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Abstract

We construct Matrix Membrane theory in pp wave backgrounds that have a null linear dilaton
in Type IIB string theory. Such backgrounds can serve as toy models of big bang cosmologies. At
late times only abelian degrees of freedom survive, and if the Kaluza-Klein modes along one of the
directions of the membrane decouple, standard perturbative strings emerge. Near the “big bang”,
non-abelian configurations of fuzzy ellipsoids are present, as in the Type IIA theories. A generic
configuration of these shrink to zero volume at late times. However, the Kaluza Klein modes (which
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can be thought of as states of (p, ¢) strings in the original IIB theory) can be generically produced
in pairs in both pp wave and flat backgrounds in the presence of time dependence. Indeed, if we
require that at late times the theory evolves to the perturbative string vacuum, these modes must
be prepared in a squeezed state with a thermal distribution at early times.
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I. INTRODUCTION

It has been always difficult to address questions involving strongly time dependent back-
grounds in string theory, particularly those which involve an apparent “beginning” or “end”
of time. Recently there have been several attempts to investigate such backgrounds which
have holographic duals in the form of open string theories. These include nontrivial solutions
corresponding to closed string tachyon condensation of two dimensional non-critical string
theory H, H], certain simple backgrounds of critical string theory which admit a Matrix
Theory or a Matrix String Theory formulation B, EI, B, H, Hg,lg, Eﬁ |E| E E D ; as well
as models with tachyon condensation in critical string theory E, m, G, E, m, d, H, E,
@, @] The first two sets of examples have a common feature: the underlying quantum
mechanics is always defined in the open string formulation which has a “time” and this open
string time runs over the full range of values, while the “time” which emerges in the closed
string interpretation appears to have a “beginning” or an “end”.

In the Matrix Theory models, the Yang-Mills theory of D-branes provide a mnon-
perturbative formulation of string theory in a time dependent dilaton background with
some fixed quantized momentum N along a null direction. Consider for example the case
where the string theory is weakly coupled in the future and strongly coupled in the past.
Then, in the holographic Matrix string theory description (obtained using @, @, EL @]1

L Tt was shown in @] that one can obtain a supersymmetric quantum mechanics via dimensional reduction
of N'=1,D = 10 SYM. We thank M. Halpern for bringing this to our attention.



and the arguments of [3(0, 31]) the reverse happens—i.e. the SU(N) Yang-Mills coupling is
strong in the future and weak in the past. This means that at late times, the fields of the
Yang-Mills theory are constrained to lie in the Cartan subalgebra and become the coordi-
nates of the emerging “space”—the Yang-Mills action reduces to the worldsheet action of
multiple strings (in the light cone gauge) in this “space”. At early times, all the non-abelian
degrees of freedom are important and there is no interpretation in terms of strings any more.
Equivalently, the closed string which emerges from the model may be thought to live in the
future quadrant of the Milne universe[3]2. Thus, while the time of the open string theory,
i.e. Matrix theory, runs over a full range, the time as perceived in the closed string theory
may appear to begin at a finite point.

In [7] we found solutions of Type IIA string theory in a pp wave background which have
a null linear dilaton, and we constructed Matrix String Theory in this background starting
with the BMN Matrix theory of 48], compatifying [49], and following [50, K1, K2, |53, |54,
ha, 56, 57, b8, h9] . The presence of a second length scale (the background flux of the
pp wave) allowed us to analyze the model in a regime of parameters where a specific class
of non-abelian configurations—fuzzy spheres [6(]—are relevant. We looked at the dynamics
of these fuzzy spheres and found that with generic initial conditions, these oscillate in size,
but the maximum size vanishes exponentially fast as the background evolves from the big
bang. This leaves only perturbative closed strings at late times. For large N these fuzzy
spheres become spherical D2 branes. This model therefore provides a concrete example in
which D-branes proliferate a typical state of the theory at early times and tame what would
appear as an initial singularity from the point of view of perturbative closed strings.

