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Abstract.  Given a group G of order pjp;, where p;, py are primes, and Fy, a
finite field of order ¢ coprime to pp p;, the object of this paper is to compute a com-
plete set of primitive central idempotents of the semisimple group algebra F4[G]. As a
consequence, we obtain the structure of IF,[G] and its group of automorphisms.
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1. Introduction

Let F[G] be the group algebra of a finite group G over a field F. The group algebra F[G]
is of interest in both pure and applied algebra. A good description of the Wedderburn
decomposition of F[G] is useful for describing the automorphism group of F[G], for
studying the unit group of F[G] and has applications in coding theory. The problem of
computing the Wedderburn decomposition of F[G] naturally leads to the computation of
the primitive central idempotents of F[G]. These problems have attracted the attention of
several authors (see [1-8], [10], [11], [12], [14-21]).

In this paper, we restrict to the case, when F' = I, is a finite field with g elements
and G is a group of order pjp> coprime to g. In this case, we give explicit expres-
sions for a complete set of primitive central idempotents (Theorem 1) and Wedderburn
decomposition (Theorems 2 and 3) of FF,[G]. Our result may be compared with the
one provided in this case by Corollary 9 of [4]. As a consequence, we also derive the
group of automorphisms of F,[G] (Theorems 4 and 5). Finally, we give some illustrative
examples.

2. Primitive central idempotents

Let F,, be a finite field with ¢ elements and T, its algebraic closure. Let G be a finite
group with o(G), the order of G, coprime to g. We begin by recalling some standard facts
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about the irreducible characters of G over the algebraically closed field Iﬁ‘q. If x € Irr(G),
the set of irreducible characters of G over [, then

X( ) Z 1
(8)8
(G)g e
is a primitive central idempotent of IF‘q[G] and x > e(x) is a 1-1 correspondence
between Irr(G) and the set of all primitive central idempotents of F,[G]. The Galois
group Gal(IF, /F,) acts on Irr(G) by setting

x =00y, oe€GaF,/F,), xelrG).

Let orb(x) denote the orbit of x € Irr(G) under this action. Observe that orb() is equal
to {7 x |o € Gal(F,(x)/F,)}, where F,(x) is the field obtained by adjoining to I, all
the character values x (g), g € G. Itis known that for any x € Irr(G),

er, )=y, eW)= > ex)

Yeorb(x) oeGal(Fy (x)/Fy)

is a primitive central idempotent of IF,[G], and the map orb(x) > €F, (x)is a 1-1
correspondence between the set {orb(x) | x € Irr(G)} of orbits and the primitive cen-
tral idempotents of F,[G] (see [22]; the treatment in [22] is when char F = 0 but the
arguments work in the present case).

Suppose G has order pj p2, where p1, p» are primes. If G is abelian, a description of
the primitive central idempotents of IF,[G] can be read from the results in [2], [4], [18]
and [19]. We thus assume throughout the rest of this section that G is a non-abelian group
of order pj p> with p; > p» (say). In this case, we must have p; =1 mod p,. Let

G=(a,bla” =b" =1, b lab = a"), (1)

where u is an element of order p; in Z; , = Zp,\{0}, be a presentation of G. Let fi :=
ord,, (q), f2 :=ordp,(¢) and f3 := ordy, p,(¢g) be the multiplicative orders of ¢ modulo
p1, p2 and pj po respectively. Let

p1—1 =1 (= Dpp— 1
h ) > /3 .

Let g; be a primitive root modulo p; and ¢; a primitive p;-th root of unity in Fq (i=1,
2). For k > 0, define

@

e| .=

fi—1

J J
7]1({]) . Z {glq , (2) Z é,gzq (3)

Set

p2—1

N li=12 . p—1]. (4)
r=0
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Our main result on primitive central idempotents of IF,[G] is the following:

Theorem 1.

