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Abstract

In the 1-dimensional matrix model one identifies the tachyon field
in the asymptotic region with a nonlocal transfom of the density of
fermions. But there is a problem in relating the classical tachyon field
with the surface profile of the fermi fluid if a fold forms in the fermi
surface. Besides the collective field additional variables wj(x) are re-
quired to desrcibe folds. In the quantum theory we show that the wj

are the quantum dispersions of the collective field. These dispersions
become O(1) rather than O(h̄) precisely after fold formation, thus
giving additional ‘classical’ quantities and leading to a rather non-
trivial classical limit. A coherent pulse reflecting from the potential
wall turns into high energy incoherent quanta (if a fold forms), the
frequency amplification being of the order of the square root of the
number of quanta in the incident wave.
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The double scaling limit of the one dimensional matrix model provides
a non-perturbative formulation of two dimensional string theory in the Li-
ouville background [1]. Classically, in the two dimensional string theory one
expects that a matter wave with sufficient energy and energy density will col-
lapse and a black hole will be formed. The matrix model should describe this
classical process. However, since the graviton and dilaton are not present as
explicit fields in the matrix model, collapse would be signalled by properties
of the matter alone, e.g. an infinitely long time delay for return of matter
thrown into the liouville wall. In addition, the matrix model should be able
to answer questions in black hole physics at the quantum level exactly.

However, it turns out to be surprisingly difficult to understand a potential
gravitational collapse in the matrix model. The natural field which describes
the matrix model scalar - the collective field - is not the string theory massless
tachyon. Recent work has revealed that for weak waves of low energy the
string theory tachyon may be expressed, in the asymptotic region, as a non-

local transform of the collective field [2] which is the fourier transform of the
well-known “leg-pole” factor [3]. The nonlocal transform then relates the
space of eigenvalues in the matrix model with the space in string theory.

Unfortunately we cannot use this correspondence for waves of finite am-
plitude and width, in particular for the ones which we expect will form black
holes. At the fundamental level the matrix model is equivalent to a system
of N mutually noninteracting fermions in a background inverted harmonic
oscillator potential. The classical state of the system is specified by a dis-
tribution function in phase space u(x, p, t) - in fact u(x, p, t) = 1

2πh̄
in some

region bounded by the fermi surface. We will consider only states which
correspond to a single connected filled region of phase space. We will find
it convenient to parametrize the fermi sea in terms of an infinite number of
functions wn(x, t) (n = 0, 1, · · ·) following [6]

∫
dp u(x, p, t) =

1

2πh̄
[β+ − β−]

∫
dp p u(x, p, t) =

1

2πh̄
[
1

2
(β2

+ − β2
−) + (w+1 − w−1)]

∫
dp p2 u(x, p, t) =

1

2πh̄
[
1

3
(β3

+ − β3
−)

+(β+w+1 − β−w−1) + (w+2 − w−2)] (1)

and so on. Let a line of constant x in phase space cut the upper edge of the
fermi sea at points pi(x, t) and the lower edges of the fermi sea at qi(x, t)
where (i = 1, 2, · · · im(x, t)). Then

∫
dp pn u(x, p, t) =

1

2πh̄(n+ 1)

im∑
i=1

[pn+1
i − qn+1

i ] (2)
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im(x, t) − 1 denotes the number of “folds” at the point x at time t. In the
absence of folds, one can set β+(x, t) = p1(x, t) and β−(x, t) = q1(x, t) which
then implies that all the w±,n = 0. This is the standard bosonization in
terms of the collective field theory. As emphasized in [4] and [5] only in
the absence of folds is the state described by a scalar field η(x, t) and its
momentum conjugate Πη(x, t), which are related to β± by β± = Πη ± ∂xη.
In the asymptotic region the string theory massless tachyon is a nonlocal
transform of η(x, t). In the presence of folds we do not know how to extract
the string theory space-time from the matrix model, since the w±,n 6= 0
and are needed to specify the classical state of the fermi fluid while in the
far asymptotic region the collective field configurations alone exhaust the
possible configurations of the string theory tachyon field 1.