In this note, we consider a pp wave background in IIB string theory with a null linear
dilaton, with two compact directions, one of which is null. In the absence of a dilaton
background this theory has a holographic description in terms of the large R-charge sector
of a 3+1 dimensional N=4 Yang-Mills theory [4§], or more precisely as a version of a quiver
gauge theory constructed along the lines of [61]. However, now we have a second dual
description as well. Following the standard procedure in flat space [26, 27, 62] a sector of
the theory with some given momentum along the null direction should be dual to a Matrix
Membrane Theory—a 241 dimensional Yang-Mills theory on a torus [63]. This theory was
explicitly constructed in [64, 65]. The 2+1 dimensional Yang-Mills theory lives on a torus,
the ratio of the two sides being the IIB string coupling. In the absence of a background
dilaton, and at weak string coupling only abelian configurations survive. Furthermore, one
of the sides becomes very small and the Kaluza-Klein modes along this direction decouple.
The resulting theory then becomes the lightcone action for a fundamental IIB string in the
pp wave background.

Here we construct the Matrix Membrane theory in the presence of a linear null dilaton.

2 Perturbative strings in Milne universes have been investigated in [32, 33, 34, 135, 136, 37, B8, 139, 40, 41|, 42,
43, 44, U5, 146, 41]



At late times this reduces to the worldsheet action of the appropriate IIB string. However
at early times, nonabelian configurations are important, in particular fuzzy ellipsoids. In a
way similar to [7] these ellipsoids generically shrink to zero at late times. However now we
have a new phenomenon. The Kaluza-Klein modes, which are states of (p, q) strings in the
original IIB theory, now become important at early times. We find that if we require that
the state at late times is the vacuum of perturbative string theory, the initial state must be
a squeezed state of these (p,q) strings with no net winding number. This model therefore

throws light on the question of initial conditions.?

II. IIB PP WAVES WITH NULL DILATON

The string frame metric, RR field strengths and the dilaton ® are given by
ds* = 2dxtde™ — 42[(x")? + - (29)?)(da™)? — SuaTdxPdxT + [(dat)? + - - - (d2®)?],
Fliiosa = Flsgrs = p €Qx+> = Q. (2.1)

It is easy to check that this solves the low energy equations of motion. These solve the
equations of motion for y = p(z™), and not just constant u; however, for most of the paper
we will consider just u = constant, although we suspect that p = pe®*" would be a very
interesting case, as in [1]. The coordinates z~ and % are compact

r~ ~z +27R, 2% ~ 2 + 21 Rp. (2.2)

We will denote the string coupling of this Type IIB theory by gg and the string length by

.
T-dualizing along 28 yields a ITA background with a string coupling g4 and an 2® radius
given by R4,
Ip 1%
= gp—2- Ry= -5, 2.3
ga = 9B Ry’ A Ry (2.3)

This may be further lifted to M-theory by introducing another compact direction 2°. This
M-theory background is given by

QT

ds* = 62T{2d:c+dx_ — 4P 4 - (@) + 42 (det)? + [(dat)? + - - - (d2®)P])
(e

T
Flirg9 = —4p, Flis67 = 8/~L€Q .

+ e
(2.4)

Again, we could have taken p = p(z™) in this background, as for the dual background (ZII).
The various factors of e9*" may be understood as follows. Typically a NS-NS gauge field
will not acquire any such factor, whereas an RR gauge field will [@]. This is why F7g9 does

3 The fact that models of this type can be used to address issues of initial conditions was suggested to us
by S. Trivedi.



not have such a factor but F, 557 does. In terms of the IIB quantities, the radius of the z°
direction is Ry and the Planck length of the M-theory is [,, where
I I

Ry = gp—> P =gp-2-. 2.5
9 gBRB7 P 9B ( )

III. MATRIX MEMBRANE THEORY

Consider a sector of the IIB theory with momentum p_ = J/R along the x~ direction. If
we treat 2~ as the Kaluza-Klein direction of the M-theory background (ZZl) we have a ITA
theory living on two compact directions x® and 2%, with radii R4, Ry respectively, and a net
DO brane charge equal to J. T-dualizing along 2% and z° then leads to a IIA theory with
D2 brane charge J living on a torus with sides
12 - 12
-, Ry = 2.
R "R
Matrix membrane theory is the SU(J) supersymmetric 2 4+ 1 dimensional Yang-Mills theory

