauge Theory

Let us first recapitulate what we have done so far. We have considered Euclidean N = 4

gauge theory around a vacuum state invariant under SO(4) ⊗ SO(4) and under the outer-

automorphism H . The Hilbert space of small fluctuations around this vacua define a repre-

sentation of the Heisenberg algebra h(8). The outer-automorphism H is simply the number

operator associated with the creation and annihilation operators generating h(8). In addition,

using the gravity dual of the Minkowskian N = 4 gauge theory, we can define a precise map

between the creation anhilation operators and the outer-automorphism H on the dual gauge

theory side and the Killing vectors in the Penrose limit of AdS5 × S5 on the gravity side.

The formal conjugate variables of the Hamiltonian H and the central extension C become the

coordinates x+ and x− of the Penrose limit of the bulk spacetime.
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Probably the most surprising result of all this is the connection between the Penrose limit

of Minkowskian N = 4 gauge theory and the Euclidean N = 4 gauge theory around a par-

ticular vacua. The main reason for this strange connection has to do with the peculiarities of

spontaneous breakdown of conformal invariance. In fact, one can in principle think this as a

spontaneous breakdown of SO(4,2) to the Euclidean subgroup SO(4). In this case, the Lorentz

invariance of the original Minkowskian theory should be hidden somehow in the dynamics of

the Goldstone bosons around the vacua used to break the conformal symmetry spontaneously.

How then is the Lorentz invariance realized in the Hilbert space of small fluctuations around

the chosen vacua |0〉J? The answer descending from the BMN proposal is quite surprising and

in fact extremely interesting. It asserts that the Hilbert space of small fluctuations of the

Euclidean N = 4 gauge theory around the vacua |0〉J in the large-N and large-J limit is the

Hilbert space of a ten-dimensional string theory in a suitable Minkowskian background.

To understand this, we begin with recalling some salient features of string dynamics in the

light-cone gauge. In flat ten-dimensional space-time and for the bosonic sector, the light-cone

gauge-fixed string is defined by:

i) string oscillators: infinite tower of Heisenberg algebras
[

ai
n, aj†

m

]

= δn,mδi,j

with i, j = 1...8 the transversal coordinates,

ii) light-cone Hamiltonian:

HLC =
∑

n

n

2α′p+
a†

nan + (h.c.),

iii) string parameter space: total length of the light-cone string is given by p+,

iv) Virasoro constraint: infinite tower of constraints satisfying the Virasoro algebra.

The way string dynamics emerges out of the Euclidean N = 4 gauge theory around the

vacuum |0〉J relies crucially on the existence of the Heisenberg algebra h(8) and of the outer-

automorphism H . In order to establish a connection between the two structures, the first thing

we should do is to extend the Heisenberg algebra h(8) to an infinite family of Heisenberg alge-

bras of the type displayed in (i). Remarkably, this is achieved by the phase-factor-modulated

operators, Eq.(33). Introduce creation and annihilation operators bn, b†n via:
∑

ℓ

ei 2πnℓ

J Tr
(

ZℓΦaZ
J−ℓ

)

(0)|0〉YM := bi†
n |0〉J .

One can show readily that the newly introduced creation and annihilation operators obey the

requisite infinite towers of Heisenberg algebras:
[

bi
n, bj†

m

]

= δn,mδi,j (m, n = 0, 1, 2, · · ·).
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Compared to the light-cone string in flat spacetime, the main difference is the existence of the

Heisenberg algebra for the bi
0, bi†

0 harmonic oscillator operators. In fact, in flat spacetime, one

only has the Heisenberg algebra for the center-of-mass part

[

x−
0 , p+

]

= i.

Let us now see how the outer-automorphism H is modified by quantum effects. As computed

by BMN, the scaling dimension ∆ for the state bi†
n |0〉J is given in first-order in weak-coupling

perturbation theory by

∆ = J + 1 − 1

π
g2
YMN

(

cos
(

2πn

J

)

− 1
)

.

Thus, the outer-automorphism at the quantum level is given by

H = (∆ − J) = 1 − 1

π
g2
YMN

(

cos
(

2πn

J

)

− 1
)

= 1 +
2πg2

YMN

J2
n2 + · · · ,

where, in obtaining the second expression, we have taken the large-J and large-N limit.