Under time evolution folds will generically form even if we start with pro-
files without any fold. Nevertheless, if we start with a non-folded tachyon
wave with sufficiently small amplitude (for a given wavelength) the outgoing
pulse at late times does not develop a fold. This is why one can specify the
incoming and outgoing states by the collective field and obtain an S- matrix
by performing a perturbation expansion in the strength of the wave. How-
ever, for a pulse which is sufficiently narrow and/or tall the outgoing pulse
in the asymptotic region can have a fold even if the ingoing one did not. An
extreme example is a pulse which is tall enough that its tip goes over to the
other side of the potential barrier - it is these pulses for which we may expect
black holes to form. We wish to emphasize that fold formation is invisible if
the classical collective field equation is solved only in a perturbation expan-
sion (in the weakness of the field). In this sense it is a genuinely nonlinear
and nonperturbative effect.

In this paper we give the physical meaning of these “folds”. (We do not
however address the implications of fermi fluid crossing the potential barrier.)
A basic question that arises is: under the boson-fermion map what is the bose
state corresponding to the classical fermi fluid with fold? (The choice of map
is distinct from the choice of Hamiltonian. In particular we can ask for the
bosonisation of fold states for relativistic fermions as well.)

We will show that a folded configuration correspond to a rather nontrivial
classical limit. Normally the classical limit of a quantum system is obtained
by considering coherent states. The quantum fluctuations of Heisenberg pic-
ture operators in such states are suppressed by powers of h̄ so that their
expectation values become classical dynamical variables in the h̄ → 0 limit.
We will argue that for fermionic systems under consideration, folded classi-
cal configurations correspond to non-coherent states which have a large O(1)

1Away from the asymptotic region higher moments of u(x, p, t) are required for deter-
mining the string theory tachyon. See Dhar et. al. in [2].
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dispersion.
For relativistic fermions a (Schrodinger picture) coherent state cannot

develop into such a noncoherent state under time evolution. However, for
nonrelativistic fermions this happens generically in a time interval of order
unity. In fact the time at which this happens is exactly equal to the time at
which a fold forms in the classical picture. We will demostrate this explicitly
in a model closely related to the fermionic field theory of the matrix model.
The derivation makes it clear that the physics is entirely similar in the matrix
model. This allows a natural way to identify the space-time in the matrix
model based on a map of the quantum operators.

Let us first discuss the dynamics of fold formation in the classical theory.
As shown in [6] the standard classical fermion algebra is consistent with
imposing the Poisson brackets

[β±(x, t), β±(y, t)]PB = 2πh̄∂xδ(x− y)

[w±,m(x, t), w±,n(y, t)]PB = 2πh̄[mw±,m+n−1(x, t)

+nw±,m+n−1(y, t)]∂xδ(x− y)

[w±,n(x, t), β±(y, t)]PB = 0 (3)

It is well known that powers of β± satisfy a w∞ algebra. In this construction
the w±,n themselves satisfy an independent w∞ algebra. 2

So far our considerations were independent of the fermion dynamics.
Given the hamiltonian we can now obtain the time evolution equations for
the quantities β±, w±,n using the above definitions and the Poisson brack-
ets. Since the ± components are decoupled we can treat only one of them.
In the following we will omit the ± subscript. We will also concentrate on
free fermions. A background potential can be easily incorporated and is not
essential to the main point. For relativistic fermions one has a hamiltonian
H =

∫
dx

∫
dp p u(x, p, t). Using (1) and (3) we easily get

∂tβ = −∂xβ ∂twm = −∂xwm (4)

For nonrelativistic fermions one has H =
∫
dx

∫
dp 1

2
p2 u(x, p, t) and using

the Poisson brackets one gets the evolution equations

∂tβ = −β∂xβ − ∂xw1; ∂twm = −2wm ∂xβ − β ∂xwm − ∂xwm+1 (5)

The β, wn are expressible in terms of the (pi, qi) introduced in (2). We
choose a parametrization associated to the upper edge of the fermi surface,