Rs = g5 (3.1)
of these J D2 branes. The dimensionful coupling constant of the YM theory is

R RR,
RyRs gl

Gon = (3.2)
In flat space and a constant dilaton, this Matrix Membrane theory was constructed in
[26, 27, 162]. The 2+ 1 Yang-Mills lives on a torus: the ratio of the two radii is equal to the
string coupling of the original theory [66]. Therefore, for small string coupling, the Kaluza-
Klein modes for the smaller circle decouple, and at the same time the potential restricts the
fields to lie in a Cartan subalgebra; the resulting two dimensional theory becomes the usual
light cone superstring after a suitable dualization[62] of the gauge field strength. For time-
independent pp waves, several physical aspects expected from such a theory were considered
n [63], and the theory was explicitly constructed in [64, 65].

The construction of Matrix membrane theory for the background given in (24) follows
the procedure of [64, 63]. The bosonic terms of the action for J D0 branes may be written
down following [51, |58, 160, 69, [70].

The light cone lagrangian of these J DO branes is given by

1 _
G*G;;D,X'D, X7 — Gl 1t

L="3m, 2GR AG T

GreG o[ X', X7[X5, X1
i

I~J
- 2—@A+IJX X7}, (3.3)

4 Bonelli [67] has found this type of supersymmetric action by dimensional reduction from a deformed ten
dimensional gauge theory. However, Kim et. al. [68] have shown that, for example, the M-theory pp wave

quantum mechanics follows from dimensional reduction of A" = 4,d =4 SYM on an S>.



where the indices I, J, K = 1---9 and 7 is a dimensionless light cone time. Using a gauge
in which the M theory gauge potentials are given by

Aygg = 4,U1'7, Ayse = —8M€QI+CE7, (3.4)

the explicit form of the bosonic part of the Matrix theory lagrangian is

1

. 20,112
L=T DXZQ —2QTDX92_ P X12 "'X62 4X72
g (DX e (DX = TN o (X 4]

R . R o

_X9 X22 v 2QT X Xz2

Agui 8ui o,

+ l—2X7 (X% X — Z—zeQ X7 [X°, X%}, (3.5)
p p

where the indices 7,5 =1---8.
To obtain the Matrix membrane theory we need to substitute

21 2
X® — —iRAD,, X° — —iRyD,, Tr — Tr/ da/ dp, (3.6)
0 0

where D,,a = 7,0, p are covariant derivatives with a SU(J) gauge connection A,. We will
also rescale the coordinates 7, g, p, the fields X% a=1---7 and A, as follows

3 3
T ZPTv o — REQ g, p— REApa (3 7)
xo LVERRy 0 Ly RRy, o RRa
B L B B

The 2+ 1 Yang-Mills theory action for the Matrix Membrane then becomes

3
p

27rRl—1’.z,g 27TRRA
S = /dT/ da/ dp L, (3.8)
0 0

L=Tr { %[(DTX“)Q — (DX = (DX 4

where

Fa2'r + 62QT(F5T - F;?U)]

G QT\2
LR[4T 4 T e S (xe xop
W rxT R 8ui(Gye® ) XT (X5, X1 ), (3.9)

~ (GymeQT)

with

R
Gyw = ,/RARQ. (3.10)

In the above a,b = 1---7. Using the relations (ZH) the radii of the o and p directions in
[BR) become Ry and Ry of (B respectively.
The action (BH) has two important features:
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1. Each factor of Gy is accompanied by a factor of e%7.
2. Each factor of 9, or A, is accompanied by a factor of e9T.

It is straightforward to see that one could rescale the fields and the coordinates to write

the action S in the form

S= 2 S(u=1,Cwm=1). (3.11)
GYM

In terms of these new coordinates, the range of o and p become

4

R

The dimensionless coupling which controls the physics is then

0<o<

2
0<p< “ZZQB. (3.12)

o M _ 1gslp
G%, RR%

(3.13)

In the rest of the paper, however, we will stick to the choice of coordinates and fields in
which the action is given by (B3).

