Semisimple metacyclic group algebras

GURMEET K BAKSHI ${ }^{1}$, SHALINI GUPTA ${ }^{2}$ and INDER BIR S PASSI ${ }^{1,2}$
${ }^{1}$ Centre for Advanced Study in Mathematics, Panjab University, Chandigarh 160014 , India
${ }^{2}$ Indian Institute of Science Education and Research, Mohali, MGSIPA Complex, Sector 26, Chandigarh 160 019, India
E-mail: gkbakshi@pu.ac.in, shalinigupta@iisermohali.ac.in; ibspassi@yahoo.co.in

MS received 20 October 2010; revised 20 January 2011

Abstract

Given a group G of order $p_{1} p_{2}$, where p_{1}, p_{2} are primes, and \mathbb{F}_{q}, a finite field of order q coprime to $p_{1} p_{2}$, the object of this paper is to compute a complete set of primitive central idempotents of the semisimple group algebra $\mathbb{F}_{q}[G]$. As a consequence, we obtain the structure of $\mathbb{F}_{q}[G]$ and its group of automorphisms.

Keywords. Semisimple group algebra; primitive central idempotents; Wedderburn decomposition; automorphism group.

1. Introduction

Let $F[G]$ be the group algebra of a finite group G over a field F. The group algebra $F[G]$ is of interest in both pure and applied algebra. A good description of the Wedderburn decomposition of $F[G]$ is useful for describing the automorphism group of $F[G]$, for studying the unit group of $F[G]$ and has applications in coding theory. The problem of computing the Wedderburn decomposition of $F[G]$ naturally leads to the computation of the primitive central idempotents of $F[G]$. These problems have attracted the attention of several authors (see [1-8], [10], [11], [12], [14-21]).

In this paper, we restrict to the case, when $F=\mathbb{F}_{q}$ is a finite field with q elements and G is a group of order $p_{1} p_{2}$ coprime to q. In this case, we give explicit expressions for a complete set of primitive central idempotents (Theorem 1) and Wedderburn decomposition (Theorems 2 and 3) of $\mathbb{F}_{q}[G]$. Our result may be compared with the one provided in this case by Corollary 9 of [4]. As a consequence, we also derive the group of automorphisms of $\mathbb{F}_{q}[G]$ (Theorems 4 and 5). Finally, we give some illustrative examples.

2. Primitive central idempotents

Let \mathbb{F}_{q} be a finite field with q elements and $\overline{\mathbb{F}}_{q}$ its algebraic closure. Let G be a finite group with $o(G)$, the order of G, coprime to q. We begin by recalling some standard facts
about the irreducible characters of G over the algebraically closed field $\overline{\mathbb{F}}_{q}$. If $\chi \in \operatorname{Irr}(G)$, the set of irreducible characters of G over $\overline{\mathbb{F}}_{q}$, then

$$
e(\chi):=\frac{\chi(1)}{o(G)} \sum_{g \in G} \chi(g) g^{-1}
$$

is a primitive central idempotent of $\overline{\mathbb{F}}_{q}[G]$ and $\chi \mapsto e(\chi)$ is a $1-1$ correspondence between $\operatorname{Irr}(G)$ and the set of all primitive central idempotents of $\overline{\mathbb{F}}_{q}[G]$. The Galois $\operatorname{group} \operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$ acts on $\operatorname{Irr}(G)$ by setting

$$
\sigma_{\chi}=\sigma \circ \chi, \quad \sigma \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right), \quad \chi \in \operatorname{Irr}(G)
$$

Let $\operatorname{orb}(\chi)$ denote the orbit of $\chi \in \operatorname{Irr}(G)$ under this action. Observe that $\operatorname{orb}(\chi)$ is equal to $\left\{{ }^{\sigma} \chi \mid \sigma \in \operatorname{Gal}\left(\mathbb{F}_{q}(\chi) / \mathbb{F}_{q}\right)\right\}$, where $\mathbb{F}_{q}(\chi)$ is the field obtained by adjoining to \mathbb{F}_{q}, all the character values $\chi(g), g \in G$. It is known that for any $\chi \in \operatorname{Irr}(G)$,

$$
e_{\mathbb{F}_{q}}(\chi):=\sum_{\psi \in \operatorname{orb}(\chi)} e(\psi)=\sum_{\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q}(\chi) / \mathbb{F}_{q}\right)} e\left({ }^{\sigma} \chi\right)
$$

is a primitive central idempotent of $\mathbb{F}_{q}[G]$, and the map $\operatorname{orb}(\chi) \mapsto e_{\mathbb{F}_{q}}(\chi)$ is a $1-1$ correspondence between the set $\{\operatorname{orb}(\chi) \mid \chi \in \operatorname{Irr}(G)\}$ of orbits and the primitive central idempotents of $\mathbb{F}_{q}[G]$ (see [22]; the treatment in [22] is when char $F=0$ but the arguments work in the present case).

Suppose G has order $p_{1} p_{2}$, where p_{1}, p_{2} are primes. If G is abelian, a description of the primitive central idempotents of $\mathbb{F}_{q}[G]$ can be read from the results in [2], [4], [18] and [19]. We thus assume throughout the rest of this section that G is a non-abelian group of order $p_{1} p_{2}$ with $p_{1}>p_{2}$ (say). In this case, we must have $p_{1} \equiv 1 \bmod p_{2}$. Let

$$
\begin{equation*}
G=\left\langle a, b \mid a^{p_{1}}=b^{p_{2}}=1, b^{-1} a b=a^{u}\right\rangle \tag{1}
\end{equation*}
$$

where u is an element of order p_{2} in $\mathbb{Z}_{p_{1}}^{*}=\mathbb{Z}_{p_{1}} \backslash\{0\}$, be a presentation of G. Let $f_{1}:=$ $\operatorname{ord}_{p_{1}}(q), f_{2}:=\operatorname{ord}_{p_{2}}(q)$ and $f_{3}:=\operatorname{ord}_{p_{1} p_{2}}(q)$ be the multiplicative orders of q modulo p_{1}, p_{2} and $p_{1} p_{2}$ respectively. Let

$$
\begin{equation*}
e_{1}:=\frac{p_{1}-1}{f_{1}} \quad e_{2}:=\frac{p_{2}-1}{f_{2}} \quad e_{3}:=\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{f_{3}} \tag{2}
\end{equation*}
$$

Let g_{i} be a primitive root modulo p_{i} and ζ_{i} a primitive p_{i}-th root of unity in $\overline{\mathbb{F}}_{q}(i=1$, 2). For $k \geq 0$, define

$$
\begin{equation*}
\eta_{k}^{(1)}:=\sum_{j=0}^{f_{1}-1} \zeta_{1}^{g_{1}^{k} q^{j}}, \quad \eta_{k}^{(2)}:=\sum_{j=0}^{f_{2}-1} \zeta_{2}^{g_{2}^{k} q^{j}} \tag{3}
\end{equation*}
$$

Set

$$
\begin{equation*}
K:=\mathbb{F}_{q}\left(\sum_{r=0}^{p_{2}-1} \zeta_{1}^{i u^{r}} \mid i=1,2, \ldots, p_{1}-1\right) \tag{4}
\end{equation*}
$$

Our main result on primitive central idempotents of $\mathbb{F}_{q}[G]$ is the following:

Theorem 1.

(i) If $p_{2} \mid f_{1}$, then $\mathbb{F}_{q}[G]$ has exactly the following $e_{1}+e_{2}+1$ distinct primitive central idempotents:

$$
\begin{aligned}
& \frac{1}{p_{1} p_{2}} \sum_{g \in G} g, \\
& \frac{1}{p_{1} p_{2}}\left(f_{2} \sum_{x=0}^{p_{1}-1} a^{x}+\sum_{j=0}^{p_{2}-2} \eta_{m+j}^{(2)}\left(\sum_{x=0}^{p_{1}-1} a^{x} b^{g_{2}^{j}}\right)\right), \quad 0 \leq m \leq e_{2}-1, \\
& \frac{p_{2}}{p_{1}\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right]}\left(f_{1}+\sum_{k=0}^{p_{1}-2} \eta_{n+k}^{(1)} a^{g_{1}^{k}}\right), \quad 0 \leq n \leq e_{1}-1 .
\end{aligned}
$$

(ii) If $p_{2} \nmid f_{1}$, then $\mathbb{F}_{q}[G]$ has exactly the following $\frac{e_{1}}{p_{2}}+e_{2}+1$ distinct primitive central idempotents:

$$
\begin{aligned}
& \frac{1}{p_{1} p_{2}} \sum_{g \in G} g, \\
& \frac{1}{p_{1} p_{2}}\left(f_{2} \sum_{x=0}^{p_{1}-1} a^{x}+\sum_{j=0}^{p_{2}-2} \eta_{m+j}^{(2)}\left(\sum_{x=0}^{p_{1}-1} a^{x} b^{g_{2}^{j}}\right)\right), \quad 0 \leq m \leq e_{2}-1, \\
& \frac{1}{p_{1}\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right]}\left(f_{1} p_{2}+\sum_{i=0}^{p_{1}-2}\left(\sum_{j=0}^{p_{2}-1} \eta_{n+i+j \cdot \frac{e_{1}}{p_{2}}}^{(1)}\right) a^{g_{1}^{i}}\right), \quad 0 \leq n \leq \frac{e_{1}}{p_{2}}-1 .
\end{aligned}
$$

We will prove the theorem in a number of steps.
The primitive central idempotents of the group algebra $\mathbb{F}_{q}\left[\mathbb{Z}_{p^{n}}\right]$, where $\mathbb{Z}_{p^{n}}$ is the cyclic group of order p^{n}, p a prime, $n \geq 1$ and $p \nmid q$, have been computed in [18], [19]. We need the case $n=1$, in which case, the description of primitive central idempotents is as follows:

Lemma 1. Let $\langle a\rangle$ be a cyclic group of order p, where p is a prime coprime to q. Let $f=\operatorname{ord}_{p}(q), e=(p-1) / f$ and g a primitive root modulo p. The group algebra $\mathbb{F}_{q}[\langle a\rangle]$ has exactly the following $e+1$ distinct primitive (central) idempotents:

$$
\begin{aligned}
& \frac{1}{p}\left(1+a+\cdots+a^{p-1}\right), \\
& \frac{1}{p}\left(f+\sum_{j=0}^{p-2} \eta_{i+j} a^{g^{j}}\right), \quad 0 \leq i \leq e-1
\end{aligned}
$$

where $\eta_{k}=\sum_{j=0}^{f-1} \zeta^{g^{k} q^{j}}, \zeta$ a primitive p-th root of unity in $\overline{\mathbb{F}}_{q}$.