2In [6] it was also found that these statements are true at the quantum level as well
(W∞ algebra) and the central charge of w±,n turns out to be zero. In this paper we will
not be concerned with the quantum algebra.
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i.e. we will choose all the w−,n = 0 and

β−(x, t) = qim β+(x, t) =
im∑
i=1

pi −
im−1∑
i=1

qi (6)

This identification is natural when the fold is close to the upper edge of the
fermi sea but may be used even for a fold near the lower edge. We can
then use the same identification for relativistic fermions where the fermi sea
has no lower edge and one has to set all β− = w−n = 0. In fact since the
question of folds has nothing to do with the presence or absence of a lower
edge of the fermi sea we will simply imagine that the fermi sea is bottomless
even for nonrelativistic fermions. This is a good approximation for boson
energy densities small enough to not reach the bottom of the fermi sea in
the fermi picture. Using (6), (1) and (2) we can now easily calculate all the
w±,n ’s. Since the pi, qi do not contain any h̄, the wn ’s, if nonzero, are also
independent of h̄.

Each of the pi, qi satisfy an evolution equation determined by the sin-
gle particle hamiltonian: ∂tpi = −∂xpi for relatvisitic fermions and ∂tpi =
−pi∂xpi for nonrelativistic fermions (and similarly for qi’s). It may be checked
that these equations then imply the corresponding evolutions for the β and
wm ’s.

Let the profile of the fermi surface at t = 0 be given by p(x, 0) = a(x).
Then at a later time t it is easy to show that

p(x, t) = a(x− t) relativistic

p(x, t) = a(x− p(x, t) t) nonrelativistic (7)

If there is a fold, there must be some point where dx
dp

= 0 [10]. Since the
profile in a relativistic system is unchanged in time a fold cannot develop
from a profile with no folds. On the other hand for a nonrelativistic system,
even if we start with a single valued a(x) the solution to the second equation
in (7) will generically lead to dx

dp
= 0 at some point on the fermi surface at

some time. We give the result for the time of fold formation tf for two initial
profiles:

p(x, 0) = b e−
(x−a)2

c2 − b e−
(x+a)2

c2 , tf ≈ ce
1
2

b
√

2
for

a

c
>> 1 (8)

p(x, 0) = k Re(Ck e
ikx), tf =

1

(|Ck|k2)
(9)

These examples clearly show that fold formation can occur for pulses of
arbitrarily small energy density (and total energy), provided the width is
sufficiently small.
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It is now clear what happens if we set wn = 0 in the time evolution
equations (5). The evolution of β proceeds smoothly till t = tf at which
point ∂xβ diverges. The equations cannot be evolved beyond this point
and the collective field theory fails. The time evolution of u(p, q, t) is of
course unambiguous [5]. The point is that one needs nonzero values of wn

beyond this time, whose presence render the classical time evolution of the
entire β, wn system completely well defined. While we have illustrated this
phenomenon in the simple case of free nonrelativistic fermions, it is clear
that the conclusions are same for the inverted harmonic oscillator potential
which appears in 2d string theory.

We now turn to the quantum theory. Consider N free fermions of mass
M = 1 in a box of size L. Define the field operators

ψ̂(x) =
1√
L

∞∑
n=−∞

ψ̂n e
i 2πn

L
x ψ̂†(x) =

1√
L

∞∑
n=−∞

ψ̂†
n e

−i 2πn
L

x (10)

where ψ̂n, ψ̂†
n are annihilation and creation operators for a fermion at level

n. One has the standard anticommutation relations

[ψ̂†
n, ψ̂m]+ = δn,m, [ψ̂n, ψ̂m]+ = [ψ̂†

n, ψ̂
†
m]+ = 0. (11)

As mentioned above for the purpose of discussing the physics of folds the
presence of a lower edge of the fermi sea for nonrelativistic fermions is an
unnecessary complication. Henceforth we will assume that the fermi sea is
bottomless. Thus the vacuum is defined, for both relativistic and nonrela-
tivistic fermions by 3

ψ̂n|0 >= 0 for n > 0; ψ̂†
n|0 >= 0 for n ≤ 0 (12)

