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Analytical formulation of small signal stability analysis of
power systems with nonlinear load models
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Abstract. It is now recognized that both load dynamics and generating
unit dynamics contribute significantly to the limitation of loadability of
power systems. In this paper, we take a static nonlinear load representation
and different combinations of machine and exciter dynamic models to
develop a comprehensive linearized model to study small signal stability.
In particular we monitor the Hopf bifurcation instability and through
participation factor analysis we identify the rélevant state variables.
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1. Introduction

There is extensive literature on small signal analysis in power systems (Padiyar et al
1981; Kundur et al 1990; Sauer & Pai 1990; Wang & Semlyen 1990), and it is the
principal tool to study both low-frequency oscillations and voltage stability. In the
literature these two phenomena are treated separately. In this paper, we take a unified
approach and attempt to look at the dependence of these two phenomena on the
parameters of the system, which are the loads (nonlinear dependence on voltage) and
modelling of the generating unit (machine and exciter). Use of participation factor is
helpful in identifying state variable participation in a critical mode. We also extend
the results of an earlier paper (Sauer & Pai 1990) regarding the role of the system
Jacobian, algebraic Jacobian and the load flow Jacobian on voltage collapse. To
illustrate our studies both 3-machine and 10-machine cases are studied but the
research grade program developed is general enough to handle larger systems.

The small-perturbation behaviour of the power system in the vicinity of a steady-
state operating point can be described to first order by a set of linear, time-invariant
(LTI) differential equations in the state space form

X = Ax + Bu.

The N-dimensional state vector x represents the perturbations of the system state
variables from their nominal values at the given operating condition, and the vector
u represents perturbations of the system inputs such as voltage reference, desired real
power or load demands. The numerical values of the matrices A and B depend on
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Figure 2. Synchronous machine two-axis model dynamic circuit (i=1,...,m).
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the operating condition as well as on the system parameters. The whole analysis
starts with a systematic derivation of a linear model for an n-bus m-machine nonlinear
differential algebraic system with nonlinear voltage-dependent loads at the network
buses (figure 1). The model so obtained is flexible enough to study both low-frequency
oscillations and voltage stability problems. For the former study the system 4 matrix
and its eigenvalues are readily obtainable for any given load model. The influence of
parameters such as exciter gain and loads can be studied very easily. It is shown that
the appearance of the electromechanical mode of oscillation or exciter mode oscillation
depends critically on the modelling of the machine and the excitation system. For
voltage stability analysis, we progressively load the system at a bus or set of buses
and, at each loading, monitor the eigenvalues of the linearized system.

The machine is modelled by either a two-axis or a flux decay model, and the
excitation system by either an IEEE-type I or a static exciter model. Thus potentially
we have four types of generating unit models. We derive two linearized models,
namely, a two-axis, with IEEE-type 1 exciter (model A) or flux decay with static exciter
(model B). The synchronous machine representation and the exciter representations
are shown in figures 2-5. One could also consider a two-axis machine model with
a static exciter (model C) and a flux decay model of the machine with IEEE-type 1

- exciter (model D).

2. Various mathematical models

The mathematical model consists of differential equations pertaining to machine and
exciter dynamics and algebraic equations corresponding to the stator and network
equations.

21 Model A (two-axis model with IEEE-type 1 exciter)

The differential equations of the machine and the exciter are given as in Sauer & Pai
(1991) where the various symbols are defined.

2.1a Differential equations:

— = ; — Wy, 1
Smo—0, Q0
fi__a_’g‘ - Tyi [Ey — Xl yd 1y _ [E + X4 qi]‘ldl Di(wi — ) @)
dt M, . M, M; M, ’

dE;i - E;i _ (Xdi —X:ii)Idi + E[di, (3)
dt :im' T:im :ioi

B EBuLa iy _xr, @

dt T T 1

qoi

qoi
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dE - _ Kgi+Sp(Epy) + Vi

E.. , (5)

dt TEi r TEi ) ‘

dv,, V.. K, K, K K,

—&i&z _?r& +?4lRfi_#Efdi+?ﬂ(V'efi_ V. (©)
Ai Ai Ai 4 Fi Ai

____dRF"= _Bﬂ+ Ky E p fori=1,...,m 7

dt TFi (TFi)z

2.1b  Stator algebraic equations: The stator algebraic equations are

Ey— V;sin(6,—6,) — R I, + X1, =0, ‘ (8
E;i — ViCOS(éi - 0‘) - Rsini - X:iiIdi =0, fori=1,...,m. (9)

These algebraic equations can be represented as a current dependent voltage source
at the generator buses (figure 2).