The complex irreducible characters of G have been computed in Theorem 25.10 of [9]; the same proof also works for the irreducible characters of G over the algebraically closed field $\overline{\mathbb{F}}_{q}$, thus yielding the following:

Lemma 2. The group $G=\left\langle a, b \mid a^{p_{1}}=b^{p_{2}}=1, b^{-1} a b=a^{u}\right\rangle$, has exactly $p_{2}+\frac{p_{1}-1}{p_{2}}$ irreducible characters over $\overline{\mathbb{F}}_{q}$, of which p_{2} characters are of degree 1 and $\frac{p_{1}-1}{p_{2}}$ are of degree p_{2}. The non-trivial irreducible characters, $\psi_{m}, 0 \leq m \leq p_{2}-2$, of degree 1 are given by

$$
\psi_{m}\left(a^{x} b^{y}\right)=\zeta_{2}^{-g_{2}^{m} y}, \quad a^{x} b^{y} \in G, \quad 0 \leq m \leq p_{2}-2
$$

and the irreducible characters $\phi_{n}, 0 \leq n \leq \frac{p_{1}-1}{p_{2}}-1$, of degree p_{2} over $\overline{\mathbb{F}}_{q}$ are given by

$$
\phi_{n}\left(a^{x} b^{y}\right)= \begin{cases}0, & y \neq 0 \\ \sum_{j=0}^{p_{2}-1} \zeta_{1}^{-x \cdot g_{1}}{ }^{\frac{p_{1}-1}{p_{2}} \cdot j+n} & y=0\end{cases}
$$

We now describe the primitive central idempotents of $\mathbb{F}_{q}[G]$ associated with the irreducible characters of degree 1 . Let $\iota: G \rightarrow \overline{\mathbb{F}}_{q}$ be the trivial character of G. Clearly

$$
\begin{equation*}
e_{\mathbb{F}_{q}}(\iota)=\frac{1}{p_{1} p_{2}} \sum_{g \in G} g \tag{5}
\end{equation*}
$$

Lemma 3. For $0 \leq m \leq p_{2}-2$,

$$
e_{\mathbb{F}_{q}}\left(\psi_{m}\right)=\frac{1}{p_{1} p_{2}}\left(f_{2} \sum_{x=0}^{p_{1}-1} a^{x}+\sum_{j=0}^{p_{2}-2} \eta_{m+j}^{(2)}\left(\sum_{x=0}^{p_{1}-1} a^{x} b^{g_{2}^{j}}\right)\right)
$$

and $e_{\mathbb{F}_{q}}\left(\psi_{m}\right)=e_{\mathbb{F}_{q}}\left(\psi_{m^{\prime}}\right)$ if, and only if, $m \equiv m^{\prime} \bmod e_{2}$.
Proof. Let $0 \leq m \leq p_{2}-2$.

$$
\begin{aligned}
e_{\mathbb{F}_{q}}\left(\psi_{m}\right) & =\sum_{\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q}\left(\psi_{m}\right) / \mathbb{F}_{q}\right)} e\left({ }^{\sigma} \psi_{m}\right) \\
& =\sum_{\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q}\left(\zeta_{2}\right) / \mathbb{F}_{q}\right)} e\left({ }^{\sigma} \psi_{m}\right), \quad \text { since } \mathbb{F}_{q}\left(\psi_{m}\right)=\mathbb{F}_{q}\left(\zeta_{2}\right) \\
& =\frac{1}{p_{1} p_{2}}\left(\sum_{x=0}^{p_{1}-1} \sum_{y=0}^{p_{2}-1}\left(\sum_{\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q}\left(\zeta_{2}\right) / \mathbb{F}_{q}\right)} \sigma\left(\zeta_{2}^{g_{2}^{m} y}\right)\right) a^{x} b^{y}\right) \\
& =\frac{1}{p_{1} p_{2}}\left(f_{2} \sum_{x=0}^{p_{1}-1} a^{x}+\sum_{y=1}^{p_{2}-1}\left(\sum_{i=0}^{f_{2}-1}\left(\zeta_{2}^{g_{2}^{m} y}\right)^{q^{i}}\right)\left(\sum_{x=0}^{p_{1}-1} a^{x} b^{y}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{p_{1} p_{2}}\left(f_{2} \sum_{x=0}^{p_{1}-1} a^{x}+\sum_{j=0}^{p_{2}-2}\left(\sum_{i=0}^{f_{2}-1}\left(\zeta_{2}^{g_{2}^{m+j}}\right)^{q^{i}}\right)\left(\sum_{x=0}^{p_{1}-1} a^{x} b^{g_{2}^{j}}\right)\right) \\
& =\frac{1}{p_{1} p_{2}}\left(f_{2} \sum_{x=0}^{p_{1}-1} a^{x}+\sum_{j=0}^{p_{2}-2} \eta_{m+j}^{(2)}\left(\sum_{x=0}^{p_{1}-1} a^{x} b^{g_{2}^{j}}\right)\right) .
\end{aligned}
$$

As $\eta_{i}^{(2)}=\eta_{i+e_{2}}^{(2)}$ for all $i \geq 0$, it follows that $e_{\mathbb{F}_{q}}\left(\psi_{m}\right)=e_{\mathbb{F}_{q}}\left(\psi_{m+e_{2}}\right)$. Furthermore, $e_{\mathbb{F}_{q}}\left(\psi_{m}\right)$, for $0 \leq m \leq e_{2}-1$, are distinct since, in view of Lemma 1 , tuple $\left(\eta_{m}^{(2)}, \eta_{m+1}^{(2)}, \eta_{m+2}^{(2)}, \ldots\right)$ is not equal to the tuple $\left(\eta_{m^{\prime}}^{(2)}, \eta_{m^{\prime}+1}^{(2)}, \eta_{m^{\prime}+2}^{(2)}, \ldots\right)$ for $0 \leq m, m^{\prime} \leq$ $e_{2}-1, m \neq m^{\prime}$.

In the next lemma, we describe the primitive central idempotents $\boldsymbol{e}_{\mathbb{F}_{q}}\left(\phi_{n}\right), 0 \leq n \leq$ $\frac{p_{1}-1}{p_{2}}-1$, associated with non-linear irreducible characters.

Lemma 4.

(i) If $p_{2} \mid f_{1}$, then, for $0 \leq n \leq \frac{p_{1}-1}{p_{2}}-1$,

$$
e_{\mathbb{F}_{q}}\left(\phi_{n}\right)=\frac{p_{2}}{p_{1}\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right]}\left(f_{1}+\sum_{k=0}^{p_{1}-2} \eta_{n+k}^{(1)} a^{g_{1}^{k}}\right)
$$

and $e_{\mathbb{F}_{q}}\left(\phi_{n}\right)=e_{\mathbb{F}_{q}}\left(\phi_{n^{\prime}}\right)$ if and only if $n \equiv n^{\prime} \bmod e_{1}$.
(ii) If $p_{2} \nmid f_{1}$, then, for $0 \leq n \leq \frac{p_{1}-1}{p_{2}}-1$,

$$
e_{\mathbb{F}_{q}}\left(\phi_{n}\right)=\frac{1}{\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right] p_{1}}\left(f_{1} p_{2}+\sum_{i=0}^{p_{1}-2}\left(\sum_{j=0}^{p_{2}-1} \eta_{n+i+j \cdot \frac{e_{1}}{p_{2}}}^{(1)}\right) a^{g_{i}^{i}}\right)
$$

and $e_{\mathbb{F}_{q}}\left(\phi_{n}\right)=e_{\mathbb{F}_{q}}\left(\phi_{n^{\prime}}\right)$ if and only if $n \equiv n^{\prime} \bmod \frac{e_{1}}{p_{2}}$.