Let

α−n(t) =
∑∞

m=−∞ : ψ̂†
n+m(t)ψ̂m(t) : or α(x, t) =: ψ̂†(x, t)ψ̂(x, t) :

α(x, t) = 1
L

∑∞
n=−∞ αn(t)ei 2π

L
nx ≡ ∂xφ(x, t) (13)

The modes αn(t) are thus shift operators on fermion levels. (See e.g. [7].)
This bosonisation is exact as long as the action of the αn do not move a
state past the bottom of the fermi sea; in particular it is exact if the sea is
bottomless. The normal ordering is defined as

: ψ̂†
mψ̂n : = ψ̂†

mψ̂n if n > 0 : ψ̂†
mψ̂n : = − ψ̂nψ̂

†
m if n ≤ 0 (14)

3We have chosen phases in (10) so that n = 0 is the vacuum fermi level
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Then it may be verified that

[αn(t), αm(t)] = nδn+m,0 or [α(x, t), α(x, t)] = − i
1

2π
δ′(x− x′) (15)

The inverse correspondence to (13) is given as follows:

ψ̂(x) =
1√
L
e−iβ0 e−i 2π

L
xα0 e−

∑
j≥1

α−j

j
e
i 2π

L
jx

e
∑

j≥1

αj

j
e
−i 2π

L
jx

ψ̂(x)
†

=
1√
L
ei 2π

L
xα0 eiβ0 e

∑
j≥1

α−j

j
ei 2π

L
jx

e
−

∑
j≥1

αj

j
e−i 2π

L
jx

(16)

where the zero-mode operators satisfy [α0, β0] = −i. In the classical limit, the
classical quantities in (1) are then related to expectation values of appropriate
operators in some quantum state, e.g.

∫
dp u = <: ψ†ψ :>=< α(x, t) >

∫
dp p u = <

ih̄

2
[: (∂xψ

†)ψ − ψ†(∂xψ) :] >= 2πh̄ <:
α2

2
:>

∫
dp p2 u = <

−h̄2

6
: [ψ†(∂2

xψ) + (∂2
xψ

†)ψ − 4(∂xψ
†)(∂xψ)] :

= 2π2h̄2 <:
α3

3
:> (17)

and so on. The second equalities in (17) follow from the operator correspon-
dence (16) and may be efficiently obtained using operator product expan-
sions. The equations (17) demonstrate the main point of this paper : wn

are a measure of the quantum fluctuations in the bosonic field. Thus, e.g.
comparing (1) and (17) we have

w1(x, t) = (2πh̄)2[
1

2
<: α2(x, t) :> −1

2
< α(x, t) >2] (18)

Note that in the normalizations we are using, the fluctuations of α must be
O( 1

h̄2 ) for wn ∼ O(1).
We now consider the evaluation of w1(x, t) in a Heisenberg picture coher-

ent state of bosons

|ψ >=
∞∏

n=1

e
Cn
h̄

α−n(0)|0 > (19)

It is straightforward to check that

< α(x, 0) >≡ < ψ|α(x, 0)|ψ >
< ψ|ψ > =

2

h̄L

∞∑
n=1

Re[n Cn e
2π i n x/L] (20)
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Note we have chosen our state such that < α(x, 0) >∼ 1
h̄

which is required
for β ∼ O(1) (see (17)). It may be easily shown that

<: αn(x, 0) :>=< α(x, 0) >n (21)

Thus the wn vanish at t = 0, and we have a fermi surface without folds. In the
following we will consider a state with only one nonzero Cn for n = n̄. The
classical fluid profile is then given by (9) This is sufficient for our purpose.