- 21c Network equations: The network equations are

1Vsin(6,—60,) + I, V;cos(5,— 6)) + P (V)

— X V.V, Y, cos(6,— 0, —a,)=0, : (10)
k=1
1V;c08(9,—6,)— I, V;sin(6,— 6) + Q, ,(V})
-3 ViV, Yysin(0,—6, —a,)=0, i=1,...,m, (11)
k=1
PLE('/;)_ IRAS Y, cos(0;— 0, — o) =0, - (12)
k=1

QV)— Y V.V, Y,sin(6,—60,—a,)=0, fori=m+1,...,n.  (13)
k=1 R

22 Model B (flux decay model and fast exciter)

If the damper ‘wiﬁding time constants T,,; are very small, then use of singular

perturbations (Sauer & Pai 1991) makes the E,; dynamics very fast so that (4) becomes
an algebraic equation:

. 0= — B+ (X, — X)L,
ie.,

Ey=(Xy—X,)I,, | (14)

The differential and algebraic equations of the two-axis model will be modified by
-substituting (14) in (2), (8) and (9). Moreover, for a simple and fast exciter, the transfer

function between (V,,, ,— V) and E 74 18 Tepresented by a single time constant, so

that the exciter model becomes

TAi(dEfdi/dt) == Efdi + KAi(Vref,i = V) ' (3)

The overall flux decay model is represented by the following set of equations.

Car
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2.2a Differential equations:

dé;
B o 16
= (16)
. 1. (X, — X, D,
do; _Ton _ Egly _ (_.L_..__)Idll ; (@ = o) 17)
dt M; M; M; ! !
Si_E_Ig_,'=___E_;1__(Xdz X:ix)I _+_Efdi, (18)
dt T:ioi T:loi “ T:Iol
; . K
Lras ey Zay, , ~ V) fori=t,. (19)
dt T, Al

2.2b  Stator algebraic equations: The stator algebraic equations are

V,sin(d,—6,)+ R,1,,— X _I.,=0, (20)

qi” qi
E;i—Vl.cos(cSi—Hi)-— - Xl =0, fori=1,...,m. ‘ (21)

si ql

The equivalent circuit for these equations is shown in figure 3.

2.2¢ * Network equations: The network equations are the same as (10)—(13).

| 2.3 Model C (two-axis model with fast exciter)

In this model we have (1)-(4) as the differential equations for the machine zind (8)—(13)
as the algebraic equations. The exciter is represented by (15).

24 Model D (flux decay with IEEE-type I exciter)

The differential equations are (16)—(18) and (5)-(7). The algebraic equations are
(20)—(21) and (10)—(13). ' -

3. Linearization of model A

Linearizing the differential equations (1) to (7) we have

~dAJ;
= Aw | (22)
dr | | | ,
dA E. ' 1 / I,
l:iAT _LAI +X de[ +MA1 _ﬂeAE'i
dt M, M; M; M, M,
El . XI 'I. A
deIdi deE:“ qi deI qulqnoAIdi_ _D_i_Awi,
M' 'Mi Mi Mi Mi
dAE;i _ AE;i__(Xa.-—X[i)AIai_*_AEfdi, (23)"
dt T:im T:iOl T;Ol
dAE’, AE, (X, '
d:= ( qz)AI ) (24)
dt T T’ : :

s doi goi
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Ai

dAE . AV,
— L4~ ((E, )AE, +—2X
iN fdio fdi ?

dt Ty
dAVm —_— AVR-‘ + _IEQARF[ _ KAiKFi

dt o T, T, Ai L Fi
dAR,, AR, .

Fi. __ RF¢+ K}-‘; AEfdi’ fori:l,._,,m,
de Ty (Tp)?

through (27) in matrix notation we obtain,

[0 1 0 0 0 0
0 — .I_)_f_ — £QL2 —_ £‘-‘—"'?- 0 0
Mi Mi Mi
r— ., I
8] fo o -L o 1, 0
Ady; T i Ty
Al 1o 0 0 -L o 0
AE, |= Tt
AE ., 1
AVRE 0 0 0 0 f,' (Efdin) P
. Ei
| ARy, | K. K. 1
0 0 0 0 e Uk S
T4i TFi TAI
0 0 0 0 K""'z 0
i (Tg)
0 . 0
Ilio(X;'i—X;i)“E;ia Idio(X:ii—X;i)—E;io
Mi‘ ' M.' .
X,.—X
_ (X, : i) 0
Tdoi
+ | 0 (X qi X g’ i)
T,qoi
0
0
- 0 ‘

(25)

K, K,
AEfdi - ?A_AV: + ?A_AVref,i’ (26)

Ai

(27)

E raioDSE(E 1) + Sp(E )1/ Ty, Writing equations (22)