Proof. Observe that $\mathbb{F}_{q}\left(\phi_{n}\right)=K$ for all $n \geq 0$. Therefore,

$$
\begin{aligned}
{\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right] e_{\mathbb{F}_{q}}\left(\phi_{n}\right) } & =\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right] \sum_{\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q}\left(\phi_{n}\right) / \mathbb{F}_{q}\right)} e\left({ }^{\sigma} \phi_{n}\right) \\
& =\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right] \sum_{\sigma \in \operatorname{Gal}\left(K / \mathbb{F}_{q}\right)} e\left({ }^{\sigma} \phi_{n}\right) \\
& =\sum_{\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q}\left(\zeta_{1}\right) / \mathbb{F}_{q}\right)} e\left({ }^{\sigma} \phi_{n}\right) \\
& =\sum_{\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q}\left(\zeta_{1}\right) / \mathbb{F}_{q}\right)}\left(\frac{p_{2}}{p_{1} p_{2}} \sum_{x=0}^{p_{1}-1} \sigma\left(\phi_{n}\left(a^{-x}\right)\right) a^{x}\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
=\frac{p_{2}}{p_{1} p_{2}} \sum_{x=0}^{p_{1}-1} \sum_{j=0}^{p_{2}-1} \sum_{\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q}\left(\zeta_{1}\right) / \mathbb{F}_{q}\right)} \sigma\left(\zeta_{1}^{x . g_{1} \frac{p_{1}-1}{p_{2}} \cdot j+n}\right) a^{x} \\
=\frac{1}{p_{1}} \sum_{x=0}^{p_{1}-1} \sum_{j=0}^{p_{2}-1} \sum_{l=0}^{f_{1}-1}\left(\zeta_{1}^{x \cdot g_{1}^{\frac{p_{1}-1}{p_{2}} \cdot j+n}}\right)^{q^{l}} a^{x} \\
=\frac{1}{p_{1}}\left(f_{1} p_{2}+\sum_{i=0}^{p_{1}-2} \sum_{j=0}^{p_{2}-1} \sum_{l=0}^{f_{1}-1}\left(\zeta_{1}^{g_{1} p_{1}-1}\right)^{p_{2} \cdot j+n+i}\right)^{q^{l}} a^{g_{1}^{i}} \tag{6}
\end{array}\right) .
$$

Case 1. $p_{2} \mid f_{1}$. In this case, $g_{1}^{\frac{p_{1}-1}{p_{2}} \cdot j} \in\langle q\rangle \subseteq \mathbb{Z}_{p_{1}}^{*}$ for all $j, 0 \leq j \leq p_{2}-1$. Therefore,

$$
\sum_{l=0}^{f_{1}-1}\left(\zeta_{1}^{g_{1}^{\frac{p_{1}-1}{p_{2}} \cdot j+n+i}}\right)^{q^{l}}=\sum_{l=0}^{f_{1}-1}\left(\zeta_{1}^{g_{1}^{n+i}}\right)^{q^{l}}=\eta_{n+i}^{(1)}
$$

for $0 \leq j \leq p_{2}-1$. Substituting in eq. (6), we get

$$
\begin{aligned}
{\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right] e_{\mathbb{F}_{q}}\left(\phi_{n}\right) } & =\frac{1}{p_{1}}\left(f_{1} p_{2}+\sum_{i=0}^{p_{1}-2} \sum_{j=0}^{p_{2}-1} \eta_{n+i}^{(1)} a^{g_{1}^{i}}\right) \\
& =\frac{1}{p_{1}}\left(f_{1} p_{2}+p_{2} \sum_{i=0}^{p_{1}-2} \eta_{n+i}^{(1)} a^{g_{1}^{i}}\right) \\
& =\frac{p_{2}}{p_{1}}\left(f_{1}+\sum_{i=0}^{p_{1}-2} \eta_{n+i}^{(1)} a^{g_{1}^{i}}\right) .
\end{aligned}
$$

Since the right-hand side of the above equation is non-zero, it follows that $\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right]$ is invertible in \mathbb{F}_{q} and, consequently,

$$
e_{\mathbb{F}_{q}}\left(\phi_{n}\right)=\frac{p_{2}}{\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right] p_{1}}\left(f_{1}+\sum_{i=0}^{p_{1}-2} \eta_{n+i}^{(1)} a^{g_{1}^{i}}\right) .
$$

Since $\eta_{i}^{(1)}=\eta_{i+e_{1}}^{(1)}$ for all $i \geq 0$, we have $e_{\mathbb{F}_{q}}\left(\phi_{n}\right)=e_{\mathbb{F}_{q}}\left(\phi_{n+e_{1}}\right)$. Also $e_{\mathbb{F}_{q}}\left(\phi_{n}\right), 0 \leq n \leq$ $e_{1}-1$ are all distinct, since, in view of Lemma 1, the tuple ($\eta_{n}^{(1)}, \eta_{n+1}^{(1)}, \eta_{n+2}^{(1)}, \ldots$) is not equal to the tuple $\left(\eta_{n^{\prime}}^{(1)}, \eta_{n^{\prime}+1}^{(1)}, \eta_{n^{\prime}+2}^{(1)}, \ldots\right)$ for $0 \leq n, n^{\prime} \leq e_{1}-1, n \neq n^{\prime}$.

Case 2. $p_{2} \nmid f_{1}$. For $1 \leq j \leq p_{2}-1$, let j^{\prime} be the remainder obtained on dividing $f_{1} j$ by p_{2}. We observe that $\left(g_{1}^{\frac{p_{1}-1}{p_{2}} \cdot j-\frac{e_{1}}{p_{2}} \cdot j^{\prime}}\right)^{f_{1}}=g_{1}^{e_{1} f_{1} \frac{f_{1} j-j^{\prime}}{p_{2}}} \equiv 1 \mathrm{mod} p_{1}$. This gives
$g_{1}^{\frac{p_{1}-1}{p_{2}} \cdot j-\frac{e_{1}}{p_{2}} \cdot j^{\prime}} \in\langle q\rangle \subseteq \mathbb{Z}_{p_{1}}^{*}$. Hence,

$$
\sum_{l=0}^{f_{1}-1}\left(\zeta_{1}^{g_{1}^{\frac{p_{1}-1}{p_{2}} \cdot j+n+i}}\right)^{q^{l}}=\sum_{l=0}^{f_{1}-1}\left(\zeta_{1}^{g_{1}^{\frac{e_{1}}{p_{2}} \cdot j^{\prime}+n+i}}\right)^{q^{l}}=\eta_{n+i+\frac{e_{1}}{p_{2}} \cdot j^{\prime}}^{(1)}
$$

Note that as j runs through 1 to $p_{2}-1$, so does j^{\prime}. Therefore,

$$
\begin{equation*}
\sum_{j=1}^{p_{2}-1} \sum_{l=0}^{f_{1}-1}\left(\zeta_{1}^{g_{1}^{\frac{p_{1}-1}{p_{2}} \cdot j+n+i}}\right)^{q^{l}}=\sum_{j^{\prime}=1}^{p_{2}-1} \eta_{n+i+\frac{e_{1}}{p_{2}} \cdot j^{\prime}}^{(1)} \tag{7}
\end{equation*}
$$

From equations (6) and (7), we obtain

$$
\begin{align*}
& {\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right] e_{\mathbb{F}_{q}}\left(\phi_{n}\right)} \\
& =\frac{1}{p_{1}}\left(f_{1} p_{2}+\sum_{i=0}^{p_{1}-2} \sum_{j=0}^{p_{2}-1} \sum_{l=0}^{f_{1}-1}\left(\zeta_{1}^{g_{1}^{\frac{p_{1}-1}{p_{2}} \cdot j+n+i}}\right)^{q^{l}} a^{g_{1}^{i}}\right) \\
& =\frac{1}{p_{1}}\left(f_{1} p_{2}+\sum_{i=0}^{p_{1}-2}\left(\sum_{l=0}^{f_{1}-1}\left(\zeta_{1}^{g_{1}^{n+i}}\right)^{q^{l}}+\sum_{j=1}^{p_{2}-1} \sum_{l=0}^{f_{1}-1}\left(\zeta_{1}^{g_{1}^{g_{1}-1} \cdot j+n+i}\right)^{q^{l}}\right) a^{g_{1}^{i}}\right) \\
& =\frac{1}{p_{1}}\left(f_{1} p_{2}+\sum_{i=0}^{p_{1}-2}\left(\eta_{n+i}^{(1)}+\sum_{j=1}^{p_{2}-1} \eta_{n+i+\frac{e_{1}}{p_{2}} \cdot j}^{(1)}\right) a^{g_{1}^{i}}\right) \\
& =\frac{1}{p_{1}}\left(f_{1} p_{2}+\sum_{i=0}^{p_{1}-2}\left(\sum_{j=0}^{p_{2}-1} \eta_{n+i+j \frac{e_{1}}{p_{2}}}^{(1)}\right) a^{g_{1}^{g_{1}}}\right) . \tag{8}
\end{align*}
$$

We next see that the right-hand side of eq. (8) is non-zero. Suppose not, then

$$
\eta_{n+i}^{(1)}+\eta_{n+i+\frac{e_{1}}{p_{2}}}^{(1)}+\eta_{n+i+2 \cdot \frac{e_{1}}{p_{2}}}^{(1)}+\cdots+\eta_{n+i+\left(p_{2}-1\right) \frac{e_{1}}{p_{2}}}^{(1)}=0,
$$

for $0 \leq i \leq p_{1}-2$. In particular,

$$
\begin{aligned}
& \eta_{0}^{(1)}+\eta_{\frac{e_{1}}{p_{2}}}^{(1)}+\eta_{2 \cdot \frac{e_{1}}{p_{2}}}^{(1)}+\cdots+\eta_{\left(p_{2}-1\right) \frac{e_{1}}{p_{2}}}^{(1)}=0 \\
& \eta_{1}^{(1)}+\eta_{1+\frac{e_{1}}{p_{2}}}^{(1)}+\eta_{1+2 \cdot \frac{e_{1}}{p_{2}}}^{(1)}+\cdots+\eta_{1+\left(p_{2}-1\right) \frac{e_{1}}{p_{2}}}^{(1)}=0 \\
& \cdots \\
& \eta_{\frac{e_{1}}{p_{2}}-1}^{(1)}+\eta_{\frac{e_{1}}{p_{2}}-1+\frac{e_{1}}{p_{2}}}^{(1)}+\eta_{\frac{e_{1}}{p_{2}}-1+2 \cdot \frac{e_{1}}{p_{2}}}^{(1)}+\cdots+\eta_{\frac{e_{1}}{p_{2}}-1+\left(p_{2}-1\right) \frac{e_{1}}{p_{2}}}^{(1)}=0 .
\end{aligned}
$$