In the Heisenberg picture, the fermion operators evolve as

ψ̂n(t) = ψ̂ne
−i( 2π

L
)2 h̄

2
n2t ψ̂†

n(t) = ψ̂†
ne

i( 2π
L

)2 h̄
2
n2t (22)

The modes of the bosonic field then evolve as

αn(t) = ei h̄
2
( 2π

L
)2n2t

∑
m

: ψ̂†
−n+mψ̂m : λm(n) (23)

where

λ(n) = exp[−ih̄(
2π

L
)2 n t] (24)

Using the evolution of the fermion operators we can compute the expectation
value of the bose operators. The details of the calculation will be given in
[8]; here we note the results. Define

Φ(n, p) =
4|Cn|
h̄

sin [(
2π

L
)2 h̄pnt

2
] (25)

Let p/n̄ be an integer. Then the one point function is

< αp(t) > = (−i)p/n̄ λ(p)

λ(p) − 1
(
C

1
2
n̄

C
1
2
n̄

∗ )
p

n̄ Jp/n̄(Φ(n̄, p)) (26)

(Jn(z) is the Bessel function.) If p/n̄ is not an integer then < αp(t) >= 0.
Similarily, the two point function is nonzero only if (p+ q)/n̄ an integer:

< αp(t)αq(t) >c ≡ < αp(t)αq(t) > − < αp(t) >< αq(t) >

=
∑
s> q

n̄

(−i) p+q

n̄ (
C

1
2
n̄

C
1
2
n̄

∗ )
p+q

n̄ Js(Φ(n̄, q)) J p+q
n̄

−s(Φ(n̄, p))

λ(p)λ(q)
(λ(p)λ(q))(q−n̄s)/2 − (λ(p)λ(q))(n̄s−q)/2

1 − λ(p)λ(q)
(27)

As a special case we note G(p, t) ≡< α−p(t)αp(t) >c

G(p, t) =
∑
s> p

n̄

(n̄s− p)J2
s (Φ(n̄, p)) (28)
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One may verify that the result (28) reproduces at t = 0 the expected
result that < αq(t)αp(t) >c= qθ(q) δp+q,0.

We can estimate on heuristic grounds the quantity G(p, t) by considering
the Schrodinger picture of evolution. The state |ψ(t) > describes the fermi
fluid, with a fold after some time t0. Let |p/n̄| >> 1, p > 0. For the action
of such α(p) we may consider a succesion of small x space intervals, over
each of which the sections of the fermi surface are approximately constant
at heights pi, qi. The operator αp is a lowering operator, which destroys a
fermion at some level m and creates one at a level m− p. If there is no fold
then G(p, t) = 0 since fermions cannot be lowered further into the already
occupied levels. If there is one fold then αp can move fermions from the
interval (p1, q1) to the vacant levels in (q1, p2). The operator α−p moves the
fermions back, and we find G(p, t) 6= 0. More generally we get a result
proportional to the number of vacant ‘bands’ which equals the number of
folds. It may be also seen that G(p) = 0 for p very large. This is because for
very large p, αp must lower a fermion to a level inside the main bulk of the
fermi sea. Since the momenta in the fermion picture are all of order unity,
G(p) should valish rapidly for p > pM where pM ∼ O( 1

h̄
).

The result (28) has exactly this feature. First, it may be seen from (25)
that when

p > pM =
4|Cn̄| n̄

h̄
(29)

G(p) vanishes exponentially with increasing p regardless of the h̄ → 0 limit.
This is because in this case the index of the Bessel function is always greater
than the argument and Bessel functions decay exponentially when the ratio
of the index to the argument grows large (see (30) below).

Consider now the classical limit for p >> n̄, but p < pM . In the h̄ → 0
limit one has has λ(p) = −Ψ(n̄, p) = 1 and Φ(n̄, p) = 2|Cn̄|(2π

L
)2 n̄ p t.

Because of the exponential decay of the Bessel function, the dominant con-
tribution comes from the minimum allowed value of s in the sum in (28)
which is sm = p

n̄
. For large p the relevant Bessel function in (28) behaves as

[9]

Jsm
(Φ(n̄, p)) ∼ (2

p

n̄
π tanh β)−(1/2)e−

p

n̄
(β−tanh β) (30)

where we have defined

cosh β = (2|Cn̄|(
2π

L
)2n̄2t)−1 (31)

So long as β > 0, G(p) is thus exponentially suppressed for large p. The
exponential suppression disappears when β = 0 or when

t = t0 = (2|Cn̄|(
2π

L
)2n̄2)−1 (32)

9



The time t0 is exactly equal to the time of fold formation tf as calculated in
equation (9).