IV. MATRIX MEMBRANE THEORY ON CURVED SPACE

For the ITA big bang [3, [7], the corresponding Matrix String Theory could be written as
an ordinary gauge theory—albeit with time-dependent masses [4]—on Milne space, rather
than Minkowski space. We will see a similar phenomenon occur here.

The first step is to perform a change of variables, p = p'e?7. Although this inserts 7-
dependence into the range of p/, this is natural in that the size of the p direction should be
related to the string coupling—more precisely, the ratio of the radii of p and o circles is g,
cf. Eq. (BI2)—which is indeed 7-dependent. The resulting action is

3
e~ QT

3
ZWRI—I% ZWRZIZQ’A
S = /dT/ da/ dp’ L', (4.1)
0 0

1
£ =Tr {—ie@f(puxa)2

where

o - €_QTF2V . 2M2€QT[(X1)2 4. (X6)2 + 4(X7)2]
G%’M3QT a b2 A : 207 yv7 [y5 6

¢ (X X" — — X" Fyp — 8ipGyne®™@™ X7 [X°, X% b, (4.2)
Upon—as in [1]—defining u(7) = pe~97, this action—except for the funny, non-Lorentz-
invariant X”F,, term, the consistency of which will be explained in section [V] (see also [65])—
can be reinterpreted as a standard Yang-Mills Lagrangian on a space with metric

ds® = €97 [—dr* + do” + dp”] . (4.3)
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That is,

27r 27r e —Qr
/dT/ da/ dp' V=g {——gWD XD, X"

— L P — 202 (T)[(X 1) 4 - (XO)2 4+ 4(XT)?

4G%M
G2 4
M e b () 20y Fyo = 8ip(T)Gyn X" [X°, X } , (4.4)
with the metric (E3)).
Interestingly, the metric (23)) has a curvature singularity at 7 = —oo, which geodesics

can reach in finite affine parameter. In fact, this singularity is a worldvolume, spacelike big
bang singularity. This differs from the ITA big bang, in which this metric is that of the flat
two-dimensional Milne space. That said, although the p’-direction appears to be shrinking
as T — —o0, its coordinate distance is growing as 7 — oo. and thus the total physical
size of the p'-direction is actually constant in time. (This is most easily seen by undoing
the coordinate transformation to g/, to obtain ds? = e2Q7 (—dr? + do?) + (dp — Qpdr)?.)
Nevertheless, this global picture does not change the local picture that gives the big bang
singularity at 7 = —oc.

Since the worldvolume theory is nongravitational, the worldvolume big bang cannot be
resolved by quantum gravity (a.k.a. stringy) effects. Thus, unlike the ITA big bang [3], one
cannot attempt to extrapolate through the 7 = —oo singularity to a pre-big bang scenario.

V. BEHAVIOR FOR @) =0

Let us first review some aspects of the physics for usual time independent pp waves

RR2 0(1)7

the effective coupling constant of this YM theory becomes strong. The potential terms then

following [65]. When the original IIB theory is weakly coupled, gp < 1 with

restrict the fields X, F,, to lie in the Cartan subalgebra and can be therefore chosen to be
diagonal. This also has the effect that the covariant derivatives become ordinary derivatives.
We now perform a duality transformation followed by a redefinition of fields:

1. Introduce an auxillary field ¢ and add a term to the action %e””*8H¢FVA.

2. Integrate out the gauge fields to obtain a lagrangian density of the form
7 6
1

£'= =5 (0.XY) + Gini(0u0)] = 20D (X + 4(XT)’] + 4Gy X70:6. (5.1)

a=1 =1
3. Make a redefinition of the fields (X9, ¢) — Y7
X=Y'  i=1,--.6
X" =Y7 cos(2ut) +Y® sin(2ur), (5.2)
Gymo = Y7 sin(2ur) +Y?® cos(2ur).