The light-cone Hamiltonian in the bulk may be therefore written as

p+ = µ
∑

n

√

1 +
4πg2

YMN

J2
n2 b†nbn

However, from Eq.(10), we have

p− =
1

2µR2
(∆ + J) ∼ J

µR2
=

J

µ
√

4πg2N

where we have used α′ = 1 units throughout. Thus,

p+ = µ
∑

n

√

√

√

√1 +
n2

µ2p2
−

b†nbn,

yielding exactly the light-cone Hamiltonian of the string theory in this background.

An issue we have not elaborated in detail is the string Virasoro constraints. We end this

section with brief remarks on it. By inserting phases into the dual gauge theory operators,

the Heisenberg algebra h(8) is extended to the family of Heisenberg algebras Eq.(34). It is

also natural to extend the outer-automorphism to this collection of Heisenberg algebras by

introducing operators Hn, (n = 0, 1, 2, · · ·) such that [Hn, bm] = bn+m and H0 = H for the light-

cone Hamiltonian H . These outer-automorphisms then generate the string Virasoro algebra.

A very interesting question left for the future would be to uncover meaning of these Virasoro

constraints entirely within the dual gauge theory viewpoint.
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4.6 Light-Cone Hamiltonian and Renormalization Group Flow

The renormalization group equation for the correlators
〈

O(x)O∗(0)
〉

is

[a∂a + 2γ(O)]
〈

O(x)O∗(0)
〉

= 0.

where a refers to the renormalization scale. If we consider the phase-modulated operator

O =
∑

n e2πnℓTr
(

ZℓΦaZ
J−ℓ

)

, in the large-J and large-N limit, we get

2γ (O) = (∆ − J) [O] − 1, (34)

where (∆− J)[O] is the value of (∆− J) for the operator O. This equation is re-expressible in

a more suggestive form

2γ(O)O = [H,O] −O,

where H is, as usual, the string light-cone Hamiltonian (L0 + L0).

Note that the anomalous dimension γ(O) appearing in Eq.(34) is, for the operator O =
∑

n e2πinℓTr
(

ZℓΦaZ
J−ℓ

)

, given by

γ(O) = Jγ(Z) + γ(Φa),

where γ(Z) represents the anomalous dimension of the operator Z. Generically, the anomalous

dimension γ(Z) is affected by radiative effects through the self-energy corrections 6. If not

protected by supersymmetry, these contributions would grow as g2
YMN and the connection

with the string light-cone Hamiltonian would be lost. Moreover, the scaling dimension of the

operators O, in that case, would grow with t’Hooft’s coupling constant and eventualy disappear

out of the physical spectrum. In the supersymmetric case we are considering, supersymmetry

renders γ(Z) = 0. This is the reason behind regarding γ(O) as the anomalous dimension of the

field Φa’s. From the previous discussion, it should be evident that changes in the holographic

coordinate x+ are equivalent to changes of the renormalization scale a if we interpret (∆ − J)

as the anomalous dimension 7.

5 Symmetry Enhancement as “Post Mortem” Effect

In recent papers [12, 13], the results of BMN have been generalized to gauge theories with less

supersymmetry, in particular, to the gravity duals of AdS5 × T 1,1. The fact that the Penrose

limit of this space is the same as the one of AdS5 × S5 raises the question regarding reason

6These are so-called zero-momentum effects in the nomenclature of BMN.
7 Definition of the renormalization group γ(O) as (∆− J) or as (∆− J)− 1 depends on whether one adpots

the canonical dimensions for the fields and masses or not. For a lucid discussion on this point, see [26]
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behind supersymmetry enhancement from N = 1 to N = 4. The point of this seemingly

mysterious result goes back to the fact that, in the strict Penrose limit, there always appear

extra isometries. In [6], these extra isometries are referred to as a post mortem effect. These

isometries define always a Heisenberg algebra. In the case of AdS5 × T 1,1, the isometries are

