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Abstract

We construct a family of solutions in IIB supergravity theory. These are time dependent or
depend on a light-like coordinate and can be thought of as deformations of AdSs x S®. Several
of the solutions have singularities. The light-like solutions preserve 8 supersymmetries. We argue
that these solutions are dual to the N’ = 4 gauge theory in a 3 + 1 dimensional spacetime with a
metric and a gauge coupling that is varying with time or the light-like direction respectively. This
identification allows us to map the question of singularity resolution to the dual gauge theory.
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I. INTRODUCTION

Time dependent phenomena are poorly understood in string theory. It is important to
understand them better. This could lead to an improved understanding of the big-bang and
black-hole singularities and a better connection between string theory and observational
cosmology. It could also reveal how time originates from a more fundamental description.
Earlier work on time dependent phenomena includes the large body of results on stringy
backgrounds unstable to tachyon condensation. Some previous attempts at studying time

dependent henomena pertalnl to cosmological singularities in string theory include e.
%%@FE@@ 0 0 00 0 . b b b, b o 3 o

In this paper, in part inspired by m we take a modest step in trying to understand some
time dependent backgrounds in string theory. We find a family of time dependent and null
backgrounds® in Type IIB string theory. These solutions are deformations of the AdSs x S°
background. The solutions have singularities which are space-like or null. In several cases
the dilaton is weakly coupled at the singularity.

We argue that these backgrounds have a dual interpretation in terms of turning on sources
in the N' = 4 gauge theory. The sources are time dependent or dependent on the light-
like coordinate respectively. This dual interpretation allows us to map the question of the
resolution of the singularity to the gauge theory. If the gauge theory is non-singular in some
cases, it should provide an answer to how the singularity is resolved.

We have not been able to settle this important question in this paper and postpone
a more detailed analysis of it for the future [32]. It is worth mentioning that the null

1 'We will loosely call backgrounds which depend on a light-like coordinate (instead of a time-like coordinate)
as null backgrounds in this paper.



backgrounds are especially interesting in this context. These solutions preserve 8 of the 16
supersymmetries left unbroken by a D3 brane. In some cases the supergravity background
corresponds to turning on sources in the gauge theory which become asymptotically constant,
as XT — +o00. The supergravity solution also corresponds in the gauge theory to starting,
as XT — —oo, in a state which is the A/ = 4 vacuum. In these cases it is possible that a
careful analysis shows that the gauge theory is non-singular and in a well defined state in
the far future, as X — oo, as well.

The solutions we find are also of interest from the point of view of determining the
response of the N' = 4 gauge theory to time dependent sources. For this purpose even bulk
singular solutions which cannot be resolved might be interesting. Such singular solutions
are dual to turning on sources in the gauge theory which became singular at some moment
of time. Prior to this moment it is still valid to ask about the response of the gauge theory
to the source and this information is contained in the supergravity solution.

Using the ideas of this paper similar solutions can also be obtained in other AdS spaces.
Particularly interesting is the AdS; x S3 case. Here it might be possible to analyse some
backgrounds, which have a singularity with a weakly coupled dilaton, using the world sheet
conformal field theory.

While this paper was being written, [33] appeared. It contains substantial overlap with
the results presented here.

II. SUPERGRAVITY SOLUTIONS WITH COSMOLOGICAL SINGULARITIES

We will consider Type IIB supergravity and work in 10-dimensional Einstein frame. We
are interested in solutions in which the metric, five form, Fj, and dilaton, ¢, are excited.
Our main result is that any background with metric and 5-form

ds* = Z7V(2) g do"da” + ZY?(2)gunda™dz",
1 . OnZ(x)
Fisy=— vpo
(5) 4. 4!6M P Z(:L’)z

1 .
+ 4—5'eml,,1277~b3,,w7~b5,m‘"8,,%.Z(x)alxm1 Adz™ Ndx™ A dx™ A da™,

dz* N dx? N dx? A dx® A da™ (2.1)

is a solution of the equations of motion, as long as Z(x) is a harmonic function on the flat,
six dimensional tranverse space with coordinates z™; g,,, is Ricci-flat and depends only on
the 2™; and §,, and the dilaton ¢ are only dependent on the 4-coordinates x#, and satisfy
the conditions,

- 1
R, = iﬁuqb&,(b, (2.2a)
0, (v/—det(g) §"0,¢) = 0. (2.2b)
Upon taking the near horizon limit with a flat transverse space, this reduces to
r? ., R?
ds* = (3)gwda"da” + (—5)dr* + R*dQ5 . Fis) = R (ws + %10ws) , (2.3)
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which is the case we will typically consider. Here it is important to emphasize that RW is
the Ricci curvature made from the metric g, alone (without the 1’%—22 warp factor in front).
In Eq. [3)) dQ? is the volume element and wj is the volume form of the unit five-sphere. In
other words, as long as §,,, ¢, together solve the equations of 4-dimensional Einstein gravity
coupled to a free scalar field in ([ZZ), we have a solution to the original 10-dimensional
problem.