() If p2| f1, then F4[G] has exactly the following ey + ez + 1 distinct primitive central

idempotents:
1
2 ¢
pP1p2 ¢eG
1 pi—1 p2—2 p1—1 ;
pY ey, (T ert]) osmze-t
p1p2 =0 =0 x=0
D2 =l (1) g
———=—— | i+ > @], 0<n<e -1
p1Fy (1) : K] o
(i) If p2 1 f1, then Fy[G] has exactly the following % + e> + 1 distinct primitive central
idempotents:
1
2.8
pP1p2 ¢€G
1 pi—1 p2—2 pi—1 i
B a e, (et )] ozmze-t
pip2 x=0 =0 =0
1 p1—2 [ p2—1 0 . el
————— | i;z + noo g laft], 0sn<—-—1
p1lEq(C1) : K] ;) ]X_% ntitj. gy P2

We will prove the theorem in a number of steps.

The primitive central idempotents of the group algebra Fy [Z |, where Z,n is the cyclic
group of order p”, p a prime, n > 1 and p t g, have been computed in [18], [19]. We
need the case n = 1, in which case, the description of primitive central idempotents is as
follows:

Lemma 1. Let (a) be a cyclic group of order p, where p is a prime coprime to q. Let
f=ord,(q), e = (p—1)/f and g a primitive root modulo p. The group algebra F,[{a)]

has exactly the following e + 1 distinct primitive (central) idempotents:

1
—(+a+---+af™h,
P

p—2 )
f—i—Zniﬂ-ag] , 0<i<e-—1
j=0

where ny = Zf;ol ;gkqj, ¢ a primitive p-th root of unity in I_Fq.
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The complex irreducible characters of G have been computed in Theorem 25.10 of [9];
the same proof also works for the irreducible characters of G over the algebraically closed
field Fy, thus yielding the following:

Lemma 2. The group G = {(a,b|aP' =bP2 =1, b lab = a"), has exactly pr + pgl

irreducible characters over ]F‘q, of which p> characters are of degree 1 and p'p—_l are of
degree p>. The non-trivial irreducible characters, V,, 0 < m < pr» — 2, of degree 1 are
given by

Un(@b*) =5, 27, b eG, 0<m<p,—2

and the irreducible characters ¢,,0 <n < £ ’p;l — 1, of degree p; over ]Fq are given by

07 y # O’
Pu(a*b”) = S

We now describe the primitive central idempotents of F,[G] associated with the
irreducible characters of degree 1. Let ¢t : G — T, be the trivial character of G. Clearly

1
= — . 5
er, (1) o Z g (%)

2 geG

Lemma 3. For0 <m < pp — 2,

1 pi—1 p2—2 pi—1

2 J
es,(Im) = —— | oD a + Y mi; | Doabe] ],
pip2 =0 =0 =0

and ep,(Yim) = ex, () if, and only if, m = m’ mod e.

Proof. Let) <m < p, — 2.

ex, (Ym) = > Y

o eGal(Fq (Y )/]Fq)

= Yo eCym),  since Fy(Ym) =Fy(22)

o€Gal(F, (22)/F,)

1 p1—1pr—1

71 03031 WD SREC e I

PIP2 \ 120 y=0 \ocGal(F,(&)/F,)
1 pi—1 p2—1 [ fr—1 My pi—1
= OIS DI el | DI
pip2 =0 y=1 \ i=0 x=0
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1 pi—1 n=2 (L1 . \ [;r-] i
T COOTED o DM | DOrE
pip2 =0 =0 \ i=0 =0
1 p1—1 p2—2 5 p1—1 i
Sl (3RS SN b 3T
pip2 =0 =0 =0
As n? = 52, forall i > 0, it follows that ep, (¥) = e, (Ymte,). Further-
more, ef, (Ym), for 0 < m < ey — 1, are distinct since, in view of Lemma 1, tuple

(n,(,,z), nr(nzjr], ’7,(;12» ...) is not equal to the tuple (77,(,12/), nr(f,)H, nr(f,)ﬂ, L) for0<m, m' <

ex—1,m#£m'. O
In the next lemma, we describe the primitive central idempotents €F, (@), 0 <n <

% — 1, associated with non-linear irreducible characters.