0
0
0 735:‘ ]
Aw;
o ||22
AE,
tAE
rdi
0 |V,
K, -ARFL’J
TAi
1
Ty
Al di:l
AL, |
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— - 0 0
0 0 . |
0 0 — 0
0 0 M
0 0 | 0 9 AT
N A1 1o o Mio|lio12,m (28)
0 0 AV; AVref,i
0 O
K ,.
0 - K,
T, 0 ==
0 0 TAi
- - 0 0]
: A6, AT,
Denoting Al =Al , P =AV,, and M= Au,,
A qi ! AV; ? AVref,i
we obtain,
AX,= A AX,+ A, Al + A, AV, + E Ay, fori=1,...,m. (29)
For the m machine system, (29) can be expressed as
AX = A;AX + A, Al + A3 AV, + EAU, (30)

where A,, A,, A;, and E are block diagonal matrices. We now linearize the stator
algebraic equations (8) and (9) to get

AE);, —sin(d,, — 0, )AV, — V, cos(6,,— 0,,)Ad, + V, cos(d,, — 0,)) Ab,

— R AL+ X, AL, =0, )
AE,, —c0s(6,, — 6,)AV, + V, sin(3,, — 6,)A8, — V, sin(6,, ~ 0,,) Af,
~R,AI, — X, AL, =0, i=12...,m. : (32)

Writing (31) and (32) in the matrix form, we have

[—V,cos(,—6,) 0 0 1 00 0
| V,sin(,—6,) 0 1 0 0 0 0
(A8, ]
Aw; ,
AE'. _ -
AEZ: + "'Rsi . X,qi AIdi + Viocosgaio_eio) _Sln(aio—gio)
AEj‘di - X :ii _‘:Rsi AIqi - Vt:o Sln(éio —eio) - Cos(éio _ 91‘0)
AV,
ARFi
A6, =0, i=12,...,m (33)
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Rewriting (33) we get
0=B AX, + B, Al + By AV,

gi’

i=1,...,m : (34)
- In compact notation, (34) can be written as
0=B,AX + B, Al + B;AV,, (35)

where B, B,, and B, are block diagonal matrices. Linearizing the network equations
(10) and (11), which pertain to generators, we obtain

V,,sin(6, — 0,)AL,; +1,, sin(6, =6, )AV, +1, V, cos(d;, — 910)/35:-

dio " io

- Idio Vio cos (61'0 - Gio)ABi + Vio COS(5ia - Hio)AIqi + Iqio COS((S'.D - Blo)A Vi

- [kz Vio Yucos(6,—6,,— aik)jIAVi

=1
n

— Ve )3 [y cos(8;, — 6, — o, )JAV,
k=1
+ [ Vo 2. Veo Yy 5in(0,, — 6, — aik)] A6,
s
Vo 2 [V Y, sin(0,, — 6,, — 2, )JA6, + AP (V) = 0. (36)
k=1 :
#i :

Vig €08(0;, = B, )ALy + 1, €08(8;, — 0,) AV, — I, V, sin(8,, — 6, ) A8,
+ Ly, Vi, sin(3;, — 0,,)A0, — Viosin(d;, — eia)AIqi =1 gio sin(;, — Gio)AVi
=1, Vi, c08(0;,— 0,)A6,+ 1, V, cos(5,, — 6,,) A8,

gio " io

- [ Z Vka Yik Sin(Bia - aka - aik):l AVI
k=1
- Via Z [Yl.ksm(ﬂw —Bka ”'a,k):]AVk" [ Vio Z Vko Y;‘k COS(OIO - Hko - dlk)]AB,
| i
+ Vio Z [Vko Yik COS(B:’D - eka - aik)] Aek + AQL;(I/;) = 09 i= 17 23 .M.
k=1 :
#i

Rewriting (36) and (37), we obtain

[ L, Viy08(6,,~ 0,) = I,, V,,sin(6,—8,) 000000
~ L,V sin(3,—0,)— I, V, cos(6,—~0.) 000000

pan -—

Aé;
Aw;
AE:,
AE,

) AEfdi
AV,

| ARy, |

;/;0 Sin(aiﬂ - gio) I/l'o cos(aio - eio) AIdi
Vio C505(51‘0 - eio) - Viu Sin(aio - Bio) AI
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r | Iqio VEo Sin(aia - eio) Idio Sin(éio - 01’0) 7]
- Idio Vio Ccos (5;'0 - 9io) + Iqio COS(5i0 - Gio)
+V, k§1 Veo Yysin(6,,— 0, —a,) - - k§1 Veo Yuc0s(0;, ~ 6, — )
#i #i
+ : - Vio Yii cosa;,

Lo Vipsindd,, — 6,) + 1, V, cos(6,,—0,)) I, cos(d,,— 06, ) — I,sin(6,, —6,)
~ Vo kzl Vio Yy c08(6,, — 0, — ;) -2 VY, sin(6,, — 6,, — o)
- k=1
#i #i

: | | -

Ab; + i = Vi Vio Yy sin(0, — 0, — ) —V, Y, cos(6,—6, — o) || A6k ]