8



This leads to the lagrangian density

8
—=) (9.7 - 2“22 v (5.3)
I=1

I=1

'Cdiag

l\DI}—t

In equations (BJl) and (B3)), the index p runs over all three of the membrane worldvolume
directions. However, in the ggp < 1 regime, the size of the p direction shrinks to zero
which implies that the 2 4+ 1 dimensional theory reduces to a 1 4+ 1 dimensional theory. The
lagrangian density (B3) is then precisely the (bosonic part of the) light cone gauge fixed
Green-Schwarz lagrangian density in the pp wave background. Allowed boundary conditions
lie in the conjugacy classes of the group which split the action into pieces characterized by
strips in o space whose lengths add up to the total extent JRo. This leads to the worldsheet
description of multiple light cone strings. The fermionic terms also agree, as shown in [65].

In the limit A > 1 the Yang-Mills theory becomes weakly coupled and classical solutions
play a significant role. These classical solutions include the fuzzy ellipsoids discussed in
64, l65).

Specifically, the potential of (BH) vanishes for the static (taking p to be constant) con-
figuration

3 3 3
_ 2[“ » X6 = Qﬁ%ﬁ, X7 = Q%J?’, (5.4)

where J® obey the SU(2) algebra, and the remaining matrices X* vanish. (Actually, X3
and X need only commute with X>57, corresponding to arbitrary positions of the fuzzy
ellipsoids.) By virtue of the SU(2) Casimir, on irreducible representations this configuration
obeys,

(X®)? + (X%)? +2(X7)? = constant, (5.5)

and so is ellipsoidal. These vacua can be shown [64, 65] to preserve all 24 supercharges of
the M-theory background.

VI. SHRINKING ELLIPSOIDS

In the presence of a () > 0 the theory is again weakly coupled near the big bang singularity
at 7 = —oo. Therefore, in this regime there are fuzzy ellipsoids in addition to standard
strings. The time evolution of these fuzzy ellipsoids generalizes that of the fuzzy spheres
in ITA pp waves discussed in [7]; for generic initial conditions, the size of these extended
non-abelian configurations oscillate at early times and then the ellipsoids degenerate as one
evolves to 7 = oo. However, it turns out that the ellipsoids do not shrink to zero size, but
only to zero volume. In particular, the solution depicted in Fig. [ exhibits exponential decay
of what had been the major axes (along X%, X°) of the ellipsoid, but the diagonal matrix
X7 remains nonzero. Thus, there are (matrix) strings at late time, but they are ordinary
and not giant gravitons.



FIG. 1: The time evolution of the shape of the fuzzy ellipsoid, for A = 1 and a momentarily
stationary fuzzy ellipsoid of the (for @ = 0) supersymmetric size. The solid line is R, the size in
the 5, 6-directions, and the dashed line is Ry, the size in the 7-direction. Thus, at late times, the
fuzzy ellipsoid degenerates.

Explicitly, consider the ansatz, with all other fields zero,

x° =L Ri(r)J, Xt =L Ri(r)2, X" = 2 Ry(r) %, (6.1)
Gy Gywm Gym
and set
B Gvum . Gym
A= Q M3 ) T = /1’3 t. (62)

For Q = 0, the equations of motion yield Ry = 2v/2 and R, = 2. In general, the equations
of motion imply the coupled differential equations

0= Ry + 4Ry + Ry (R? + R?) — 8™ R\ Ry, (6.3a)
0= Ry + 16Ry + 26> R?R, — 8¢ R?, (6.3b)

where the dots denote t-derivatives. Note that setting R; = 0 satisfies the first equation,
whereupon the second equation reduces to a harmonic oscillator for Rs, which does not
require that Ry vanish.

Presumably a similar situation arises for IIA. This was not seen in [1] simply because
the SO(3) symmetry made it natural to start with a fuzzy sphere, whereupon the symmetry
guaranteed that the evolution preserved the spherical shape, but with exponential decay of
the radius. The results here suggest that it would be interesting to investigate nonspherical
initial ITA configurations, which might decay into (Matrix) strings.
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VII. PARTICLE PRODUCTION AND INITIAL STATES

At late times, the 2 4+ 1 dimensional theory is strongly coupled. Therefore, as in the
time-independent case discussed above, the fields can be chosen to be diagonal. Exactly the
same dualization and field redefinitions as discussed above now lead to a 2 + 1 dimensional
lagrangian density

8

8
Laiag = =D _(0:Y)? = (0,Y7) = 97 (0,Y")Y] — 20> > (V') (7.1)
=1

I=1

[\DI—‘

As expected, there is a factor of e“” for each factor of d,. It is tempting to argue that as
7 — oo the Kaluza-Klein modes in the p direction become infinitely massive so that the
theory becomes 1 + 1 dimensional and exactly identical to the Green-Schwarz string action
in this background. However, this is too hasty since we have a time-dependent background
here and energetic arguments do not apply.