Lemma 4.

() If p2 | f1, then, for 0 < n < Bt — 1,

p1—2

P2 Z (1) gk
n e 7‘ +
Fy (Pn) P1lFy(51) - K] : =0 Tk

and er, (#n) = er, (d) if and only if n = n’ mod ey.
(i) If p2 1 fi, then, for0 <n < Pt — 1,

1 p1—2 (p2—1 0 .
ep, (o) = ————— | fir2 + e | a®
Ey (n [Fy(¢1) = K1p1 fir ; ;0 n”’“ﬁ

and ey, (¢n) = er,(¢w) if and only if n = n" mod %

Proof. Observe that F,(¢,) = K for all n > 0. Therefore,

[Fo(c): K1 Y e(C¢n)

o€Gal(F, ($,)/F,)

[Foc): K1 Y eCon)

oeGal(K /Fy)

= Yo e

oeGal(F, (¢1)/Fy)

[F, (61 : Kles, (6n)

pi—1

3 P2 S o (guta)a

seGal, ¢)/Fy \P1P? =0
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pi—1pa—1 L});l,j+n

B P1171272 22 2 ola” a*

x=0 j=0 oeGal(F,(1)/Fy)

1 pi=1p2—1fi-I A
— Xgl x
S 3t :

x=0 j=0 [=0
1
1 P1— 2p2 1f1 1 Ll]ﬂlﬂ )
)

S P 5535 31 LI T

p1 i=0 j=0 I=0

(6)

-1

Case 1. p>| fi. In this case, g, e (q) € Zj, forall j,0 < j < ps — 1. Therefore,

1
fl—l Ll L JAn+i 7 f1 1 i !
> (e = (c +>q "
nn+t

=0 =0

for 0 < j < pp — 1. Substituting in eq. (6), we get

-2 pr—1
1 P1 )
[Fy ) < Klew, @) = — | fipa+ Y. 3 ni a8l
P i=0 j=0
1 p1—2
= — | firntp Z nf,l,agl
P1 izo

1
= i+ Z M.

Since the right-hand side of the above equation is non-zero, it follows that [F, (¢1) : K]1is
invertible in I, and, consequently,

p1—2

P2 (1)
ef, (p) = —————— | i + n
T Fg (6 s K i Z wti®
Since n{) = /), foralli > 0, we have ex, () = e, (Pnre,). Also ex, ($). 0 < n <
e1 — 1 are all distinct, since, in view of Lemma 1, the tuple (n,(,l), ’7;(114:1’ nflﬁz, ...) is not

@ @ 1

equal to the tuple (n,,", 1,/ 1+ M, ---) for 0 < n, n<e —1l,n#n.

Case 2. pr 1t fi.Forl < j < p» — 1, let j/ be the remainder obtained on dividing

pi—l . e N\ N fi=i'
i ,,2-/> et fi

f1J by pa. We observe that <g1 r2 =g =1 mod p. This gives
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ri—1 ‘j,il.j/
g " 27 eg) C Z}, . Hence,

q/

1
fi—1 Llpzl JAn+i 4 fi—1 Illz Jneti
2| =2 | =,
1 1 ntit b
1=0 =0

Note that as j runs through 1 to p, — 1, so does j'. Therefore,

1
1
111 CjAnti a p2—1

fi—1 o
> | =2 Tpyivel 7
1=0 j'=1 P2

pa—1
j=1
From equations (6) and (7), we obtain

[Fq(é‘l) : K]E]Fq (Pn)

1 p1—2p2—1 f1—1 Ll/-%—n-H 4 )
ST 12 55 3 oI (T BT
i=0 j=0 =0
1 p1—2 (fi—1 ; p2—1 fi—1 ”1—]+n+z ] ,
g 1
= fim+ ) Z(cl Y e ) |ati
i=0 \ /=0 j=1 1=0
1 (e :
_ I
= f1pz+z nn+i+2r}n+i+ﬁj a
i=0 j=1 P2
1 p1—2 [p2—1 W )
_ 8
=— A+ 2o Do m) e e ®)
p1 i=0 \ j=0 P