AV! k:il Vio Vko Yik COS(GM - Hko - ai;c) - Vio Yik Sin(eio - Bko - cxi‘k) AVk-
+ AP,,(V) i ~Vio Vio Y8006, — 0, — ) —V,, Y;;008(6,, 60, — ;)
AQL (V)1 s=meil V,V, Y, cos(0,,— 0, — ;) —V;, ¥;;sin(0,,— 0, — o
A0 0. (38)
AY,

Rearranging in matrix notation

AVg1
AV,
0=CAX;+ CZiAIgi +[C31, Caiz Cyil :
AV;M
AI/l,m+1
AV, AP, (V)
+ChinChimerCaind| "2 L fori=1,...,m.
dim 4+ 1 .4 : AQ, (V)
AV,

(39)

For m machines, (39) can be written in matrix notation as

e

Cll AXI | C21 AIgI
0= Ci A‘?fz + Ca2 . AI:gl
Clm A‘Xm N sz AIgm
C ’ C o C r-AVgl C4-1m+1 , C4,1m+2 C4,1n
Ea KA LimAv, 2 C4,2m+1 C4,2m+2 C4,2,,
+ : : : A+ : : : :
Ca,ml C3,'!l2 3,mm _Ang 7‘C4,mm+1 C4,mm+2 C4,mn
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AV FAPLI(V!') ]
A AL
I:m+2 + : . (40)
: AP, (V)
AY, Lm m
" A0, ()
Rewriting (40) as
O=C1A.-X'+C2AIH+C3AVg+C4AI/I+ASL9(V). (41)

Note that C,, C, are block diagonal whereas C;, C

4 are full matrices. Linearizing
network equations (12) and (13) for load buses

0=AP,,(V)~ [ 2 Vo Yy cos(9,,— 6, ~ aik)]AVi
k=1
+ [ 2 Vio Vio Y sin(6,, — 6, — aik)]AGi
& -
-V ) LY, cos(f,, — O, — 2, ) JAV,
k=1
=V, 2 [Vio Y sin(6,, — 0, —«,)] Aé,, | (42)
k:il
0=40,,(V)- [ 2 Vi, Y, sin(6,, — 6, — aik)]AVi
k=1 ‘

o Iiké—‘:l Ve Vio ‘Y;k cos(6,, ~6,, — “ik)]Agi
*i

=V kZ1 LYy sin(6,, — 00— )] AV,
+V, 2 [V, Y, sin@, — 6, — w,)]AG,, i=m+1,...,n (43)
k=1 .
#i

Rewriting (42) and (43) we obtain
0= [APLi(Vi):,
AQ,,(V,
+ i [" Vi Vio Yysin(8;, — 6, — ;) =V, Y;cos(6,, — 0;,— “ij)][Agj]
=il ¥, V, ¥,cos(8,, — 0., — ;) —V, Y,;sin(6,, — 8, — ;) JLAV,
+ 3 ,: = Vo Vi Yy sin(6,,— 6, — %) =V, Yycos(6,—6,,— “ik)][Aek]
k=;n:i-1 V;o ko Y;k cos(eio - 9ka - k) - Vt:o Yik Sin(gio - 0ko - aik) AY,

J J ]
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Y. VioVio Yasin(;, — 0, — o) — Z Y,cos(6,—6,,—oy )=V, Y,
k=1 [AG,]
+ " .
—Vip 2. Vi Y0080, — 0, — ) Z wSin(0;, — 0, — o) A
k=1
#i
- - (44)

Writing the above equation for all load buses in matrix notation, we obtain

AP, . (V.. )] ,
AQi :(V :) Dl,m+1,1 D1,m+1.2 Dl.m+1.m AVgl
0= " : " + Dy me2,1 Dimrz2 Dl,m.+2,m Al./gz
Aan(Vn) Dl,n,l Dl,n.2 Dl,n,m Ang
n n '
Dz,m+1,m+1 Dz,m+1.m+2 Dz,m+1,n AVlm+1
+ Dz,m-¥:2.m+1 Dz,m-l-.Z.m+2 Dz,m+2,n AVI::H-Z .
Dz,n,m+1 D2,n,m+2 Dz,n,n AVln
(45)
Rewriting (45) in a compact notation we obtain
0=AS,(V)+D AV + D, AV,. (46)
Ll 1 2

Note that D, and D, are full matrices. Rewriting (30), (35), (41) and (46) together, we
obtain

AX = A,AX + A, AL + 4;AV, + EAU, | (47)
0=B,AX + B,Al, + B;AV,, (48)
0=CyAX + C, Al + C3AV, + C,AV, + ASp,(V), (49
0=D,AV, + D,AV, + ASy(V). (50) -