When t > tf the relevant Bessel function behaves, for large p/n̄ as

J p

n̄
(x) ∼ (

2
p
n̄
π tanβ

)(1/2) cos(
p

n̄
tanβ − nβ − π/4) (33)

where cos β = (2|Cn̄|(2π
L

)2n̄2t)−1. At late times it may be shown that for
p/n̄ >> 1 (but p << pM)

G(p) ∼ 2|Cn̄|(
2

L
)2πn̄2pt = p nfold (34)

where nfold = 2|Cn̄|( 2
L
)2πn̄2t = 2|pmax(x)| n̄t

L
is the number of folds computed

from the classical motion of the fermi fluid.
Finally we estimate the quantities wn(x, t) and see whether they are

nonzero in the classical limit. We will consider the quantity

w1,0(t) ≡
∫
dxw1(x, t) = (2πh̄)2

∑
p

< ψ(t)| : α−pαp : |ψ(t) >c

= 2(2πh̄)2
∑
p>0

G(p, t) (35)

Since G(p, t) decays exponentially for p > pM , we can effectively put an upper
bound on the sum over p at pM .

1. For t < tf , one has a G(p) which decays exponentially with p at rate
independent of h̄ (see equation (30)). Thus in this situation one has
w1,0(t) ∼ h̄2 which vanishes in the classical limit.

2. For t > tf one hasG(p) ∼ p. In this case one clearly has w1,0(t) ∼ h̄2p2
M .

Using (29) one then has w1,0(t) ∼ O(1) and survives in the classical
limit.

Thus we see that the presence of folds in the classical description signifies
quantum fluctuations of the bosonic field which survive in the h̄→ 0 limit.

While we have demonstrated our result in a simple model, it is clear
from the derivation that our main contention is valid for the matrix model
described in terms of fermions in an inverted harmonic oscillator potential -
though the details would be more complicated. Since at the quantum level
it is sufficient to have one scalar field to describe states, we have a natural
way to extract the space-time of the string theory from that of the matrix
model. The idea is to express an asymptotic state in terms of the bosonic
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oscillators α(ω) and use a quantum map of the oscillators into oscillators of
the string theory tachyon, S(ω). This map is the same as given in [2]

α(ω) =
Γ(iω)

Γ(−iω)
S(ω) (36)

States which come out folded at t = +∞ are distinguished from non-folded
states by their lack of coherence.

To summarize, we have shown that the classical limit of the two dimen-
sional string theory defined as the double scaling limit of matrix quantum
mechanics is rather nontrivial and differs from that in most other theories.
The number of degrees of freedom needed for a classical description is more
than the number in the exact quantum theory - the extra degrees of freedom
correspond to nonzero fluctuations even in the h̄ → 0 limit. This feature
could not have been guessed from the the low energy effective action which
is locally Lorentz invariant and in which unfolded configurations can never
develop into folds; thus any ‘classical’ field configuration retains its small
(O(h̄)) dispersion throughout the evolution.

The fact that a fold corresponds to incoherent quanta agrees with the
spirit of [2] where a fold state was termed ‘radiation’. The spectrum we find
however is not thermal. In fact from the discussion above we can estimate the
distribution of energies if, say, a single fold forms when an incident coherent
wave reflects from the tachyon potential in 1+1 string theory. If the incident
wave has ∼ N2 quanta of energy E each, then the state returning from the
wall has, crudely speaking, quanta with energies E, 2E, . . . ∼ NE (with
total energy equalling the incident energy). Thus the mean energy of the
returning quanta is higher by a factor ∼ N compared to the incident quanta.
In the classical limit h̄→ 0, N → ∞, this frequency amplification factor goes
to infinity.

One possibility is that we cannot trust the naive summation of the string
perturbation theory for non-infinitesimal coupling, and nonperturbative ef-
fects prevent the phenomenon discussed above. The other possibility is that
string theory has a nontrivial sense of classical limit; in that case one wonders
if such phenomena might occur in higher dimensions as well.
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