We next see that the right-hand side of eq. (8) is non-zero. Suppose not, then

(eY] (Y] (eY) (1 —
Mnti +nn+i+f7‘2 thtiva, - oot Tti+(py— D =0

for 0 <i < p; — 2. In particular,

(1 (1 (€] 1)
Ny +MNef +1, ¢ +--+n q =0
o 2.5+ (=%

<1> (1 (1) ) _
T +3L —|”71+2.f,—12 + Jr’71+(pz—1);42 =0

(1 (1) (1 (1)
Ne + TI e + 77 e + + 7] = O
-l ol o425k ~l+(p=D 3
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(1)+Tl(1) 447 =0, whichisa

On adding the above system of equations, we get o1 =

contradiction, since Z i—0 nl(l) —1. Consequently, [F,(¢1) : K] is invertible in I, and

1 p1—2 (p2—1

= (n) gl
n) = T N o + . 1
F, (én) F, @) Kim fip2 ; JZ:(:) "n+l+/% a

It is clear from the above expression that ef, () = er, (¢, <1 ). That the idempotents
)

er, (), 0 <n < % — 1 are all distinct is a consequence of the following:

€l

Lemma 5. For0<mn, n < T 1, n # n, there exists i,0 < i < p| — 2, such that

p2—1 p2—1

) M
ZO Meaiejs 7 Z < Thvrer3y
J:

Proof. Let 0; = %(fl + Zfl_oznl(_l:]agl) 0 < i < e; — 1 be the primitive central
idempotents of IF,;[{a)] as given in Lemma 1. Suppose the lemma is not true, i.e., we have

1 (1)
Z 77n+l+] 7 - Z nn’+i+j]%’

for 0 <i < p; — 2. It then follows that

p2—1 p2—1

Z 9k+j;—12 = Z 9k+n’—n+j;—12’
Jj=0 Jj=0
forO <k < % — 1. Therefore,

p2—1 p2—1

Z Oy oL Z Ot jer

P2 P2

p2—1 pa—1

Z 9k+i.e—l Z 0k+n —n+j. L
i=0 -

P2

p2—1pa—1

Z Z ek—H k+n —n+j

i=0 j=0

However, for 0 < i, j < p» — 1, n # n’, the idempotent 9k+i.;—12 is orthogonal to

0

et/ —nt j . Thus we have

P2

p2—1

el
Zekﬂ;]z_o O0sk=——1.



Semisimple metacyclic group algebras 387

Adding these equations, we get

1

2 pa—l

Z Z Ot i = 0.

k=0 j=0
Now the left-hand side of the above equation is equal to > ¢_ 61 6;. We thus have a
contradiction, since

e1—1 1 p1—1

=1-—Y da #0. O

i=0 i=0

Remark 1. Tt turns out (see eq. (14)) that

P2 P2l fi,
F K]l =
[Fy(21) ] L omif

Theorem 1 is now an immediate consequence of the foregoing lemmas.

3. Wedderburn decomposition of F,[G]

If G is an abelian group of order pip», then G = Z 2 or G = Zp & Z) (in case p; =
P2 = p, say); otherwise G = Z,, @ Zp,. Let

fi=ordy(q) and f':=ord,(q). )
Set
e = p—1 and ¢ = % (10)

The Wedderburn decomposition of F,[G] in this case given in Proposition 2 of [4] can be
seen to read as follows:

Theorem 2.

() If G = Z,p, then

F,JGI=F, @ ]qu@...@qu P [qu,@...@lﬁ‘qf,,
— —_—
e e

(i) If G = Z, ® Z,, then
FGI1ZF, @ Fyr@ - ©F,, .

[ ——
e(p+1)
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(i) If G = Z,, @ Zp,, then

}Fq[G]E]Fq@ ]Fq/]@"‘ @th () quz D--- @quz () qus D--- @Fq.fs .