Let us see how this result is obtained. It is easy to see that self-duality for the 5-form
means that F? = FupopeFAP“PF =0, where A, B ... take values in ten dimensions. The
Einstein equations then take the form

Rap = éFAA1A2A3A4FBA1A2A3A4 + %aA¢aB¢ : (2.4)
Now for the background (Z3) it is clear that this equation with components along the S°
directions is satisfied, since the dilaton does not depend on the angular coordinates of the S°.
The problem then reduces to studying this equation with components along the ¢, zt, - - - 23, r
directions.

The 5-dimensional metric along these directions can be written as follows:
2

ds* = %(f]uydz“dz“ + d2?) (2.5)
where 2 = R?/r. Now using the standard rules relating the Ricci curvature tensor for two
metrics related by a conformal transformation (see e.g. [34], Appendix D) we then get that

RHV = Ruu - %guu ) R.. = _%gzz . (26)
It is easy to see that the term —%guy in the first equation is canceled by the 5-form
contribution (which in effects provides a negative cosmological constant in 5-dimensions).
Thus we see that as long as é,w meets the condition in (Z2), the Einstein equations with
components along u, v directions are satisfied. The Einstein equation component along the
zz directions is met because the R, contribution is again balanced by the 5-form flux.
Finally, the dilaton equation in (Z2) then follows by noting that it satisfies the massless
free-field equation in 10 dimensions and is independent of z.

Let us end this subsection by noting that one can obtain AdSs x S® as a special case of
the solutions Eqs. (Z3)) and 2) by taking ¢ to be constant and g, = 1,,. There are also
linearised small fluctuations about this solution which are included in Eqs. (23)) and ([Z32).
Perturbations of the form, ¢ = ¢¢ + d¢(2"), G = Nuw, Where ¢q is constant and d¢(x*)
satisfies Eq. (), is of this type. Similarly included are metric perturbations of the form,
Gy = N + by, With constant dilaton and vanishing linearised Ricci tensor J;’W.

A. Time-dependent cosmological singularities

We now turn to exploring various solutions. In this subsection we construct time-
dependent solutions.



As an example consider the spacetime,

3
Gudade? = —dt* + ) "t datda’. (2.7)
=1
It has the non-zero Ricci components Ry = (3. p; — 3., p3)/t> , Ry = pi(>;pj — 1)t /12,
The conditions, (Z2) are solved if

2
(6%
o=alogt, Y p=1, S=1->p. (2.8)

One simple set of examples are the Kasner geometries where the dilaton is constant and

>oipi = >, p? = 1. Another more symmetric example is p; = é and o = % . Note that
in this case the metric g, can be made conformally flat after a redefinition of the time

coordinate. Starting with a metric of the form,
d3? = I (—2dT? + ™MD gy? 4 M2 g2 4 MM ga2) | (2.9)

one can show that the metric, Eq. (27), meeting conditions Eq. (£8), is the most general
solution for the conditions, Eq. (2.

Note that the solutions, Eqs. (271) and (ZH), have a curvature singularity at ¢t = 0.2 The
string coupling is given by g, = e?. Depending on the sign chosen for the dilaton in Eq. ([Z3X)
the string coupling blows up or goes to zero at the singularity. It is easy to verify that the
curvature singularity is reached in finite proper time for a time-like geodesic.

The class of time-dependent solutions allowed by Eq. (22) is in fact much larger. With
constant dilaton, g,, can be the metric of a gravitational wave, or that of the Schwarzschild
black hole. In the latter case the region inside the horizon gives a time-dependent geometry
with a big-bang or big-crunch. Other solutions include g, being a homogeneous FRW
metric sourced by an appropriate time-dependent dilaton. These again have big-bang and
big-crunch singularities.

With Euclidean signature again several solutions are possible. For example, with constant
dilaton, any Ricci flat metric, g, is allowed.

We started with an S® in Eq. (233), but analogous solutions can be obtained by replacing
it with an constant curvature compact five manifold. An example is the base of the conifold,
T4 Additional solutions can also be obtained by using duality. For example using the
S-duality of the IIB theory, one can obtain solutions where the axion is also turned on.?

The time-dependent solutions in this section of course do not preserve any supersymme-
tries.