This is the general comprehensive model of the differential-algebraic type to study
both steady state and voltage stabilities with any type of nonlinear voltage dependent
loads. The network structure is preserved and so are the stator algebralc equations
for each machine. Equations (47)—(50) are equivalent to the model in Sauer & Pai
(1990) except that a machine angle is not introduced as reference, This model is quite
general and can easily be expanded to include frequency or V dependence at the
load buses, PSS tap-changer dynamics or FACTS devices. This will only augment
(47)~(50) by either algebraic or differential equations. In the above model, Al is not
of interest in most cases. Hence, eliminating Al, from the set of equations (47), (48)
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and (49) we get the following reduced set of equations,

AX =(A,~ 4,B;'B)AX +(4, — A, B;'B,)AV, + EAU, (51)
0=K,AX + K, AV, + C,AV,+AS, (V), (52)
0=D, AV, +D,AV,+AS, (V), (53)
where
[C,—C,B;'B,]AK,
and

[C,—C,B;'B,JAK,. (54)

More compactly, (51)~(53) can be put in the form
o -l L ]+ [ e 2
0 B, B, || AV AS, 0

where AV:[iZg] and AS; = [ﬁs“’} Reorder the variables in the vector AV =

1 Ll
[AVQ:] such that the new vector is [Az"|AvT] =[AB,,AV,,..., AV, |AD,, Ab,,...,AB,,
1 .
AV,i1,...,AV,]. In this reordering of algebraic variables Ay represents those variables
appearing in the standard load flow equations and Az the remaining ones in AV, Also

. . | AS .
reorder the variables in [ASLg :, to conform similarly so that AST = [AP,,,AQ,,,...,
Ll

AQLmIAPL?.: A*P.L3a T APLm AQLm-Fl.s st AQLn:, = [AS'{IAS;]‘ We carry out one
more operation on the set of equations (51)=(53). In any rotational system, the reference
for angles is arbitrary. The order of the dynamical system in (51) is 7m, and can be

reduced to (7m — 1) by introducing relative rotor angles (Sauer & Paj 1990). Selecting
d, as the reference, we have

5§=5i——51, i=23,...,m, ‘

&, =0,
Sr=o,—w,, i=23,.,m
8,=0,

0=6,—5, i=1,2,.n

This implies that the differentia] equation corresponding to 6, can be deleted from
(55) and als.o the column corresponding to A$, in 4, and B,. Moreover, the entries
corresponding to &), i =2,3,.. . ,m will bring necessary changes in 4,. We denote the
reduced state vector as Ax. We thus have the new differential-algebraic (DAE) system as
Ax Ay A, AJ[Ax 0 E _
01=/B, B, B,||Az|+ AS, |+ 0 |AU. (56)
0 C]_ Cz C3 AU . ASZ 10 i

This model is slightly different from that in Sauer & Pai (1990) in the sense that we'
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allow for voltage dependency for the loads in the vectors AS; and AS,. For the
constant power case, both AS, and AS, are =0. Otherwise, AS,,=AS (V) and
AS,, = AS,(V,). For a given voltage-dependent load, AS,,(V,) and AS,,(V,) can be
computed. Only the appropriate diagonal elements of B,, C, and C; will be modified
and we obtain the system :

Ax A, A, A4|[ax] [E
0 |=| B, B, B,||Az|+|0]|AU. (57)
0 C, C, Csllav| |O

B, B,
¢, G
Jacobian. The system A matrix is obtained as

Now C, is the load flow Jacobian J 5 and [ ] =J ,p defined as the algebraic

A% = A, Ax + EAU, _ (58)
where _ ' ‘
. s - B ‘
Asys=A1'~[A2A3][JAE] 1[51 :| ) (59)
1

This is the model used in studying low frequency oscillation, steady state stability and
voltage stability. In the next section we examine the effects of increased loading on
the eigenvalues of 4, and the determinants of J,; and J, . for (a) constant power
case, (b) constant current case, and (c) constant impedance case for each of the r_nodelé
A, B, C, and D. Thus we do the parametric study regarding load and generating unit

models on small signal stability.

The linearized equations for models B, C, and D can be derived along the same
lines and hence are omitted.

4. Identification of critical modes: Participation factor method

Due to the large size of the power system, it is often necessary to construct reduced-
order models for dynamic stability studies. The appropriate definition and
determination as to which state variables significantly participate in the selected
modes become very important. This requires tools for identifying state variables that
are significant in producing the selected modes. It is natural to suggest that the
significant state variables for an eigenvalue 4; are those that correspond to large
entries in the eigenvector v;. But the entries in the eigenvector are dependent on the
dimensions of the state variables, which are, in general, incommensurable (for example,
angles, velocities, and flux). Verghese et al (1982) have suggested a related but
dimensionless measure of state variable participation (henceforth called participation
factors). If v; and w; represent the right- and left-hand eigenvectors, respectively, for
the eigenvalue 4; of the matrix A, then the participation factor (PF) measuring the
participation of the kth state variable x; in the ith mode is defined as