On adding the above system of equations, we get $\eta_{0}^{(1)}+\eta_{1}^{(1)}+\cdots+\eta_{e_{1}-1}^{(1)}=0$, which is a contradiction, since $\sum_{i=0}^{e_{1}-1} \eta_{i}^{(1)}=-1$. Consequently, $\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right]$ is invertible in \mathbb{F}_{q} and

$$
e_{\mathbb{F}_{q}}\left(\phi_{n}\right)=\frac{1}{\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right] p_{1}}\left(f_{1} p_{2}+\sum_{i=0}^{p_{1}-2}\left(\sum_{j=0}^{p_{2}-1} \eta_{n+i+j}^{(1)} \frac{e_{1}}{p_{2}}\right) a^{g_{1}^{i}}\right)
$$

It is clear from the above expression that $e_{\mathbb{F}_{q}}\left(\phi_{n}\right)=e_{\mathbb{F}_{q}}\left(\phi_{n+\frac{e_{1}}{p_{2}}}\right)$. That the idempotents $e_{\mathbb{F}_{q}}\left(\phi_{n}\right), 0 \leq n \leq \frac{e_{1}}{p_{2}}-1$ are all distinct is a consequence of the following:

Lemma 5. For $0 \leq n, n^{\prime} \leq \frac{e_{1}}{p_{2}}-1, n \neq n^{\prime}$, there exists $i, 0 \leq i \leq p_{1}-2$, such that

$$
\sum_{j=0}^{p_{2}-1} \eta_{n+i+j \frac{e_{1}}{p_{2}}}^{(1)} \neq \sum_{j=0}^{p_{2}-1} \eta_{n^{\prime}+i+j \frac{e_{1}}{p_{2}}}^{(1)}
$$

Proof. Let $\theta_{i}:=\frac{1}{p_{1}}\left(f_{1}+\sum_{j=0}^{p_{1}-2} \eta_{i+j}^{(1)} a^{g_{1}^{j}}\right), 0 \leq i \leq e_{1}-1$ be the primitive central idempotents of $\mathbb{F}_{q}[\langle a\rangle]$ as given in Lemma 1. Suppose the lemma is not true, i.e., we have

$$
\sum_{j=0}^{p_{2}-1} \eta_{n+i+j \frac{e_{1}}{p_{2}}}^{(1)}=\sum_{j=0}^{p_{2}-1} \eta_{n^{\prime}+i+j \frac{e_{1}}{p_{2}}}^{(1)}
$$

for $0 \leq i \leq p_{1}-2$. It then follows that

$$
\sum_{j=0}^{p_{2}-1} \theta_{k+j \frac{e_{1}}{p_{2}}}=\sum_{j=0}^{p_{2}-1} \theta_{k+n^{\prime}-n+j \frac{e_{1}}{p_{2}}}
$$

for $0 \leq k \leq \frac{e_{1}}{p_{2}}-1$. Therefore,

$$
\begin{aligned}
\sum_{j=0}^{p_{2}-1} \theta_{k+j \frac{e_{1}}{p_{2}}} & =\left(\sum_{j=0}^{p_{2}-1} \theta_{k+j \frac{e_{1}}{p_{2}}}\right)^{2} \\
& =\left(\sum_{i=0}^{p_{2}-1} \theta_{k+i \cdot \frac{e_{1}}{p_{2}}}\right)\left(\sum_{j=0}^{p_{2}-1} \theta_{k+n^{\prime}-n+j \cdot \frac{e_{1}}{p_{2}}}\right) \\
& =\sum_{i=0}^{p_{2}-1} \sum_{j=0}^{p_{2}-1} \theta_{k+i \cdot \frac{e_{1}}{p_{2}}} \theta_{k+n^{\prime}-n+j \cdot \frac{e_{1}}{p_{2}}}
\end{aligned}
$$

However, for $0 \leq i, j \leq p_{2}-1, n \neq n^{\prime}$, the idempotent $\theta_{k+i \cdot \frac{e_{1}}{p_{2}}}$ is orthogonal to $\theta_{k+n^{\prime}-n+j \cdot \frac{e_{1}}{p_{2}}}$. Thus we have

$$
\sum_{j=0}^{p_{2}-1} \theta_{k+j \frac{e_{1}}{p_{2}}}=0, \quad 0 \leq k \leq \frac{e_{1}}{p_{2}}-1
$$

Adding these equations, we get

$$
\sum_{k=0}^{\frac{e_{1}}{p_{2}}-1} \sum_{j=0}^{p_{2}-1} \theta_{k+j \frac{e_{1}}{p_{2}}}=0 .
$$

Now the left-hand side of the above equation is equal to $\sum_{i=0}^{e_{1}-1} \theta_{i}$. We thus have a contradiction, since

$$
\sum_{i=0}^{e_{1}-1} \theta_{i}=1-\frac{1}{p_{1}} \sum_{i=0}^{p_{1}-1} a^{i} \neq 0 .
$$

Remark 1. It turns out (see eq. (14)) that

$$
\left[\mathbb{F}_{q}\left(\zeta_{1}\right): K\right]= \begin{cases}p_{2}, & p_{2} \mid f_{1}, \\ 1, & p_{2} \nmid f_{1} .\end{cases}
$$

Theorem 1 is now an immediate consequence of the foregoing lemmas.

3. Wedderburn decomposition of $\mathbb{F}_{\boldsymbol{q}}[\boldsymbol{G}]$

If G is an abelian group of order $p_{1} p_{2}$, then $G \cong \mathbb{Z}_{p^{2}}$ or $G \cong \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$ (in case $p_{1}=$ $p_{2}=p$, say); otherwise $G \cong \mathbb{Z}_{p_{1}} \oplus \mathbb{Z}_{p_{2}}$. Let

$$
\begin{equation*}
f:=\operatorname{ord}_{p}(q) \quad \text { and } \quad f^{\prime}:=\operatorname{ord}_{p^{2}}(q) . \tag{9}
\end{equation*}
$$

Set

$$
\begin{equation*}
e:=\frac{p-1}{f} \quad \text { and } \quad e^{\prime}:=\frac{p(p-1)}{f^{\prime}} . \tag{10}
\end{equation*}
$$

The Wedderburn decomposition of $\mathbb{F}_{q}[G]$ in this case given in Proposition 2 of $[4]$ can be seen to read as follows:

Theorem 2.

(i) If $G \cong \mathbb{Z}_{p^{2}}$, then

$$
\mathbb{F}_{q}[G] \cong \mathbb{F}_{q} \oplus \underbrace{\mathbb{F}_{q^{f}} \oplus \cdots \oplus \mathbb{F}_{q^{f}}}_{e} \oplus \underbrace{\mathbb{F}_{q^{\prime}} \oplus \cdots \oplus \mathbb{F}_{q^{f^{\prime}}}}_{e^{\prime}}
$$

(ii) If $G \cong \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$, then

$$
\mathbb{F}_{q}[G] \cong \mathbb{F}_{q} \oplus \underbrace{\mathbb{F}_{q^{f}} \oplus \cdots \oplus \mathbb{F}_{q^{f}}}_{e(p+1)} .
$$

(iii) If $G \cong \mathbb{Z}_{p_{1}} \oplus \mathbb{Z}_{p_{2}}$, then

$$
\mathbb{F}_{q}[G] \cong \mathbb{F}_{q} \oplus \underbrace{\mathbb{F}_{q^{f_{1}} \oplus \cdots \oplus \mathbb{F}_{q^{f_{1}}}} \oplus \underbrace{\mathbb{F}_{q^{f_{2}}} \oplus \cdots \oplus \mathbb{F}_{q^{f_{2}}}}_{e_{2}} \oplus \underbrace{\mathbb{F}_{q^{f_{3}}} \oplus \cdots \oplus \mathbb{F}_{q^{f_{3}}}}_{e_{3}}}_{e_{1}}
$$

For $\chi \in \operatorname{Irr}(G)$, let $A\left(\chi, \mathbb{F}_{q}\right):=\mathbb{F}_{q}[G] e_{\mathbb{F}_{q}}(\chi)$. The following theorem describes the Wedderburn decomposition of $\mathbb{F}_{q}[G]$, when G is a non-abelian group of order $p_{1} p_{2}$.

Theorem 3. Let $G=\left\langle a, b \mid a^{p_{1}}=b^{p_{2}}=1, b^{-1} a b=a^{u}\right\rangle$ be a metacyclic group of order $p_{1} p_{2}$, where p_{1} and p_{2} are primes, $p_{2} \mid p_{1}-1$ and u, an element of order p_{2} in $\mathbb{Z}_{p_{1}}^{*}$.
(i) If $p_{2} \mid f_{1}$ and $f_{1}=p_{2} r$ (say), then

$$
\mathbb{F}_{q}[G] \cong \mathbb{F}_{q} \oplus \underbrace{\mathbb{F}_{q^{f_{2}}} \oplus \cdots \oplus \mathbb{F}_{q^{f_{2}}}}_{e_{2}} \oplus \underbrace{M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right) \oplus \cdots \oplus M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)}_{e_{1}}
$$

(ii) If $p_{2} \nmid f_{1}$, then

$$
\mathbb{F}_{q}[G] \cong \mathbb{F}_{q} \oplus \underbrace{\mathbb{F}_{q} f_{2} \oplus \cdots \oplus \mathbb{F}_{q^{f_{2}}}}_{e_{2}} \oplus \underbrace{M_{p_{2}}\left(\mathbb{F}_{q^{f_{1}}}\right) \oplus \cdots \oplus M_{p_{2}}\left(\mathbb{F}_{q^{f_{1}}}\right)}_{\frac{e_{1}}{p_{2}}}
$$

Proof. Let

$$
\tilde{e}:= \begin{cases}e_{1}, & p_{2} \mid f_{1} \tag{11}\\ \frac{e_{1}}{p_{2}}, & p_{2} \nmid f_{1}\end{cases}
$$