SO(4,2)⊗ (SU(2) ⊗ SU(2) ⊗ U(1)), and are in correspondence, respectively, with the conformal

invariance and the R-symmetry of the dual gauge theory. Following our approach, we can

think in terms of a spontaneous breakdown of this symmetry to SO(4)⊗SO(4). The difference

with the case of N=4 supersymmetric gauge theory is that we now have a smaller number

of Goldstone bosons associated with the broken symmetries, viz. ten instead of eighteen in

the N = 4 supersymmetric case. The deficit eight Goldstone bosons are precisely the ones

associated with the Higgs fields in the N = 4 supersymmetric gauge theory. These are the

fields that would render the theory N = 4 supersymmetric. In the Penrose limit of any ten-

dimensional background, we have always a Heisenberg algebra h(8) of the isometries. In the

AdS5×T 1,1 case, the Heisenberg algebra is composed of two Heisenberg subalgebras h(4) with a

common central extension. The eight generators of one of the two algebras are the ones we are

going to use as the eight missing broken symmetries. These “post mortem” Goldstone bosons

are simply states that, in the N = 1 gauge theory, are degenerate in the light-cone mass (the

eigenvalue of the outer-automorphism or the light-cone Hamiltonian ) with the real Goldstone

bosons. As the enhancement of N = 4 supersymmetry is true only in the strict Penrose limit,

viz. for the Penrose scaling factor R → ∞, we expect this enhancement to be violated by

O(1/N)-corrections.

6 Conclusions

Our main conclusion is that the supersymmetric gauge theory dual to the IIB string theory

in a ten dimensional pp-wave background may be thought to “live” on a Euclidean four di-

mensional space. The indications has come from several corners. The most direct reason is

that the dual operators are in one to one correspondence with the states of the string theory

which are created by transverse oscillators in the light-cone gauge. This is in fact apparent in

the zero-mode sector of the string relevant for the supergravity modes and follows from field

equations in this background. Furthermore, understanding of the low-energy Nambu-Goldstone

modes resulting from symmetry breaking of the original symmetry group SO(4,2)×SO(6) to

SO(4)×SO(4)×H(4)×H(4) also indicates that the dual theory lives in a Euclidean space.

One may think of this Euclidean space as the space spanned by four of the transverse

directions. In this case, the light-cone time has a natural explanation as the holographic

coordinate representing the scale of the dual gauge theory. Details of the proposed holographic

correspondence remain to be understood better. The fact that a Euclidean theory can give rise
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to strings living in a space-time with Lorentzian signature is intruiging and deserves a better

understanding. We expect that this would enhance our understanding of holography in general.

Extending the results of this work, one can abstract the main ingredients needed in order

to generalize the BMN proposal to generic situations. The minimal starting point would be a

four-dimensional gauge theory invariant under the conformal group and with a nonanomalous

global U(1) symmetry. The spontaneous breakdown of SO(4,2)⊗U(1) to SO(4) provides ten

broken generators that we can try to organize, taking Euclidean signature dual theory, into a

Heisenberg algebra h(4) and an outer-automorphism H . This is the structure that we can try

to map into the Hilbert space of a non-critical six-dimensional string theory in the light-cone

gauge with the SO(4) rotational invariance acting on the transversal coordinates. Of course,

we also need controllable, finite contributions- in the large ’t Hooft coupling limit - to the

anomalous dimensions of the fields representing the small quantum fluctuations around the

selected vacuum or, equivalently, finite light-cone mass (defined by the outer-automorphism

) for the Goldstone bosons. Taking the real-world QCD, one now has ab initio two related

problems: anomaly for the conformal invariance (viz. a non vanishing beta function) and

anomaly for the axial U(1) symmetry, which would serve as a natural candidate for the global

U(1) symmetry. We can try to solve these problems by introducing two extra scalar fields,

namely the dilaton D and the axion A. We then find an indication that the field (D + iA) is a

natural candidate to play the role of the Z-field in the BMN proposal.
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Note Added:

After this paper was submitted in the preprint archive, two preprints [27], [28] investigating

related issues have appeared. The paper [27] argues that the hologram is eight dimensional,

based on the classical Cauchy problem - rather than four dimensional. In [28] the holographic

screen is argued to be four-dimensional Minkowski space, but the realization of the SO(4)

symmetry from this viewpoint was not addressed.
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