Pri = Wi Ui

This quantity is dimensionless and hence invariant under changes of scale of the
variables. We can think of v,; as measuring the activity of x, in the ith mode, and
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W, as weighting the contribution of this activity to the mode. The s‘tep-by—step
procedure for the calculation of PF is as follows:

(1) For the given A, the eigenvalues s and the right- and the left-hand eigenvectors
(%, and &, respectively) are calculated, for i = L2,...,(Tm—1).
(2) For a given eigenvalue 4, the corresponding PF are calculated as follows:
(a) The normalization constant 4, is calculated by finding E}V: 1 abs(R;;)abs(Z ;)
where N = Tm — 1.
(b) Then PF, ;= abs(é?ij)abs(é”ij)/%;

S. Studies of parametric effects
5.1 Effect of loading

The effect of loading has been investigated on the 3-machine, 9-bus system (figure 6)
whose data can be found in Anderson & Fouad (1977). The real and/or reactive loads
at a particular bus/buses were increased continuously. At each step the initial
conditions of the state variables were computed, after running the load flow (Sauer &
Pai 1990), and linearization of the equations was done. Ideally, the increase of load
should be picked up by the generators through the economic load dispatch scheme.
To simplify matters we allocate the increase in generation (real power) to the machines
in proportion to the inertias. In the case of increase in reactive power, the increase
is picked up by the PV buses. The A, matrix was formed using (55) and its eigenvalues
were checked for stability. Also det J r and det J . were computed. The step-by-step
algorithm is as follows: '

(a) increase the load at bus/buses for a particular generating unit model;

O | e e
® L o
® ®
A2 T
()

Gen. | :
Figure 6. 3-Machine 9-bus system,
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(b) if the real load is increased then distribute the load amongst various generators
in proportion to their inertias;

(c) run the load flow;

(d) stop, if load flow fails to converge;

(e) compute initial conditions of the state variables;

(f) linearise the differential equations and compute the various matrxces

(8) compute det J, ., det J ., and the eigenvalues of A

(h) if A, is stable then go to step (a);

(1) identify the states associated with the unstable eigenvalue (s) of A, using the
participation factor method and go to step (a).

sys’

For the 3-machine case all the four generating units are studied. The results are
summarized in tables (1)-(4) for the models A-D. For the static exciter, a gain of
K , =50 was assumed.

5.2 Effect of K,

It was found that for model A, the increase in K , alone did not lead to any instability.
The stabilizing feedback in IEEE-type 1 exciter was removed and then an increase in
K 4 led to instability for this model as well. For model B a sufficient increase in K ,
led to instability even for a nominal load.

5.3 Effect of type of load

The effect of different types of voltage-dependent loads has been studied in the
following manner. From (55) we can obtain the following model by elementary matrix
manipulation. Also the state vector is the reduced one, namely x, whose dimension
is (7Tm — 1). ‘

Ax = AAx + BAS, + EAU, (60)
AV = CAx + DAS;. (61)
In our studies, we consider only nonlinear voltage-dependent loads. The load at any

Table 1. Modal behaviour of model A for different loads.

Load at

bus 5 Sign (det J,,) Sign (det J ) Critical eigenvalue(s) Associated states
43 + + — 01433 +j2:0188 (&R,

44 + + 0-0057 + j2-2434 E" &R,

45 + + 0340025538  El & R,

46 + + 11350128016 E, & R

47 + + 25961122768  E, & R,

48 + + 9-2464,1-8176 5 &aw, E, &R,
49 + -~ 10542 &R,

50 + - 0-6298 E’ &R,

51 + ~ 0-2463 E & R

515 + - —06832 E & R

5.2 Load flow does not converge
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Table 2. Modal behaviour of model B for different loads.

Load at Sign Sign _

bus 5 (det J,p)  (detJ ;) Critical eigenvalue(s) Associated states
44 + + — 00957 +j10-1407 0, & w,

4.5 + + 0-0308 +j10-0034 0, & w,

46 + + 0-3802 +j9-9008 0, & w,

47 + + 0-9344 +j10-1111 6, & w,

48 + + 1-3907 £j11-1963 (52 & w,

49 + - 24-4174,0-1104 + j11-3605 &E,dl,é &w,
50 + - 6:0978 &E,

51 + - 2:5680 E" & E,,

515 + - 0-5417 E’ & E

5.2 Load flow does not converge

Table 3. Modal behaviour of model C for different loads.

Load at Sign Sign
bus 5 (detJ,.) (detJ ;) Critical eigenvalue(s) Associated states
42 + + —0-0048 +7-4848 0, & w, -
43 + + 02522 £ j7-4248 0, & w,
44 + + 0-5333 £j7-4024 0, & w,
45 + + 0-8574 + j7-4233 9, & w,
46 + + 12592 +j7-5151 0, & w,
47 + + 1-8164 +j7-7697 0, & w,
48 + + 2-7800 + j8-6826 6, & w,
49 + - 12:2699,04398 +j100051 E,, & E,,;, 6, & w,
50 + - 41693,01100£j9-3208 E, & E,;, 5, & w,
51 + - 1-6687 E;l & E
515 + - 00369 0, & 4,
.52

Load flow does not converge

Table 4. Modal behaviour of model D for different loads.