By Theorem $1, e_{\mathbb{F}_{q}}(\iota), e_{\mathbb{F}_{q}}\left(\psi_{m}\right), e_{\mathbb{F}_{q}}\left(\phi_{n}\right), 0 \leq m \leq e_{2}-1,0 \leq n \leq \tilde{e}-1$ constitute a complete set of distinct primitive central idempotents of $\mathbb{F}_{q}[G]$. Therefore,

$$
\begin{aligned}
\mathbb{F}_{q}[G] \cong & A\left(\iota, \mathbb{F}_{q}\right) \oplus A\left(\psi_{0}, \mathbb{F}_{q}\right) \oplus \cdots \oplus A\left(\psi_{e_{2}-1}, \mathbb{F}_{q}\right) \\
& \oplus A\left(\phi_{0}, \mathbb{F}_{q}\right) \oplus \cdots \oplus A\left(\phi_{\tilde{e}-1}, \mathbb{F}_{q}\right)
\end{aligned}
$$

We have $e_{\mathbb{F}_{q}}(\iota)=\frac{1}{p_{1} p_{2}} \sum_{g \in G} g$ and $A\left(\iota, \mathbb{F}_{q}\right)=\mathbb{F}_{q}[G] e_{\mathbb{F}_{q}}(\iota) \cong \mathbb{F}_{q}$.
For $0 \leq m \leq e_{2}-1, \psi_{m}$ being a linear character, $A\left(\psi_{m}, \mathbb{F}_{q}\right)$ is commutative and so $A\left(\psi_{m}, \mathbb{F}_{q}\right)$ is equal to its centre. But, in view of Proposition 1.4 of [22], the centre of $A\left(\psi_{m}, \mathbb{F}_{q}\right)$ is isomorphic to $\mathbb{F}_{q}\left(\psi_{m}\right)=\mathbb{F}_{q}\left(\zeta_{2}\right)$. Hence $A\left(\psi_{m}, \mathbb{F}_{q}\right) \cong \mathbb{F}_{q}\left(\zeta_{2}\right)$ for $0 \leq$ $m \leq e_{2}-1$.

For $0 \leq i \leq \tilde{e}-1$, by Wedderburn structure theorem, $A\left(\phi_{i}, \mathbb{F}_{q}\right)=\mathbb{F}_{q}[G] e_{\mathbb{F}_{q}}\left(\phi_{i}\right) \cong$ $M_{n_{i}}\left(D_{i}\right)$ for some finite dimensional division algebra D_{i}, say, over \mathbb{F}_{q} and $n_{i} \geq 1$. Since \mathbb{F}_{q} is a finite field, D_{i} is a finite division algebra and therefore D_{i} is a field and so the centre of $A\left(\phi_{i}, \mathbb{F}_{q}\right)$ is isomorphic to D_{i}. However, again in view of loc. cit. of [22], the centre of $A\left(\phi_{i}, \mathbb{F}_{q}\right)$ is isomorphic to $\mathbb{F}_{q}\left(\phi_{i}\right)=K$. Therefore, $D_{i} \cong K$. Observe that
$A\left(\phi_{i}, \mathbb{F}_{q}\right) 0 \leq i \leq \tilde{e}-1$ are all isomorphic as \mathbb{F}_{q}-vector spaces. Therefore, it follows that $n_{0}=n_{1}=\cdots=n_{\tilde{e}}=\tilde{n}$ (say). Consequently, $A\left(\phi_{i}, \mathbb{F}_{q}\right) \cong M_{\tilde{n}}(K)$ for $0 \leq i \leq \tilde{e}-1$ and

$$
\begin{equation*}
\mathbb{F}_{q}[G] \cong \mathbb{F}_{q} \oplus \underbrace{\mathbb{F}_{q}\left(\zeta_{2}\right) \oplus \cdots \oplus \mathbb{F}_{q}\left(\zeta_{2}\right)}_{e_{2}} \oplus \underbrace{M_{\tilde{n}}(K) \oplus \cdots \oplus M_{\tilde{n}}(K)}_{\tilde{e}} \tag{12}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
Z\left(\mathbb{F}_{q}[G]\right) \cong \mathbb{F}_{q} \oplus \underbrace{\mathbb{F}_{q}\left(\zeta_{2}\right) \oplus \cdots \oplus \mathbb{F}_{q}\left(\zeta_{2}\right)}_{e_{2}} \oplus \underbrace{K \oplus \cdots \oplus K}_{\tilde{e}} \tag{13}
\end{equation*}
$$

where $Z\left(\mathbb{F}_{q}[G]\right)$ is the centre of $\mathbb{F}_{q}[G]$. On comparing the dimension over \mathbb{F}_{q} on both sides of eqs (12) and (13), we obtain that $\tilde{n}=p_{2}$ and

$$
\left[K: \mathbb{F}_{q}\right]= \begin{cases}\frac{f_{1}}{p_{2}}, & p_{2} \mid f_{1} \tag{14}\\ f_{1}, & p_{2} \nmid f_{1}\end{cases}
$$

This completes the proof.

4. Automorphism group

Let $n \geq 1$. Let S_{n} denote the symmetric group on n symbols; \mathbb{Z}_{n}, the cyclic group of order n; and $\mathrm{SL}_{n}(F)$, the group of $n \times n$ invertible matrices over the field F of determinant 1 . For any group $H, H^{(n)}$ denotes a direct sum of n copies of H. By $H_{1} \rtimes H_{2}$, we mean the split extension of the group H_{1} by the group H_{2}. For any \mathbb{F}_{q}-algebra \mathbf{A}, $\operatorname{Aut}(\mathbf{A})$ denotes the group of \mathbb{F}_{q}-automorphism of the algebra \mathbf{A}.

Theorem 4. Let G be as in Theorem 2.
(i) If $G \cong \mathbb{Z}_{p^{2}}$, then

$$
\operatorname{Aut}\left(\mathbb{F}_{q}[G]\right) \cong \begin{cases}\left(\mathbb{Z}_{f}^{(e)} \rtimes S_{e}\right) \oplus\left(\mathbb{Z}_{f^{\prime}}^{\left(e^{\prime}\right)} \rtimes S_{e^{\prime}}\right), & f \neq f^{\prime}, f \neq 1 \\ S_{e+1} \oplus\left(\mathbb{Z}_{f^{\prime}}^{\left(e^{\prime}\right)} \rtimes S_{e^{\prime}}\right), & f \neq f^{\prime}, f=1 \\ \mathbb{Z}_{f}^{\left(e+e^{\prime}\right)} \rtimes S_{e+e^{\prime}}, & f=f^{\prime}, f \neq 1 \\ S_{e+e^{\prime}+1}, & f=f^{\prime}=1\end{cases}
$$

(ii) If $G \cong \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$, then

$$
\operatorname{Aut}\left(\mathbb{F}_{q}[G]\right) \cong \begin{cases}\mathbb{Z}_{f}^{(e(p+1))} \rtimes S_{e(p+1)}, & f \neq 1 \\ S_{e(p+1)+1}, & f=1\end{cases}
$$

(iii) If $G \cong \mathbb{Z}_{p_{1}} \oplus \mathbb{Z}_{p_{2}}$, then

$$
\operatorname{Aut}\left(\mathbb{F}_{q}[G]\right) \cong \begin{cases}\left(\mathbb{Z}_{f_{1}}^{\left(e_{1}\right)} \rtimes S_{e_{1}}\right) \oplus\left(\mathbb{Z}_{f_{2}}^{\left(e_{2}\right)} \rtimes S_{e_{2}}\right) \oplus\left(\mathbb{Z}_{f_{3}}^{\left(e_{3}\right)} \rtimes S_{e_{3}}\right), & f_{1} \neq f_{2}, f_{1} \neq 1, f_{2} \neq 1, \\ S_{e_{1}+1} \oplus\left(\mathbb{Z}_{f_{2}}^{\left(e_{2}+e_{3}\right)} \rtimes S_{e_{2}+e_{3}}\right), & f_{1} \neq f_{2}, f_{1}=1, \\ S_{e_{2}+1 \oplus\left(\mathbb{Z}_{f_{1}}+e_{3}\right)}^{\left.S_{e_{1}+e_{3}}\right),} & f_{1} \neq f_{2}, f_{2}=1, \\ \mathbb{Z}_{\left.f_{1}+e_{2}+e_{3}\right)}^{e_{1}} \rtimes S_{e_{1}+e_{2}+e_{3}}, & f_{1}=f_{2}, f_{1} \neq 1, \\ S_{e_{1}+e_{2}+e_{3}+1,}, & f_{1}=f_{2}=1 .\end{cases}
$$

Proof.
(i) We have, by Theorem 2(i),

$$
\mathbb{F}_{q}[G] \cong \mathbb{F}_{q} \oplus \mathcal{A} \oplus \mathcal{A}^{\prime}
$$

where $\mathcal{A}=\underbrace{\mathbb{F}_{q^{f}} \oplus \cdots \oplus \mathbb{F}_{q^{f}}}_{e}$ and $\mathcal{A}^{\prime}=\underbrace{\mathbb{F}_{q^{\prime}} \oplus \cdots \oplus \mathbb{F}_{q^{\prime}}}_{e^{\prime}}$.
We first consider the case when $f \neq f^{\prime}, f \neq 1$. Since $f \mid f^{\prime}$, we also have in this case that $f^{\prime} \neq 1$. Observe, in view of Lemma 3.8 of [13], that any $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}[G]\right)$, is identity on \mathbb{F}_{q} and keeps \mathcal{A} and \mathcal{A}^{\prime} invariant, i.e $\sigma(\mathcal{A})=\mathcal{A}$ and $\sigma\left(\mathcal{A}^{\prime}\right)=\mathcal{A}^{\prime}$. This gives a map $\operatorname{Aut}\left(\mathbb{F}_{q}[G]\right) \rightarrow \operatorname{Aut}(\mathcal{A}) \oplus \operatorname{Aut}\left(\mathcal{A}^{\prime}\right)$ by setting $\sigma \mapsto\left(\left.\sigma\right|_{\mathcal{A}},\left.\sigma\right|_{\mathcal{A}^{\prime}}\right)$, which is an isomorphism, where $\left.\sigma\right|_{\mathcal{A}}\left(\right.$ resp. $\left.\left.\sigma\right|_{\mathcal{A}^{\prime}}\right)$ is the restriction of σ to \mathcal{A} (resp. \mathcal{A}^{\prime}).