€] €2 e3

For x € Irr(G), let A(x,Fy) = Fq[G]qu (x). The following theorem describes the
Wedderburn decomposition of IF;[G], when G is a non-abelian group of order p p».

Theorem 3. Let G = (a,b|aP? = bP2 = 1, b='ab = a*) be a metacyclic group
of order pipa, where p1 and p> are primes, p> | p1 — 1 and u, an element of order p;
in Z* .

P1

(1) If p2| f1 and f1 = par (say), then

FGl=F, @ quz@"'@lgqh &) My, Egr)® - & M,, (Fyr) -

€2 el

(i) If p2 1 f1, then

Fq[G]EFqEB quz ®"'®qu2 @ Mpz(]quj)@"'@Mpz(qul) .

€l

(5] E
Proof. Let
- er, p2lfi,
¢ = {e_l i an
72’ P2 1-

By Theorem 1, €F, ), €F, Wm), €F, (2),0 <m <ey— 1,0 <n < e — 1 constitute a
complete set of distinct primitive central idempotents of F,[G]. Therefore,

Fq[G] = A, Fq) @ A(Yo, Fq) oD A(I//ez—lv ]Fq)
@ A(do, Fq) ® - D A(Ps—1, Fq)-

We have ep, (1) = 1= 3", c g g and A(t, Fy) = Fy[Gler, (1) = F,.

For 0 < m < e; — 1, ¥, being a linear character, A(Y,, IF;) is commutative and
so A(Y¥m, IFy) is equal to its centre. But, in view of Proposition 1.4 of [22], the centre
of A(Yy, Fy) is isomorphic to Fy (¥,,) = Fy(&2). Hence A(Y,y,, Fy) = Fy (&) for 0 <
m<ey—1.

For 0 <i < e — 1, by Wedderburn structure theorem, A(¢;, F;) = ]Fq[G]e]Fq (i) =
M,,; (D;) for some finite dimensional division algebra D;, say, over I, and n; > 1. Since
IF, is a finite field, D; is a finite division algebra and therefore D; is a field and so the
centre of A(¢;, F,) is isomorphic to D;. However, again in view of loc. cit. of [22], the
centre of A(¢;, IF,) is isomorphic to F,(¢;) = K. Therefore, D; = K. Observe that
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A(¢i, Fy) 0 <i < e—1are all isomorphic as IF;-vector spaces. Therefore, it follows that
= né

ngp=n;=--- = 71 (say). Consequently, A(¢;, Fy) = M;(K) forO <i <e—1and

FylGI=Fg @ Fy(t) @ @Fy(02) & Mj(K)® - & My(K) - (12)

e e

Furthermore,

Z(Fq[G]) ;Fq@ Fq(é‘Z)@@]Fq(éé) 2] K® -- K- (13)

e e

where Z(IF,[G]) is the centre of F,[G]. On comparing the dimension over [F; on both
sides of eqs (12) and (13), we obtain that n = p; and

S
zy p2 | fl 5
[K :Fy] = (14)
fi. p2ffr.
This completes the proof. 0

4. Automorphism group

Letn > 1. Let S, denote the symmetric group on n symbols; Z,,, the cyclic group of order
n; and SL,, (F), the group of n x n invertible matrices over the field F of determinant 1.
For any group H, H™ denotes a direct sum of n copies of H. By H; x Hj, we mean the
split extension of the group H; by the group H». For any F,-algebra A, Aut(A) denotes
the group of IF;-automorphism of the algebra A.

Theorem 4. Let G be as in Theorem 2.

G0 IfG = sz, then

2 % S) @ @) % Su), f#F.f#L

S0 @9 xS, =1,
Aut(Fq[G])z e(:—ie/) ( f e) f#f/ f
Zf ><1Se+e/s f:f,f;él,
Se+e’+la f=f/= 1.