Since the size of the p direction is given by R given in (B)), the mass scale associated with
these Kaluza-Klein modes is Mg ~ ﬁ while the mass scale associated with the coupling
is G%,; which is given in (B2). Therefore when Rp > I the KK modes are much lighter
than the Yang-Mills scale. In our present time-dependent context, these scales become time-
dependent and it follows from the coupling and the 0, terms in (B9) that the KK modes are
expected to decouple much later than the time when the non-abelian excitations decouple.
Therefore, there is a regime where we can ignore the non-abelian excitations, but cannot
ignore the KK modes. In this regime, the Matrix Membrane lagrangian density is given by
([ZT). In the following we will assume that the time interval for which (1)) is valid is long
enough to be well approximated by the entire interval (—o00,00).

To determine the fate of these KK modes we need to find the modes of the field Y!. The
mode functions which are positive frequency at early times are

© in) _ { R }1/2 1"(1 — W /Q) 6i(%§0+g;?}3p) J_om (/{ €QT) (7 2)
. 787r2lj49g3 m —tYg \'m ) .
where 2 2 R
2 2, m nit
UJm = 4:“ + ’ Kn = ’ 73
14 Qgsly "

while those which are appropriate at late times are

R
167lhgpQ

The problem is of course equivalent to that of a bunch of two dimensional scalar fields

o0 = 1172 B i O, (,697). (7.4)
Q

with time-dependent masses and it is well known that such time-dependent masses lead to
particle production or depletion [71, 72, [73]. Because of standard relations between the
Hankel function H.”(z) and the Bessel function J,(z) there is a non-trivial Bogoliubov

11



transformation between these modes which imply that the vacua defined by the in and out
modes are not equivalent. Indeed one has

(out)

M2 T(1 4w /Q) e B = —{5—}*T(1 — iw, /Q) e 24", (7.6)

27Twm 27rwm

This means that the out vacuum |0),y; is a squeezed state of the “in” particles

1 * in n
0o =TT = i) expl i a5 ) 100 (7.7)

where afﬁsi,?) is the annihilation operator of the KK mode labeled by n with m units of

momentum in the o direction. Here

o777}

There is of course a similar relationship which expresses the in vacuum as a squeezed state
of the out particles.

In the present context, the relation ([Z7) means that if we require that the final state at
late times does not contain any of the KK modes, the initial state must be a squeezed state
of these modes. The occupation number of the in modes in this state is thermal

1

0ut<0‘a“ in) ir’bgmn)‘mout =
e @ —1

Note that the Bogoliubov coefficients and number densitites depend only on m for all n # 0.
This follows from the fact that n-dependence may be removed by shifting the time 7 by
log(k,). However, the modes with n = 0 need special treatment. Indeed, in the n — 0 limit
the “in” modes ([LZ) go over to standard positive frequency modes of the form e=“m7 as
expected. In this limit, however, the out modes ([ contain both positive and negative
frequencies. This is of course a wrong choice, since for these n = 0 modes there is no
difference between “in” and “out” states. In fact, the “out” modes ([Z4]) have been chosen
by considering an appropriate large time property for nonzero n and do not apply for n = 0.
In other words, the squeezed state ([L7) contains only the n # 0 modes.