Also, by Lemma 3.8 of [13], any $\sigma \in \operatorname{Aut}(\mathcal{A})$ defines a permutation $\tilde{\sigma}$, say, in S_{e}. Therefore, we have a map $\sigma \mapsto \tilde{\sigma}$ from $\operatorname{Aut}(\mathcal{A})$ to S_{e}, which can be seen to be an epimorphism with kernel $\left(\operatorname{Gal}\left(\mathbb{F}_{q^{f}} / \mathbb{F}_{q}\right)\right)^{(e)} \cong \mathbb{Z}_{f}^{(e)}$. Thus $\operatorname{Aut}(\mathcal{A})$ is an extension of $\mathbb{Z}_{f}^{(e)}$ by S_{e}. One can check that this extension splits. Hence $\operatorname{Aut}(\mathcal{A}) \cong \mathbb{Z}_{f}^{(e)} \rtimes S_{e}$. Similarly $\operatorname{Aut}\left(\mathcal{A}^{\prime}\right) \cong \mathbb{Z}_{f^{\prime}}^{\left(e^{\prime}\right)} \rtimes S_{e^{\prime}}$, which proves the first case of (i). Similarly the other cases of (i) follow.
(ii) and (iii) can be proved similarly.

Theorem 5. Let G be as in Theorem 3.
(i) If $p_{2} \mid f_{1}$, then

$$
\operatorname{Aut}\left(\mathbb{F}_{q}[G]\right) \cong \begin{cases}\left(\mathbb{Z}_{f_{2}}^{\left(e_{2}\right)} \rtimes S_{e_{2}}\right) \oplus\left(H_{1}^{\left(e_{1}\right)} \rtimes S_{e_{1}}\right), & f_{2} \neq 1, \\ S_{e_{2}+1} \oplus\left(H_{1}^{\left(e_{1}\right)} \rtimes S_{e_{1}}\right), & f_{2}=1,\end{cases}
$$

where $H_{1}=\operatorname{SL}_{p_{2}}\left(\mathbb{F}_{q^{r}}\right) \rtimes \mathbb{Z}_{r}$.
(ii) If $p_{2} \nmid f_{1}$, then

$$
\operatorname{Aut}\left(\mathbb{F}_{q}[G]\right) \cong \begin{cases}\left(\mathbb{Z}_{f_{2}}^{\left(e_{2}\right)} \rtimes S_{e_{2}}\right) \oplus\left(H_{2}^{\left(e_{1} / p_{2}\right)} \rtimes S_{e_{1} / p_{2}}\right), & f_{2} \neq 1, \\ S_{e_{2}+1} \oplus\left(H_{2}^{\left(e_{1} / p_{2}\right)} \rtimes S_{e_{1} / p_{2}}\right), & f_{2}=1,\end{cases}
$$

where $H_{2}=\operatorname{SL}_{p_{2}}\left(\mathbb{F}_{q}\right) \rtimes \mathbb{Z}_{f_{1}}$.

Proof.
(i) We have, by Theorem 3(i),

$$
\mathbb{F}_{q}[G] \cong \mathbb{F}_{q} \oplus \mathcal{B} \oplus \mathbb{C}
$$

where $\mathcal{B}=\underbrace{\mathbb{F}_{q^{f_{2}}} \oplus \cdots \oplus \mathbb{F}_{q^{f_{2}}}}_{e_{2}}$ and $\mathcal{C}=\underbrace{M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right) \oplus \cdots \oplus M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)}_{e_{1}}$.
Suppose that $f_{2} \neq 1$. As before, we have

$$
\operatorname{Aut}\left(\mathbb{F}_{q}[G]\right) \cong \operatorname{Aut}(\mathcal{B}) \oplus \operatorname{Aut}(\mathcal{C})
$$

and

$$
\operatorname{Aut}(\mathcal{B}) \cong \mathbb{Z}_{f_{2}}^{\left(e_{2}\right)} \rtimes S_{e_{2}}, \quad \operatorname{Aut}(\mathcal{C}) \cong\left(\operatorname{Aut}\left(M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)\right)^{\left(e_{1}\right)} \rtimes S_{e_{1}}\right.
$$

We now show that $\operatorname{Aut}\left(M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)\right) \cong \operatorname{SL}_{p_{2}}\left(\mathbb{F}_{q^{r}}\right) \rtimes \mathbb{Z}_{r}$. Observe that any $\sigma \in$ $\operatorname{Aut}\left(M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)\right)$ restricted to its centre, $\mathrm{Z}\left(M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)\right) \cong \mathbb{F}_{q^{r}}$, defines an element in $\operatorname{Gal}\left(\mathbb{F}_{q^{r}} / \mathbb{F}_{q}\right)$. This gives a map $\left.\sigma \mapsto \sigma\right|_{\mathrm{Z}\left(M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)\right)}$ from $\operatorname{Aut}\left(M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)\right)$ to $\operatorname{Gal}\left(\mathbb{F}_{q^{r}} / \mathbb{F}_{q}\right)$, which is an epimorphism with the kernel, the group of $\mathbb{F}_{q^{r}}$ automorphisms of $M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)$. However, by Skolem-Noether theorem, the group of $\mathbb{F}_{q^{r}}$-automorphisms of $M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)$ is isomorphic to $\mathrm{SL}_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)$. Therefore, $\operatorname{Aut}\left(M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)\right)$ is an extension of $\mathrm{SL}_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)$ by $\operatorname{Gal}\left(\mathbb{F}_{q^{r}} / \mathbb{F}_{q}\right) \cong \mathbb{Z}_{r}$. Furthermore, we see that this extension splits because for each $\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q^{r}} / \mathbb{F}_{q}\right)$, there is an automorphism of $M_{p_{2}}\left(\mathbb{F}_{q^{r}}\right)$ given by letting σ act on each entry of its matrices. This proves the first case of (i).

It can be similarly be proved that if $f_{2}=1$, then

$$
\operatorname{Aut}\left(\mathbb{F}_{q}[G]\right) \cong S_{e_{2}+1} \oplus\left(H_{1}^{\left(e_{1}\right)} \rtimes S_{e_{1}}\right)
$$

(ii) This can be proved similarly.

5. Examples

In this section, we give some examples to illustrate the computation of primitive central idempotents, Wedderburn decomposition and automorphism group as obtained from Theorems 1-5.

5.1 The group algebra $\mathbb{F}_{q}\left[S_{3}\right]$

As the first example, let us consider $S_{3}=\left\langle a, b \mid a^{3}=b^{2}=1, b^{-1} a b=a^{2}\right\rangle$, the symmetric group of degree 3 . In this case $p_{1}=3$ and $p_{2}=2$ and $\operatorname{gcd}(q, 6)=1$. The following two cases arise:
5.1.1 $q \equiv 1 \bmod 6$. In this case, we have $f_{1}=1, e_{1}=2, f_{2}=1, e_{2}=1$. We fix $g_{1}=2$. If ζ is a primitive 3 rd root of unity in \mathbb{F}_{q}, then $\eta_{0}^{(1)}=\zeta, \eta_{1}^{(1)}=\zeta^{2}$ and $\eta_{i}^{(1)}=\eta_{i+2}^{(1)}$ for all $i \geq 0$. Also $\eta_{i}^{(2)}=\eta_{0}^{(2)}=-1$ for all i.
5.1.2 $q \equiv 5 \bmod 6$. In this case, we have $f_{1}=2, e_{1}=1, f_{2}=1, e_{2}=1$. Further, $\eta_{i}^{(1)}=\eta_{0}^{(1)}=-1$ and $\eta_{i}^{(2)}=\eta_{0}^{(2)}=-1$ for all $i \geq 0$.

In both the above cases, by Theorem $1, \mathbb{F}_{q}\left[S_{3}\right]$ has the following three distinct primitive central idempotents:

$$
\begin{aligned}
& \frac{1}{6} \sum_{g \in S_{3}} g, \\
& \frac{1}{6}\left(\sum_{i=0}^{2} a^{i}-\sum_{i=0}^{2} a^{i} b\right), \\
& \frac{1}{3}\left(2-\sum_{i=1}^{2} a^{i}\right) .
\end{aligned}
$$

Furthermore, by Theorem 3,

$$
\mathbb{F}_{q}\left[S_{3}\right]=\mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus M_{2}\left(\mathbb{F}_{q}\right)
$$

is the Wedderburn decomposition of $\mathbb{F}_{q}\left[S_{3}\right]$, which is proved in [21].
Also, by Theorem 5, $\operatorname{Aut}\left(\mathbb{F}_{q}\left[S_{3}\right]\right) \cong S_{2} \oplus S L_{2}\left(\mathbb{F}_{q}\right)$.