(i) If G = 7, ® 7, then

e(p+1
257 % Sepany, [ AL

Aut(F, [G]) =
7 {Se(p+l)+lv f=L
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(iil) If G = Zp, ® Zp,, then

ZE %S )DL %18 D(ZE %Sy, fr#t o i#EL H#L

Sert1 ® (27 % Spppe9), fi# b A=,
AUt(F [N = Sey 1 & (25 % Sy 4ey). fi# f h=1,

25T 0 S veress fi=rfo A#L

Seitertest1 fi=fi=1

Proof.

(i) We have, by Theorem 2(i),
FG1=F, @ Ad A,

where A= F s &---0F,, and A’ = qu/®~-~®lﬁ‘qf/.
— —_—
e e’

We first consider the case when f # f’, f # 1. Since f|f’, we also have in this
case that f” # 1. Observe, in view of Lemma 3.8 of [13], that any o € Aut(F,[G)),
is identity on F, and keeps A and A’ invariant, i.e 0(A) = A and o(A) = A’. This
gives a map Aut(F,[G]) — Aut(A) ® Aut(A’) by setting o — (0| 4, 0| ), which is an
isomorphism, where o | 4 (resp. o|4/) is the restriction of o to A (resp. A’).

Also, by Lemma 3.8 of [13], any 0 € Aut(A) defines a permutation &, say, in S,.
Therefore, we have a map o +— & from Aut(A) to S., which can be seen to be an epi-
morphism with kernel (Gal(]qu /Fq))(") = ng). Thus Aut(A) is an extension of Zife)

by S.. One can check that this extension splits. Hence Aut(A) = Z<fe) x S,. Similarly

Aut(A) = ng,/) x S., which proves the first case of (i). Similarly the other cases of (i)
follow.
(i1) and (iii) can be proved similarly. (|

Theorem 5. Let G be as in Theorem 3.

@) If p2 | f1,then

2 % Se) ® (H % Se), fr# 1,

Aut(F,[G]) =
! {SM ® (H(" % S,,), h=1

where Hy = SL,(Fyr) % Zy.
(i) If p2 1 f1, then

(ZS;Z) X Sez) @ (Hz(el/[’Z) % Sel/pz)a f2 75 1’

Aut(F,[G]) =
1 Sert1 ® (HVP) 50 S0 /), fr=1,

where Hy = SL,,(F_5,) X Zy,.

g



Semisimple metacyclic group algebras 391

Proof.

(1) We have, by Theorem 3(i),

F,(G]=F, ® B®C,

where B = Iquz 69-~-€BIqu2 and C = My, (Fyr) @ - @ My, (Fyr) -
[ S —
e el

Suppose that f» # 1. As before, we have

Aut(F,[G]) = Aut(B) ® Aut(C)

and
Aut(B) = Zggz) X Sey,  AUL(C) = (AUt(M,, (Fyr)) D xS,

We now show that Aut(Mp,(Fyr)) = SLp,(Fyr) % Z,. Observe that any o €
Aut(Mp, (Fyr)) restricted to its centre, Z(Mp,(Fyr)) = F,4r, defines an element
in Gal(F,r/F,). This gives a map o +> O’|Z(Mp2([pqr)) from Aut(Mp, (F,r))
to Gal(F,-/F,), which is an epimorphism with the kernel, the group of F,r-
automorphisms of M, (IF,-). However, by Skolem-Noether theorem, the group
of [F,r-automorphisms of Mp,(F,r) is isomorphic to SL,(IF;r). Therefore,
Aut(M, (F,r)) is an extension of SL, (F,r) by Gal(Fyr /IF,) = Z,. Furthermore, we
see that this extension splits because for each o € Gal(IF4r/IF;), there is an automor-
phism of M, (IF,r) given by letting o act on each entry of its matrices. This proves
the first case of (i).
It can be similarly be proved that if f> = 1, then

Aut(Fy[G]) = Sep1 @ (H{ %1 o).

(i1) This can be proved similarly. g

5. Examples

In this section, we give some examples to illustrate the computation of primitive cen-
tral idempotents, Wedderburn decomposition and automorphism group as obtained from
Theorems 1-5.