Load atbus 5 Sign (det J wr) Sign(det J ) Critical eigenvalue(s)  Associated states
44 + + — 02388 + j1-6434 E, &R,
45 + + —0-1997 + j1-7778 E &R,
46 + + ~0-1265 + j1-9985 E, &R,
47 + + 00614 + 2-4531 E &R “
48 + + 17612 + j3-9016 E, &R,

49 + —~ 1-8483 | E’ & R

50 + - 09059 L& R

51 + - 03726 L& R
515 + - — 00424 E 3, & R
52

Load flow does not converge
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bus i is given by

PLI=PLio(Vi/Vx'o)"m’ vi= L,2,...,n, (62)

QLL'= QLia(I/i/I/io)n‘”’ = 1,2,...,”, ’ ' (63)

where P, and Q,, are the nominal real and reactive powers, respectively, at bus
i, and n; and n, are the load indices. Three types of load were considered.

(a) Constant power-type (n, = n, = 0);
{b) constant current-type (n,=n,=1);
(c) constant impedance-type (n,=n,=2).

Linearizing equations (62) and (63) and writing in the matrix form as in Padiyar
et al (1986) we have

0 n _PLio
pt V
[APLI} to [ABI], —_ 1, 2, ,n (64)
AQL: QLio AV‘
0 n,
qi I/io
~ Rewriting,
AS,,=HAV, i=12,..n | (65)

In matrix form we get
| AS; = HAV, (66)
where H is block diagonal. From (66), (60), and (61) we obtain,
A% =[A+ BH[I—DH] 'C]Ax + EAU.

The step-by-step procedure of analysis for a given generating unit model is as follows:

(1) Select the type of the load at various buses (i.e., choose values of np‘ and n,);
(2) compute the system matrix

A,,,=A+BH[I—DH]"'C.

(3) 1Co.mpute the sign of det J , det J,, and the eigenvalues of 4_, for stability
analysis. ‘

For the three types of load mentioned earlier, the eigenvalues for the increased values of
load are listed. For a nominal operating point of P,, =15 p.u,, @, =05 p.u. at bus
5, the system is dynamically stable for all three types of load. For an increased value
of load at bus 5 (P,, =45, Q,, = 0-5), the eigenvalues for model A are listed in table 5.
We observe that the system becomés dynamically unstable if the load is treated as
a constant power type, whereas for the other two types of loads the system remains
stable. Finally, we take another case (P, =48, @, =05), in which we show that the
constant impedance type load is more stable.than the constant current type (table 6).
To demonstrate this condition we take model B with a high gain of the exciter ‘
(K4 =175). In this case the electromechanical mode becomes unstable.
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Table 5. Eigenvalues for different types of load at bus 5 for model A (P,, =45
pu, @, =05 pu).

Constant power Constant current Constant impedance
(a) (b) (©)
—1-3774 + j12-8826 —1-3439 4 7129589 —1-3387 +3j12:9747
— 50224 4 j9-5252 — 525554397721 — 5-4441 4-j9-8957
— 5-4233 £ j9-9000 — 5-4366 + j9-8959 — 52854 4 j9-8138
— 53342 4 j9-8772 — 5-3355 +j9-8773 — 53366 1+ j9-8774
—1-3923 + j6-8952 —0-5359 + j8-0422 — 0-4857 + j8-2200
— 5-5770 — 56721 - 57009
—3-6361 —3:8907 — 40346
0-3400 =+ j2-5538 —0-4141 4-j1-2391 — 04322 4 j1-0369
—2:4979 —3-3295 —3-4099
—0-3876 + j0-7800 —0-3865 + jO-7865 —0-3842 4 j0-7929
—0-4189 +j0-5827 —0-4188 + j0-5825 — 04187 4+ jO-5824
—01973 — 01975 —0-1976

Table 6. Eigenvalues for different types of load at bus 5 for model B (P,=438
pyu, Q,,=0-5 pu), K, =175.

Constant power Constant current Constant impedance ~
(a) (b) (©)

—0-7671 £ j27-7009 - —0-1399 + j17-0031 —0-1440 + j17-0249

—0-0857 £ j17-1574 — 21787 4 j12-3851 —0-1273 £ j10-0391
0-5862 +j9-9583 0-1244 + j9-8034 —2:1013 £j10-7932

— 32680 + ;84323 —3-1983 + j8-3024 —3-1191 +j82135

—2:8172 + j7-4063 —2:8136 + j7-3841 — 2:8089 + j7:3650

- 01988 —0-1990 -0-1991

Table7. Participation factors for various states of model A for the loading at bus 5 = 4-5 pu.