5.2 The group algebra $\mathbb{F}_{q}\left[D_{10}\right]$

We next consider the group $D_{10}=\left\langle a, b \mid a^{5}=1, b^{2}=1, b^{-1} a b=a^{-1}\right\rangle$, the dihedral group of order 10. In this case $p_{1}=5, p_{2}=2$ and $\operatorname{gcd}(q, 10)=1$. Fix $g_{1}=2$ and ζ is a primitive 5 th root of unity in $\overline{\mathbb{F}}_{q}$. The following cases arise:
5.2.1 $q \equiv 1 \bmod 10 . \quad f_{1}=1, e_{1}=4, f_{2}=1, e_{2}=1 . \eta_{0}^{(1)}=\zeta, \eta_{1}^{(1)}=\zeta^{2}, \eta_{2}^{(1)}=\zeta^{4}$, $\eta_{3}^{(1)}=\zeta^{3}$ and $\eta_{i}^{(1)}=\eta_{i+4}^{(1)}$ for all $i \geq 0$. Also $\eta_{i}^{(2)}=\eta_{0}^{(2)}=-1$ for all i.
5.2.2 $q \equiv 3$ or $7 \bmod 10 . \quad f_{1}=4, e_{1}=1, f_{2}=1, e_{2}=1 . \eta_{i}^{(1)}=\eta_{0}^{(1)}=-1$, $\eta_{i}^{(2)}=\eta_{0}^{(2)}=-1$ for all i.
5.2.3 $q \equiv 9 \bmod 10 . \quad f_{1}=2, e_{1}=2, f_{2}=1, e_{2}=1 . \eta_{0}^{(1)}=\zeta+\zeta^{4}, \eta_{1}^{(1)}=\zeta^{2}+\zeta^{3}$ and $\eta_{i}^{(1)}=\eta_{i+2}^{(1)}$ for all $i \geq 0$. Also $\eta_{i}^{(2)}=\eta_{0}^{(2)}=-1$ for all i.

Primitive central idempotents

5.2.4 $q \equiv 1,9 \bmod 10$. In this case $\mathbb{F}_{q}\left[D_{10}\right]$ has the following four primitive central idempotents:

$$
\begin{aligned}
& \frac{1}{10} \sum_{g \in D_{10}} g \\
& \frac{1}{10}\left(\sum_{i=0}^{4} a^{i}-\sum_{i=0}^{4} a^{i} b\right) \\
& \frac{1}{5}\left(2+\left(\zeta+\zeta^{4}\right)\left(a+a^{4}\right)+\left(\zeta^{2}+\zeta^{3}\right)\left(a^{2}+a^{3}\right)\right) \\
& \frac{1}{5}\left(2+\left(\zeta^{2}+\zeta^{3}\right)\left(a+a^{4}\right)+\left(\zeta+\zeta^{4}\right)\left(a^{2}+a^{3}\right)\right)
\end{aligned}
$$

5.2.5 $q \equiv 3,7 \bmod 10 . \quad$ In this case $\mathbb{F}_{q}\left[D_{10}\right]$ has the following three primitive central idempotents:

$$
\begin{aligned}
& \frac{1}{10} \sum_{g \in D_{10}} g, \\
& \frac{1}{10}\left(\sum_{i=0}^{4} a^{i}-\sum_{i=0}^{4} a^{i} b\right), \\
& \frac{1}{5}\left(4-\sum_{i=1}^{4} a^{i}\right) .
\end{aligned}
$$

Wedderburn decomposition:

$$
\mathbb{F}_{q}\left[D_{10}\right] \cong \begin{cases}\mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{2}\left(\mathbb{F}_{q}\right), & q \equiv 1,9 \bmod 10, \\ \mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right), & q \equiv 3,7 \bmod 10\end{cases}
$$

Automorphism group:

$$
\operatorname{Aut}\left(\mathbb{F}_{q}\left[D_{10}\right]\right) \cong \begin{cases}S_{2} \oplus\left(S L_{2}\left(\mathbb{F}_{q}\right) \rtimes S_{2}\right), & q \equiv 1,9 \bmod 10, \\ S_{2} \oplus\left(S L_{2}\left(\mathbb{F}_{q^{2}}\right) \rtimes \mathbb{Z}_{2}\right), & q \equiv 3,7 \bmod 10\end{cases}
$$

The Wedderburn decomposition of $\mathbb{F}_{q}\left[D_{10}\right]$ is obtained in [12].

5.3 The group algebra $\mathbb{F}_{q}\left[\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right]$

Consider the presentation $\left\langle a, b \mid a^{7}=1, b^{3}=1, b^{-1} a b=a^{2}\right\rangle$ of $G:=\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}$. In this case, we have $p_{1}=7, p_{2}=3$ and $\operatorname{gcd}(q, 21)=1$. Fix $g_{1}=3$ and $g_{2}=2$. Let ζ_{1} be a primitive 7 th root of unity and ζ_{2}, a primitive 3rd root of unity in \mathbb{F}_{q}. The following cases arise:
5.3.1 $q \equiv 1 \bmod 21$. In this case, we have $f_{1}=1, e_{1}=6, f_{2}=1, e_{2}=2, \eta_{0}^{(1)}=\zeta_{1}$, $\eta_{1}^{(1)}=\zeta_{1}^{3}, \eta_{2}^{(1)}=\zeta_{1}^{2}, \eta_{3}^{(1)}=\zeta_{1}^{6}, \eta_{4}^{(1)}=\zeta_{1}^{4}, \eta_{5}^{(1)}=\zeta_{1}^{5}$ and $\eta_{i}^{(1)}=\eta_{i+6}^{(1)} \forall i \geq 0$. Also $\eta_{0}^{(2)}=\zeta_{2}, \eta_{1}^{(2)}=\zeta_{2}^{2}$ and $\eta_{i}^{(2)}=\eta_{i+2}^{(2)} \forall i \geq 0$.
5.3.2 $q \equiv 2,11 \bmod 21 . \quad f_{1}=3, e_{1}=2, f_{2}=2, e_{2}=1, \eta_{0}^{(1)}=\zeta_{1}+\zeta_{1}^{2}+\zeta_{1}^{4}, \eta_{1}^{(1)}=$ $\zeta_{1}^{3}+\zeta_{1}^{5}+\zeta_{1}^{6}$, and $\eta_{i}^{(1)}=\eta_{i+2}^{(1)} \forall i \geq 0$. Also $\eta_{0}^{(2)}=-1$, and $\eta_{i}^{(2)}=\eta_{i+1}^{(2)} \forall i \geq 0$.
5.3.3 $q \equiv 4,16 \bmod 21 . \quad f_{1}=3, e_{1}=2, f_{2}=1, e_{2}=2, \eta_{0}^{(1)}=\zeta_{1}+\zeta_{1}^{2}+\zeta_{1}^{4}, \eta_{1}^{(1)}=$ $\zeta_{1}^{3}+\zeta_{1}^{5}+\zeta_{1}^{6}$ and $\eta_{i}^{(1)}=\eta_{i+2}^{(1)} \forall i \geq 0 . \eta_{0}^{(2)}=\zeta_{2}, \eta_{1}^{(2)}=\zeta_{2}^{2}$ and $\eta_{i}^{(2)}=\eta_{i+2}^{(2)} \forall i \geq 0$.
5.3.4 $q \equiv 5,17 \bmod 21 . \quad f_{1}=6, e_{1}=1, f_{2}=2, e_{2}=1, \eta_{0}^{(1)}=-1$, and $\eta_{i}^{(1)}=$ $\eta_{i+1}^{(1)} \forall i \geq 0 . \eta_{0}^{(2)}=-1, \eta_{i}^{(2)}=\eta_{i+1}^{(2)} \forall i \geq 0$.
5.3.5 $q \equiv 8 \bmod 21 . \quad f_{1}=1, e_{1}=6, f_{2}=2, e_{2}=1, \eta_{0}^{(1)}=\zeta_{1}, \eta_{1}^{(1)}=\zeta_{1}^{3}, \eta_{2}^{(1)}=$ $\zeta_{1}^{2}, \eta_{3}^{(1)}=\zeta_{1}^{6}, \eta_{4}^{(1)}=\zeta_{1}^{4}, \eta_{5}^{(1)}=\zeta_{1}^{5}$ and $\eta_{i}^{(1)}=\eta_{i+6}^{(1)} \forall i \geq 0 . \eta_{0}^{(2)}=-1$ and $\eta_{i}^{(2)}=\eta_{i+1}^{(2)} \forall i \geq 0$.
5.3.6 $q \equiv 10,19 \bmod 21 . \quad f_{1}=6, e_{1}=1, f_{2}=1, e_{2}=2, \eta_{0}^{(1)}=-1$ and $\eta_{i}^{(1)}=$ $\eta_{i+1}^{(1)} \forall i \geq 0 . \eta_{0}^{(2)}=\zeta_{2}, \eta_{1}^{(2)}=\zeta_{2}^{2}$ and $\eta_{i}^{(2)}=\eta_{i+2}^{(2)} \forall i \geq 0$.
5.3.7 $q \equiv 13 \bmod 21 . \quad f_{1}=2, e_{1}=3, f_{2}=1, e_{2}=2, \eta_{0}^{(1)}=\zeta_{1}+\zeta_{1}^{6}, \eta_{1}^{(1)}=$ $\zeta_{1}^{3}+\zeta_{1}^{4}, \eta_{2}^{(1)}=\zeta_{1}^{2}+\zeta_{1}^{5}$ and $\eta_{i}^{(1)}=\eta_{i+3}^{(1)} \forall i \geq 0$. Also $\eta_{0}^{(2)}=\zeta_{2}, \eta_{1}^{(2)}=\zeta_{2}^{2}$ and $\eta_{i}^{(2)}=\eta_{i+2}^{(2)} \forall i \geq 0$.
5.3.8 $q \equiv 20 \bmod 21 . \quad f_{1}=2, e_{1}=3, f_{2}=2, e_{2}=1, \eta_{0}^{(1)}=\zeta_{1}+\zeta_{1}^{6}, \eta_{1}^{(1)}=$ $\zeta_{1}^{3}+\zeta_{1}^{4}, \eta_{2}^{(1)}=\zeta_{1}^{2}+\zeta_{1}^{5}$ and $\eta_{i}^{(1)}=\eta_{i+3}^{(1)} \forall i \geq 0 . \eta_{0}^{(2)}=-1$ and $\eta_{i}^{(2)}=\eta_{i+1}^{(2)} \forall i \geq 0$.