5.1 The group algebra F;[S3]

As the first example, let us consider S3 = (a,bla® = b2 = 1, b lab = d?), the
symmetric group of degree 3. In this case p; = 3 and pp = 2 and gcd(g, 6) = 1. The
following two cases arise:

5.1.1 ¢ = 1 mod 6. In this case, we have f| = l,e; = 2, fo = 1, ey = 1. We fix
g1 = 2.1f ¢ is a primitive 3rd root of unity in Iy, then n(()l) =, nil) =¢%and nl-(l) = r]fi_é
forall i > 0. Also n> = n{” = —1 forall i.

1

5.1.2 ¢ = 5 mod 6. In this case, we have f1 = 2,e¢; = 1, > = 1, ex = 1. Further,

;751) = 77(()1) = —1land ngz) = ;7(()2) = —1foralli > 0.

1
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In both the above cases, by Theorem 1, I, [ 53] has the following three distinct primitive
central idempotents:

1
gzg,

8€S3

1 2. 2
| XYXd ->adb],
6\i20 i=0

1 2 ;
5(2—;:161).

Furthermore, by Theorem 3,
Fy[S3]1 =F, @ Fy © Ma(Fy)
is the Wedderburn decomposition of I, [S3], which is proved in [21].
Also, by Theorem 5, Aut(F,;[S3]) = S$2 @ SL2(Fy).
5.2 The group algebra F,[ D19l

We next consider the group Djp = (a, bla5 =1,b*=1,b"lab = a"), the dihedral
group of order 10. In this case p; = 5, p» = 2 and ged(g, 10) = 1. Fix gy =2 and ¢ isa
primitive 5th root of unity in IF;. The following cases arise:

521 g=1mod 10. fi=1l,e1=4 fr=1e=1n"=¢,n\" =¢%p =4,
ny) = ¢3and n"” =), foralli > 0. Also n” = n{” = —1forall i.

522 g =30rTmod 10. fi =4, e; =1, o =1,ea = 1.0 = o’ = -1,
r/l.(z) = n(()z) = —1foralli.

523 ¢=9mod 10. fi=2e =2 fr=l,ea=1n{" =¢+c4n\" =¢2 4¢3

and " = ), forall i = 0. Also n® = n® = —1 forall i.

Primitive central idempotents

524 g =1,9mod 10. In this case F,[Djo] has the following four primitive central
idempotents:

1
mdeDloga

1 i . i )
— a' — a'b]),
10 \ /=0 i=0

§<2+ € +¢Ha+ah) + (2 + 3 @* +a¥)),

1
S+ @243 (a+a%) + (¢ +cH@® +dd)).
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525 g =3,7mod 10. In this case F,[Djo] has the following three primitive central
idempotents:

1
EngDIOg’

1 i ) i ;
a' — a'bl|,
10 =0

1 4 ;
5(4—i§a>.

Wedderburn decomposition:

F, ®F, ® My(F,) & Ma(F,), g =1,9 mod 10,

F,[D
[Dio] = []Fq ®F, & Ma(F,p), g =3,7 mod 10.

Automorphism group:

S @ (SLa(Fy) x 82), g =1,9 mod 10,

Aut(F,[Dyo]) =
ll( q[ ]0]) {Sz@(SLZ(qu)X]ZZ)’ q53,7 mod 10.

The Wedderburn decomposition of F, [ D1¢] is obtained in [12].

5.3 The group algebra ¥ [Z7 % Z3]

Consider the presentation (a, b | d=1,0=1b"ab= az) of G := Z7 % Z3. In this
case, we have p; =7, p» = 3 and ged(q, 21) = 1. Fix g1 = 3 and g» = 2. Let {; be a
primitive 7th root of unity and ¢, a primitive 3rd root of unity in IF,. The following cases
arise:
5.3.1 g =1mod 21. Inthiscase, wehave fij =1,e1 =6, fo =1, e =2, n(l) =1,

1 1 1 1 1 1 1

ng" —cl, s =2l =8 0 = ¢f 0l = ¢f and " = s Vi = 0. Also

2 2 2
—{ 17“—{2 andnf)zanr)le > 0.