The phenomenon we described above of course occurs even when g = 0, in which case
the IIB string frame metric is flat. In this case, it is useful to consider the lagrangian as a
sum of the lagrangian densities of an infinite number of 1+1 dimensional scalar and fermion
fields with time-dependent masses

nRk -
gBlp

12



The resulting action may be viewed as that of fields with time independent masses (and
their fermionic partners) in a Milne universe. In a way similar to the IIA background of [3]
the theory for each n has a conserved supercurrent. However the periodicity in ¢ leads to a
breaking of supersymmetry due to boundary conditions. Indeed if ¢ were non-compact, one
could make a coordinate transformation to “Minkowski” coordinates in which the super-
symmetry is obvious. The “Minkowski” vacuum is supersymmetric and there is no particle
production. The periodicity of o destroys this property, and there is no supersymmetric vac-
uum since there is no supersymmetry. However, as 7 — oo the periodicity of o becomes less
important and constant 7 slices approach slices of constant “Minkowski” time. Indeed the
“out” vacuum defined above is identical to the “Minkowski” vacuum: the positive frequency
modes defined with respect to these out modes are also positive frequency with respect to

the “Minkowski” modes [73].
I

m,n

The operators a,, . in fact create states of (p.q) strings in the original Type IIB theory
[27]. To see this, let us recall how the light cone IIB fundamental string states arise from the
n = 0 modes of the Matrix Membrane. In this sector the action is exactly the Green-Schwarz
action. The oscillators ai,{ho defined above are in fact the world sheet oscillators and create
excited states of a string. The gauge invariance of the theory allows nontrivial boundary
conditions, so that m defined above can be fractional. Equivalently the boundary conditions
are characterized by conjugacy classes of the gauge group. The longest cycle corresponds to
a single string whose o coordinate has an extent of 27.J % which is the same as 2wl%p_ as
it should be in the light cone gauge. Shorter cycles lead to multiple strings - the sum of the
lengths of the strings is always 27l%p_, so that there could be at most J strings. Note that
m is the momentum in the o direction: a state with net momentum in the o direction in
fact corresponds to a fundamental IIB string wound in the = direction. This may be easily
seen from the chain of dualities which led to the Matrix Membrane.

As shown in [27], following the arguments of [66, (74, [75], SL(2,Z) transformations on
the torus on which the Yang-Mills theory lives become the SL(2,Z) transformations which
relate (p, ¢) strings in the original IIB theory. In particular the oscillators aé,n create states
of a D-string.

The squeezed state ([7) is therefore a superposition of excited states of these (p, ¢) strings.
The number of such strings depends on the choice of the conjugacy classes characterizing
boundary conditions. Since each (m,n) quantum number is accompanied by a partner with
(—m, —n) this state does not carry any F-string or D-string winding number. Finally this
squeezed state contains only n # 0 modes, i.e. they do not contain the states of a pure
F-string. We therefore conclude that in this toy model the initial state has to be chosen as
a special squeezed state of unwound (p, q) strings near the big bang to ensure that the late
time spectrum contains only perturbative strings. It is interesting that this toy model of
cosmology can address the issue of initial conditions.

In the above discussion we have ignored the effect of D-string interactions. In fact when
gp < 1 the pure D-strings described above are strongly coupled and all excited states rapidly
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decay into supergravity modes. However states with n # 0 which are “almost” F-strings
could be relatively long lived. For such states the above results based on free strings will
continue to be relevant.’

Finally, in this paper we have not considered the possible generation of potentials for the
fields due to quantum effects. In the absence of pp waves this indeed happens [83, 184] and one
would expect that the same would be true in the presence of pp waves. However, as found
in [83, 84] and emphasized in [84] the potential vanishes at early times (as expected) as well
as at late times. This suggests that standard perturbative string physics is indeed recovered
at late times. We have not yet performed a similar analysis in the pp wave background,
but we expect similar results to hold. In our discussion of particle production, however,
we implicitly assumed that the potential vanishes at an intermediate time where the non-
abelian excitations have decoupled, but the Kaluza-Klein modes have not. This requires
a detailed investigation. The presence of a potential will certainly change the details of
particle production. However we expect that the basic fact that (p, q) strings are produced
to still hold.

It would be interesting to explore the meaning of the supergravity background in the
holographic dual in terms of the 341 dimensional gauge theory. This seems to require a
deformation of AdSs x S° which, in the Penrose limit, would become the solution of this
paper. In |87, 8] a large class of time-dependent deformations of AdSs x S° have been
found for which there is a natural proposal for the dual gauge theory. Although this class
does not include the one we are looking for, further investigations along these lines might
lead to the answer.
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