2 In fact in this case both the Einstein frame and string frame metrics have a singularity where the Ricci

scalar blows up at t = 0.
3 We mention here the papers [, 27, 37] that find families of supergravity solutions in M-theory with

dependences on either timelike or lightlike time coordinates: it would be interesting to explore the relations

between these and our solutions here in the Type IIB context, and generalize them.



B. Null cosmological singularities

Next we turn to null solutions. These depend on one light-like coordinate which we call
X,
The spacetime takes the form*

d5? = /X (2dXTdX ™ + eTXD(dXH)? 4 XD a2 4 X da?) |
¢ = ¢(XT). (2.10)
The only non-vanishing component of the Ricci tensor is R,.. We should also note that

R is independent of H(XT). The background, Eq. [ZI0), is a solution if it meets the
condition,

1 - 1 1 1
S0P = Rey = (PP = " = 100 + () — (4 + 1), (211)
where h| = ddXhi etc. This is a large three function-parameter family of solutions. By a

coordinate transformation we can set f(X*) = 1. For any choice of H(X™), ho(X ™), hg(X™)
we can then get a solution by choosing a dilaton which satisfies Eq. (2I1]).

For simplicity, let us focus on spacetimes conformal to flat space: thus we set g, = el =
0 and hy = hg = 0 and the background becomes

d3? = S X(—2dX+dX ™ +da2 4+ dad), ¢ =o(XT). (2.12)
This is a solution if ] ]
LY = 20200 (213)
The 10D Einstein frame background (3) has the curvatures
1 4ef Xy
R=0, Ry, = 5(]‘3/)2 - f", —Ry_ =Ry = R33 = Rt (2.14)

besides the ones with components on S°. Note that if e/ — 0 the metric components,
Eq. (Z12), shrink to zero. The conditions for the existence of a singularity in such a situation
are made more precise below.

Null geodesics in the spacetime (2I2) at constant X —, 2%, 2?, i.e. trajectories moving only
along X, satisfy the condition,

2+ a 7.8 2+ 2
d R f,(d ) _o. (2.15)

T —
D TSN AN T e N

4 There is some redundancy in this choice of metric components, but we keep it because it will be useful in

the subsequent discussion.



since the only nonzero Fzﬁ is I'T, = f’. Here X is the affine parameter for the geodesic.
This can be solved to give A in terms of X,

A = const. / /X axT (2.16)
The curvature component,
dAXTN? (1, o\ o
— =(Z — -l 2.1
Ry R++( 5\ ) (Q(f) f )6’ (2.17)

For a suitably chosen f this can blow up when e/ — 0. As we will see in the examples below
this can occur at a finite value of \.

Our first example is obtained by taking f(XT) = —@QX™. Then the dilaton takes the
form, ¢ = £QX*. We find from Eq. @I7) that Ry, = 1Q%*?*". This blows up at
X1 — oo, showing that there is a big crunch curvature singularity. The singularity occurs
at finite affine parameter, A = e @¥" — 0, as X* — oo. This spacetime, with a curvature
singularity at finite affine parameter, is thus geodesically incomplete. Choosing the dilaton
to be ¢ = —QX* we find that the string coupling constant vanishes at the singularity.®

Our next example is obtained by taking e/X") = tanh? X*. This gives,

X+\ Ve
d3?* = tanh® X T(—2dXtdX~ + da? +dz?), e =g, <tanh 7) , (2.18)

The example has been engineered so that the spacetime becomes flat in the far past and

future (with constant dilaton) but exhibits interesting behaviour in the intermediate region.
We have R, = m, so that Ryy = —=+ +ianh4 ~+ showing a curvature singularity at
X+t — 0, with e? becoming arbitrarily small there.’ It is easy to see from Eq. (18] that
the singularity occurs at finite value of the affine parameter.

We end with two comments. First, it is worth pointing out that the only solutions
to (1) with a constant constant dilaton is flat space. With ¢ = const, [T leads to
ef = ﬁ After a coordinate transformation this can be put in the form of the standard
flat space metric.

Secondly, introduction of a nontrivial g, (z") in (23) typically introduces curvature sin-
gularities at the Poincare horizon at r = 0. However it turns out for the null solutions
considered above there is no such singularity. This is yet another reason why we focus on

the null solutions.

1. Supersymmetry of the null solutions

In this subsection we explore the supersymmetry of the null solutions. For simplicity, we
restrict ourselves to the solutions, Eqs. (23)) and ZI2).