532 ¢=211mod2l. fi=3 e =2 fr=2 e=1n"=c+c2+c" n\" =
m_ @ _ & _ o
§1+§]+§1,andn 4o Vi = 0. Alsong —1, and , ni ¥i=0.

533 g=4,16mod 2. fi=3,e1=2, =1, er=2,n" =1 +c2+¢t 0V =

1 1 s 2 2 2 2
&+ +elandn” =0, vi= 0.4 =g, nﬁ)—;zzand f)_nf+’2w>o

534 ¢=51Tmod2l. fi=6e =1, =2 e = 1,7 = —1,and n" =
Dviz=0nd =-1, 7P =92, vi=o0.

Niy1

1 1
5354]1_8m0d211 fi=1, e11_6 f2:2leg—lln =g, V=g, ) =
2o =8 ) = ¢t nl) = ¢ andn()=n,(+)6\7’120.n0 = —1 and
2 2
nf)—nl‘ﬁl\nzo.

536 ¢ =10,19mod21. fi=6,¢e1=1, =1, e =27 =—1and " =
1 2 2 2
)71(4_)1Vt>0 n()_g“,nl —Czandn() §+)2V120.



394 Gurmeet K Bakshi, Shalini Gupta and Inder Bir S Passi

53.7 ¢ = 13 mod 21. f1—2 er =3, fr =1, e2—2)701 =a+¢5 gV =
Cl + Cl, (1) = Cl + ;‘ and n(l) 77(1)3 Vi > 0.Also n = &, niz) ;“2 and
771(2) = nlz) Vl > 0.

538 ¢ =20mod2l. f1 =2 e =3 fr=2 e =17 =¢ +¢° p =
1 1 1 . 2 2 2
§1+§1,n§)—§1+§1 andn() ni(+)3‘v’120.n(()) landn() ni(Jr)lVle.

Primitive central idempotents:

The primitive central idempotents arising in the various cases are as follows:

539 g=1,4,16 mod 21.

1
Edeva

211(261 +§22ab+§ Zab2>

0

le(Za +¢3 Zab+§zZab2>

0

-(3+(§1+§1 +¢a+a?+ah) + @G + ¢ + D)@ +ad +a®),

1
5(3+(g1 + &0+ 0@+ a® +a*) + (@ + ¢+ @ +a +ab)).

5.3.10 ¢ =2,8,11 mod 21.

1
ﬁdeGg’

1 6 . 6 . 6 .
— (2> d =Y db- Y a'b?),
L\ %0 =0 i=0

-(3+(g1+;l + @+ a* +a*) + (& + ¢ + 0@ + a® + a)),

1
5(3+(41 + 80+ 0@+ a® +at) + (@ + 2+ ¢had + @ +ad)).

53.11 ¢ =5,17,20 mod 21.

> 8

geG

1 [ 6 6

— (2> d - Y db- Y a'b?
21\ =0 i=0 i=0
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5.3.12 ¢ =10, 13, 19 mod 21.

1
_ng

21 /e

1 6

2 (Z m(i
1 6 )
2 (Z th (
o 2]

—l6—- > d
Wedderburn decomposition:

' 6
alb> + sz (

. 6
abl+ o

i=0

i Itd

7 i=1

F, ®F, ®F, & M3(F,) ® M3(F,),
Fq @ qu @ M3(Fq) 2] MS(Fq)a

F, ® qu @ M3(Fq2),

F, ®F, ®F, ® M3(F,p),

Fy(Z7 x Z3] =

Automorphism group:

$3 @ (SL3(F,) x $2),

AUL(E, [Z7 x Za)) = | 22 © BLaEy)  52),

Zn & (SL3(F2) % Zs),
S3 @ (SL3(F,2) % Z2),
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