Machine 1 | Machine 2 Machine 3
Load at Unstable
bus § eigenvalue(s) State FF State PF State PF
E, 0-1984 E, 0-1153 E, 0-0768
45 pu 0-3400 + j2-5538
R, 0-1172 E, 0-0853 E, 0-0603
‘ R, 0-0641

Table8. Participation factors for various states of model B for the loading at bus 5 = 4-5 pu.

4 Machine 1 Machine 2 Machine 3
Load at - Unstable — -
bus 5 eigenvalue(s) State PF State PF State PF
45 pu 0-0308 +j10-0034 0 0-0711 o 0-2724 é 0-0797

® 00711 0 0-2724 ) 00797
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6. State variable participation in steady state stability and voltage collapse

The participation factor analysis carried out leads to the following observations.
Some of these agree with the results of Rajagopalan et al (1992).

The participation factors (PF) for a particular value of loading at bus 5 have been
listed in tables 7 and 8. Values below 0-05 have been neglected. The significant state
variables are bold-face type.

Participation factor analyses of the eigenvalues for various cases reveal the following
facts. For model A, when the load is increased, it is observed that the critical modes
for the unstable eigenvalues are the electrical ones (E, and R;). From table 1 we
observe that when the load at bus 5 is increased from 4-7 pu to 4-8 pu, the complex
pair-of unstable eigenvalues splits into real ones which move in the opposite directions
along the real axis. The one moving along the positive real axis (9-2464) is sensitive
to the rotor angle mode and eventually comes back to the left-half plane via + oo
when the load at bus S is increased from 4-8 pu to 4-9 pu. This is the point when det
J . changes sign. The other unstable real eigenvalue moves to the left and is sensitive
to the exciter mode. This eigenvalue returns to the left-half plane at the loading of
approximately 5-15 pu at bus 5, and the system is again dynamically stable. For the
load at bus 5 =52 pu, the load flow does not converge. It is possible through other
algebraic techniques (Alvarado & Jung 1989; Dobson & Chiang 1989; Ajjarapu &
Christy 1992; Dobson & Lu 1992) to reach the nose of the P — ¥V curve or the saddle
node bifurcation. This phenomenon is pictorially indicated in the P—V curve for -
model A and also in the trajectory of critical eigenvalue(s) in the s-plane (figures 7
and 8).

Between points A and B there is Hopf-bifurcation which has been shown to be
subcritical. However load-flow solution still exists. In this region E/ and R, state
variables are clearly dominant initially. As we approach B, §, and w, state variables
start participating substantially in the trajectory of unstable eigenvalues as indicated
in table 1. For model B and model C, which employ the fast static exciter with single
time constani, the modes which go unstable are the electromechanical ones. For
model D, which again has an IEEE-type 1 exciter, the unstable eigenvalues correspond
to the exciter variables. It is apparent that the modes which go unstable are critically
dependent on the modelling of the exciter.

Hopf-bifurcation phenomena in power systems were first discussed by Abed & -
Varaiya (1984) for a single machine case. In their studies the electro-mechanical mode
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Figure 7. P —V curve for bus 5. Figure 8. Critical modes of A as a function

of the load at bus 5.




888 Rajeev K Ranjan, M A Pai and P W Sauer

was the critical one. In studies relating to voltage collapse (Rajagopalan et al 1992)
that both exciter modes and electromechanical modes are critical in steady-state
stability and voltage collapse and that they both participate in the dynamic instability.
Hence decoupling the Q — V dynamics from the P —§ dynamics as suggested by
(Venkatasubramanian et al 1991) may not always hold. It may be true for special
system configuration/operating conditions. There is no doubt that there are some
underlying dynamics such as the load dynamics as discussed in Pal.(1992) and if such
dynamics were represented, it will be fast dynamics and the phenomena of det J ,
changing sign will still exist. In conventional bifurcation theory terms one can think
of solving g(x,y) =0 for y = h(x) and substituting this in the differential equation to
get X = f(x, h(x)). The change in sign of det J ,; is the instant when solution of y is
no longer possible. This is also tied in with the concept of implicit function theorem in
singular perturbation theory. A concrete mathematical underpinning of these ideas
in the context of power systems is a research issue. Recent work in “singularly induced

bifurcation” (Venkatasubramanian et al 1992) and “impasse surface” concepts
(Hiskens & Hill 1991) may throw more light.

7. Conclusion

In this paper we have developed a comprehensive linear model for both steady-state
and voltage-stability analyses including nonlinear voltage-dependent loads. A
parametric analysis has been done and use of participation factor is particularly

relevant. Further research is needed to include load tap changer, FACTS dynamics
and load dynamics.

This research work was supported in part by EPRI through its project EPRI 8010-21
and the National Science Foundation through its grant ECS 91-19428.
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