5 Ry in the string frame also blow up at the singularity in this case.
6 The string frame curvature, Ry blows up at the singularity in this case as well.
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We are considering a Type IIB background with Einstein metric gy, dilaton ¢ and
5-form Fynpor, using the notation of [36] and the earlier [37]. Since 7 = ie™?, the quan-
tity B = 1T is real and the quantity Qy = (1 — BB*)"'Im(BdyB*) = 0. Then the
supersymmetry variations are

oA = %Wu — B9y Be* =0, (2.19a)

1 l
Oty = EDME + @’VML"MSFML__MS’VME =0, (2.19Db)

for the complex Weyl dilatino A (y''A = \) and the complex Weyl gravitino ¢, (v =
—1p). Also the supersymmetry parameter ¢ is a complex Weyl spinor with e = —e. The
covariant derivative is Dy = Oy + iwﬁgfab, with 'y, = %[Fa, I'y], using flat space I'-matrices
and curved space y-matrices which satisfy vy, = €%,I',. The spin connection w® satisfies

de® + w® A €® = 0, the e being an orthonormal frame.
The null background, Egs. (23)) and (Z12), take the form,

ds% = 772/ (—2dX+dX™ + da'dat’) + ZV2da™da™, (2.20a)
1 1 1 m
Foi23m = Rmam log Z, Fm1m2m3m4m5 = 1€m1m2m3m4m5 68m6Z7 ¢ = ¢(X+),
(2.20b)

where Z = Z(2™) is a harmonic function in the flat transverse space with coordinates z™,

f = f(X), and the €g) is the flat one. In our notation the indices i = 1,2, refer to two

directions parallel to the D3 brane, and the indices m = 1,--- |6 refer to the six directions

transverse to the D3 brane. We choose the obvious, diagonal frame et = Z~1/4ef/2dxt | etc.
The spin connection in this background, with the above choice of frame, is,

1 1 1
woy =3 fldxX*, w_, = ZZ—l/%f/?am log ZdX ™", Wy, = Z(a“ log Zdax™ — Oy, log Zda™),
1, 1 1 .

Wiy = §f'd:ﬂ, Wim = ZZ_l/Qef/zﬁm log ZdX ™, wi, = _12—1/26]0/2&” log Zdx".

(2.21)
It is easy to see that for the background (3), [ZIZ), the dilatino variation gives the
condition,

vre=0. (2.22)
The gravitino variations take the form,

1 4 Lo

KOY; = 06 — é%’%;(l —T%)e— Zf Yy_e (2.23a)
1 1

KOy, = Ome + ge Wy — ng%n(l —I)e (2.23Db)
1

KOY_ = 0_€ — 57—%(1 —The (2.23¢)
1 1 1

KOy = 0y € — g%r%(l —T%)e - if/E + ZfIV_’Y—@ (2.23d)



where w,, = 0,,In Z, v, = YW, and I'* = 10123,
It is easy to see that all the conditions are satisfied if and only if

IMe =, vre =0, e = Z 18y, (2.24)

for n a constant spinor. (Equivalently, v™n = 0 and iv*n = n.) The first condition in
Eq. (Z2Z4) is the standard one for supersymmetry in the presence of a D3 brane and gives
rise to 16 supersymmetries. We see that the second condition in Eq. (Z24) is the same
as Eq. ([222) and breaks the supersymmetry further by half giving rise to a total of 8
supersymmetries. Thus all backgrounds of the form, Eq. (12) preserve 8 supersymmetries.

III. SOME COMMENTS ON THE DUAL GAUGE THEORY

Here we take a few preliminary steps in constructing and analysing the gauge theory
duals to the supergravity backgrounds discussed above.

We would like to claim that the backgrounds discussed in section [, Eqs. (23) and (22),
are dual to an N = 4 gauge theory with a gauge coupling g%,, = €%, in a four dimensional
spacetime with metric, g,,,. We now give some supporting evidence for this claim.

The AdSs x S5 background is a special case of Eq. ([Z3) with g, = 7, and a con-
stant dilaton. Small fluctuations around this background give rise to supergravity modes.
These can be mapped to operators using the AdS/CFT dictionary. The family of solutions,
Egs. Z3) and Eq. ([Z32), include some of these supergravity modes as well. For example, as
was discussed in section 2, solutions where the dilaton varies satisfying Eq. (22), with the
metric §,, = 7., is a solution of the linearised equations obtained from Eqgs. (3)) and (E2).
This mode is dual to the operator TrF? in the Yang -Mills theory. Similarly the mode
where §,, = 1, + hy,(2) with constant ¢, where h,,, satisfied the linearised Ricci flatness
condition, R;w = 0, is dual to the stress energy tensor in the gauge theory, 7,,. A general
linearised solution, d¢(z*), h,,(x#), of the type, Eq. (23), Eq. (Z2), then is dual to turning

. . 2
on sources in the gauge theory which couple to TrF, T,

Seouree = / d'z[6(a")Tr F? + h,, TH"], (3.1)

which is in agreement with the claim above.