Primitive central idempotents:

The primitive central idempotents arising in the various cases are as follows:
5.3.9 $q \equiv 1,4,16 \bmod 21$.

$$
\begin{aligned}
& \frac{1}{21} \sum_{g \in G} g \\
& \frac{1}{21}\left(\sum_{i=0}^{6} a^{i}+\zeta_{2} \sum_{i=0}^{6} a^{i} b+\zeta_{2}^{2} \sum_{i=0}^{6} a^{i} b^{2}\right) \\
& \frac{1}{21}\left(\sum_{i=0}^{6} a^{i}+\zeta_{2}^{2} \sum_{i=0}^{6} a^{i} b+\zeta_{2} \sum_{i=0}^{6} a^{i} b^{2}\right) \\
& \frac{1}{7}\left(3+\left(\zeta_{1}+\zeta_{1}^{2}+\zeta_{1}^{4}\right)\left(a+a^{2}+a^{4}\right)+\left(\zeta_{1}^{3}+\zeta_{1}^{5}+\zeta_{1}^{6}\right)\left(a^{3}+a^{5}+a^{6}\right)\right) \\
& \frac{1}{7}\left(3+\left(\zeta_{1}^{3}+\zeta_{1}^{5}+\zeta_{1}^{6}\right)\left(a+a^{2}+a^{4}\right)+\left(\zeta_{1}+\zeta_{1}^{2}+\zeta_{1}^{4}\right)\left(a^{3}+a^{5}+a^{6}\right)\right)
\end{aligned}
$$

5.3.10 $q \equiv 2,8,11 \bmod 21$.

$$
\begin{aligned}
& \frac{1}{21} \sum_{g \in G} g \\
& \frac{1}{21}\left(2 \sum_{i=0}^{6} a^{i}-\sum_{i=0}^{6} a^{i} b-\sum_{i=0}^{6} a^{i} b^{2}\right) \\
& \frac{1}{7}\left(3+\left(\zeta_{1}+\zeta_{1}^{2}+\zeta_{1}^{4}\right)\left(a+a^{2}+a^{4}\right)+\left(\zeta_{1}^{3}+\zeta_{1}^{5}+\zeta_{1}^{6}\right)\left(a^{3}+a^{5}+a^{6}\right)\right) \\
& \frac{1}{7}\left(3+\left(\zeta_{1}^{3}+\zeta_{1}^{5}+\zeta_{1}^{6}\right)\left(a+a^{2}+a^{4}\right)+\left(\zeta_{1}+\zeta_{1}^{2}+\zeta_{1}^{4}\right)\left(a^{3}+a^{5}+a^{6}\right)\right)
\end{aligned}
$$

5.3.11 $q \equiv 5,17,20 \bmod 21$.

$$
\begin{aligned}
& \sum_{g \in G} g \\
& \frac{1}{21}\left(2 \sum_{i=0}^{6} a^{i}-\sum_{i=0}^{6} a^{i} b-\sum_{i=0}^{6} a^{i} b^{2}\right) \\
& \frac{1}{7}\left(6-\sum_{i=1}^{6} a^{i}\right)
\end{aligned}
$$

5.3.12 $q \equiv 10,13,19 \bmod 21$.

$$
\begin{aligned}
& \frac{1}{21} \sum_{g \in G} g, \\
& \frac{1}{21}\left(\sum_{i=0}^{6} a^{i}+\zeta_{2}\left(\sum_{i=0}^{6} a^{i} b\right)+\zeta_{2}^{2}\left(\sum_{i=0}^{6} a^{i} b^{2}\right)\right), \\
& \frac{1}{21}\left(\sum_{i=0}^{6} a^{i}+\zeta_{2}^{2}\left(\sum_{i=0}^{6} a^{i} b\right)+\zeta_{2}\left(\sum_{i=0}^{6} a^{i} b^{2}\right)\right), \\
& \frac{1}{7}\left(6-\sum_{i=1}^{6} a^{i}\right) .
\end{aligned}
$$

Wedderburn decomposition:
$\mathbb{F}_{q}\left[\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right] \cong \begin{cases}\mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus M_{3}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q}\right), & q \equiv 1,4,16 \bmod 21, \\ \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M_{3}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q}\right), & q \equiv 2,8,11 \bmod 21, \\ \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right), & q \equiv 5,17,20 \bmod 21, \\ \mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right), & q \equiv 10,13,19 \bmod 21 .\end{cases}$
Automorphism group:

$$
\operatorname{Aut}\left(\mathbb{F}_{q}\left[\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right]\right) \cong \begin{cases}S_{3} \oplus\left(\mathrm{SL}_{3}\left(\mathbb{F}_{q}\right) \rtimes S_{2}\right), & q \equiv 1,4,16 \bmod 21, \\ \mathbb{Z}_{2} \oplus\left(\mathrm{SL}_{3}\left(\mathbb{F}_{q}\right) \rtimes S_{2}\right), & q \equiv 2,8,11 \bmod 21, \\ \mathbb{Z}_{2} \oplus\left(\mathrm{SL}_{3}\left(\mathbb{F}_{q^{2}}\right) \rtimes \mathbb{Z}_{2}\right), & q \equiv 5,17,20 \bmod 21, \\ S_{3} \oplus\left(\mathrm{SL}_{3}\left(\mathbb{F}_{q^{2}}\right) \rtimes \mathbb{Z}_{2}\right), & q \equiv 10,13,19 \bmod 21\end{cases}
$$

References

[1] Bakshi Gurmeet K and Raka Madhu, Minimal cyclic codes of length $p^{n} q$, Finite Fields Appl. 9(4) (2003) 432-448
[2] Bakshi Gurmeet K, Raka Madhu and Sharma Anuradha, Idempotent generators of irreducible cyclic codes, Number theory and discrete geometry, 13-18, Ramanujan Math. Soc. Lect. Notes Ser. 6 (Mysore: Ramanujan Math. Soc.) (2008)
[3] Berman S D, On the theory of group codes, Kibernetika (Kiev) (1967) no. 1, pp. 31-39 (Russian); translated as Cybernetics 3(1) (1969) 25-31
[4] Broche Osnel and del Rio Angel, Wedderburn decomposition of finite group algebras, Finite Fields Appl. 13(1) (2007) 71-79
[5] Broche Cristo O and Polcino Milies C, Central idempotents in group algebras, Groups, rings and algebras, 75-87, Contemp. Math. 420 (Providence, RI: Amer. Math. Soc.) (2006)
[6] Coelho Sonia P, Jespers Eric and Polcino Milies C, Automorphisms of group algebras of some metacyclic groups, Comm. Algebra 24(13) (1996) 4135-4145
[7] Ferraz Raul Antonio and Polcino Milies C, Idempotents in group algebras and minimal abelian codes, Finite Fields Appl. 13(2) (2007) 382-393
[8] Herman Allen, On the automorphism groups of rational group algebras of metacyclic groups, Comm. Algebra 25(7) (1997) 2085-2097
[9] James Gordon and Liebeck Martin, Representations and characters of groups, Second edition (New York: Cambridge University Press) (2001)
[10] Jespers Eric, Leal Guilherme and Paques Antonio, Central idempotents in the rational group algebra of a finite nilpotent group, J. Algebra Appl. 2(1) (2003) 57-62
[11] Khan Manju, Structure of the unit group of $F D_{10}$, Serdica Math. J. 35(1) (2009) 15-24
[12] Khan M, Sharma R K and Srivastava J B, The unit group of $F S_{4}$, Acta Math. Hungar. 118(1-2) (2008) 105-113
[13] Lam T Y, A first course in noncommutative rings, Second edition, Graduate Texts in Mathematics 131 (New York: Springer-Verlag) (2001)
[14] Olivieri Aurora, del Rio Angel and Simon Juan Jacobo, On monomial characters and central idempotents of rational group algebras, Comm. Algebra 32(4) (2004) 1531-1550
[15] Olivieri Aurora, del Rio A and Simon Juan Jacobo, The group of automorphisms of the rational group algebra of a finite metacyclic group, Comm. Algebra 34(10) (2006) 3543-3567
[16] Perlis Sam and Walker Gordon L, Abelian group algebras of finite order, Trans. Am. Math. Soc. 68 (1950) 420-426
[17] Pruthi Manju and Arora S K, Minimal codes of prime-power length, Finite Fields Appl. 3(2) (1997) 99-113
[18] Sharma Anuradha, Bakshi Gurmeet K, Dumir V C and Raka Madhu, Cyclotomic numbers and primitive idempotents in the ring $\operatorname{GF}(q)[x] /\left(x^{p^{n}}-1\right)$, Finite Fields Appl. 10(4) (2004) 653-673
[19] Sharma Anuradha, Bakshi Gurmeet K, Dumir V C and Raka Madhu, Irreducible cyclic codes of length 2^{n}, Ars Combin. 86 (2008) 133-146
[20] Sharma R K, Srivastava J B and Khan Manju, The unit group of $F S_{3}$, Acta Math. Acad. Paedagog. Nyhzi. (N.S.) 23(2) (2007) 129-142
[21] Sharma R K, Srivastava J B and Khan Manju, The unit group of $F A_{4}$, Publ. Math. Debrecen 71(1-2) (2007) 21-26
[22] Yamada Toshihiko, The Schur subgroup of the Brauer group, Lecture Notes in Mathematics, vol. 397 (Berlin-New York: Springer-Verlag) (1974)