Most solutions, especially the interesting ones we have found above, are of course not
small fluctuations. Since the identification of the dilaton and g,, with the gauge coupling
and metric of the gauge theory works for the small perturbations, it seems reasonable to
assert that this is true for these solutions as well.

One additional piece of evidence here is to consider a single D3 brane moving in the
background of such a solution. It is easy to see from the DBI action of this brane that
it has a gauge coupling e?/2, and metric, Juv- Note that it is only for D3 branes that the
excitations perceive the Einstein metric gy, .

9



Now actually for small fluctuations, each supergravity mode has two solutions which
fall off differently as r — oo. These correspond to the non-normalisable and normalisable
modes [38, 9] and determine the source coupling to the dual operator and the expectation
value of the operator in the dual theory respectively. It is easy to see that the linearised
perturbations which lie in the class of solutions, Eqs. ([23)) and (), correspond to only
exciting the non-normalisable modes, as may be seen from the positive power of r in these
perturbations. Thus, in their case the dual gauge theory continues to be in the N' = 4
vacuum with the sources mentioned above turned on. What happens for solutions which
are not small fluctuations is less clear. Solutions which approach AdSs x S® for early times,
when t — —o0 or XT — —oo must be dual to the gauge theory starting in the N = 4
vacuum at early times. The subsequent state of the gauge theory would then be determined
by the sources which are turned on.

Once we have accepted the identification proposed above we can analyse the gauge theory
description in some more detail. The most interesting question is whether the gauge theory
dual to a singular spacetime is itself singular or not. In the time dependent solutions we
analysed, of Kasner type, Eq. (£8)), at the cosmological singularity in the bulk the four
dimensional metric g, is also singular. This suggests that the gauge theory living in such
a singular spacetime would itself be singular and ill-behaved. One case worth examining
separately is when §,, is conformally flat. An example is the solution, Eq. (£§), with
Di = %,a = % Since the gauge theory is conformally invariant it might seem at first
glance that it is oblivious of the shrinking conformal factor. This is of course not true. The
conformal anomaly in 4 dimensions [40, 41, 42, 43, 44] (see also e.g. |4, 46, 47, 48] in the
holographic context of AdSs x S°) tells us that

a

Tp = _C
1672

woo= 1672 (Caﬁvé

CoP0y — (Raprs R —4R,3 R + R?) —RaﬁRaM%R? . (3.2)
where in the last expression we have used a = ¢ = % for the SU(N) N'=4 super Yang
Mills theory. Note that in the first expression, the first term involves the Weyl tensor and
vanishes in a conformally flat space-time. Focussing on the N'=4 theory at hand, the terms
in the last expression give T,,* o 1/t* in the example above. Thus we see that the stress
energy tensor blows up at the singularity in this example signalling that the gauge theory
is probably ill behaved.

The null solutions are more promising in this respect. These solutions preserve 8 super-
charges, as we discussed above. In the conformally flat cases, Eq. ([2I2), since R, . is the
only non-vanishing component of the stress tensor, the conformal anomaly vanishes.

Consider in particular the solution discussed in Eq. (ZIS). In this case the solution
approaches AdSs x S® as XT — £oo. Thus the sources in the gauge theory are turned
off at X* = 400 where it becomes the N/ = 4 Yang Mills theory. We also learn, as was
mentioned above, that the gauge theory is in the N' = 4 vacuum as X* — —oo. We
expect that the deformed gauge theory inherits the supersymmetries of the bulk since it

10



is basically the theory on the branes which themselves give rise to the background and
one might hope that this may be useful in drawing conclusions about the nature of the
state at finite X*. At XT — —oo, the number of supersymmetries are enhanced to the
maximal number and the gauge theory dual should be in the state annihilated by all the
supercharges. At finite time one may naively think that the state continues to be annihilated
by eight of the supercharges. However, all these supersymmetry parameters obey v"e = 0.
The corresponding supercharges do not commute with the hamiltonian and therefore a state
which preserves these supersymmetries at some time alone do not generically preseve this at
later times. In fact the anticommutator of the corresponding supercharges is proportional
to P_ rather than the hamiltonian.

We have not been able to conclusively establish yet whether the gauge theory continues
to be non-singular as one approaches Xt = 0 and leave this for further study [32]. If true,
we should be able to answer whether the solution of the form, Eq. (Z1I8), is also valid in the
far future, as X — oo, or what is its appropriate continuation in that region.
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