
ar
X

iv
:h

ep
-t

h/
95

11
21

4v
1 

 3
0 

N
ov

 1
99

5

TIFR-TH/95-60

DEGREES OF FREEDOM IN TWO

DIMENSIONAL STRING THEORY ∗

Sumit R. Das †

Tata Institute of Fundamental Research

Homi Bhabha Road , Bombay 400005, INDIA.

Abstract

We discuss two issues regarding the question of degrees of freedom
in two dimensional string theory. The first issue relates to the classical
limit of quantum string theory. In the classical theory one requires an
infinite number of fields in addition to the collective field to describe
“folds” on the fermi surface. We argue that in the quantum theory
these are not additional degrees of freedom. Rather they represent
quantum dispersions of the collective field which are not suppressed
when h̄ → 0 whenever a fold is present, thus leading to a nontrivial
classical limit. The second issue relates to the ultraviolet properties of
the geometric entropy. We argue that the geometric entropy is finite in
the ultraviolet due to nonperturbative effects. This indicates that the
true degrees of freedom of the two dimensional string at high energies
is much smaller than what one naively expects.

∗Based on talks at Spring Workshop on String Theory and Quantum Gravity at ICTP,
Trieste, March 1995 and at VIIth Regional Conference on Mathematical Physics, Bandar-
Anzali, October 1995.

†E-mail: das@theory.tifr.res.in
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1 Introduction

Recent developments seem to indicate that the true degrees of freedom in
string theory are quite different from what is expected from perturbation
theory. In fact we already know this from our experience with noncritical
strings : the fundamental formulation of two dimensional string theory is in
terms of nonrelativistic fermions via matrix models and a stringy description
in terms of the massless tachyon emerges as a low energy perturbative picture
[1]. For higher dimensional strings we do not have a nonperturbative formu-
lation, but the remarkable duality properties indicate that string theory has
to be formulated in terms of some yet unknown entities which are not the
strings of perturbation theory.

In this talk I will summarize some results which clarify the nature of
degrees of freedom of the two dimensional string. This is a good laboratory
since some quantities can be calculated nonperturbatively. , even though
the space-time interpretation of the theory is rather involved and not yet
fully understood. The first set of results, obtained in collaboration with S.
Mathur [2] indicate that the classical limit of the theory is rather nontrivial
and requires more degrees of freedom than the quantum theory itself. The
second set of results [3] indicate that a suitably defined geometric entropy
(or entropy of entanglement), which provides a measure of the degrees of
freedom, is ultraviolet finite due to essentially nonperturbative effects This is
relevant to the question of black hole entropy in string theory.

2 Folds and the Classical limit

Two dimensional string theory is described by N mutually nointeracting
nonrelativistic fermions in 1+1 dimensions in an external inverted harmonic
oscillator potential with the second quantized action in terms of fermi fields
ψ(x, t)

Af = λ
∫

dt
∫

dx ψ†[− 1

2λ2
∂2

x + µc −
1

2
x2]ψ (1)

and λ = N
g

and g is the quartic coupling in the underlying matrix model.

If µ denotes the fermi level of the single particle hamiltonian in (1), the
continuum string theory is described by the double scaling limit N → ∞
and µ→ µc with κ = λ(µc − µ) = fixed.

2.1 Classical Dynamics

Let us first consider the classical dynamics of the fermion system in a man-
ner which is independent of the form of the hamiltonian. The classical
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state is specified by a distribution function u(x, p, t) in phase space - in
fact u(x, p, t) = 1

2πh̄
in some region bounded by the fermi surface and zero

elsewhere. The fermi sea may be conveniently paramterized in terms of two
functions β± and an infinite set of additional fields wn,± [4]

∫

dp u(x, p, t) =
1

2πh̄
[β+ − β−]

∫

dp p u(x, p, t) =
1

2πh̄
[
1

2
(β2

+ − β2
−)

+(w+1 − w−1)]
∫

dp p2 u(x, p, t) =
1

2πh̄
[
1

3
(β3

+ − β3
−)

+(β+w+1 − β−w−1)

+(w+2 − w−2)] (2)

and so on. Let a line of constant x in phase space cut the upper edge of the
fermi sea at points pi(x, t) and the lower edges of the fermi sea at qi(x, t)
where (i = 1, 2, · · · im(x, t)). Then

∫

dp pn u(x, p, t) =
im
∑

i=1

[pn+1
i − qn+1

i ]

2πh̄(n + 1)
(3)

im(x, t) − 1 denotes the number of “folds” at the point x at time t. In the
absence of folds, one can set β+(x, t) = p1(x, t) and β−(x, t) = q1(x, t) which
then implies that all the w±,n = 0. This is the standard bosonization in terms
of the collective field theory. As emphasized in [5] only in the absence of folds
is the state described by a scalar field η(x, t) and its momentum conjugate
Πη(x, t), which are related to β± by β± = Πη ± ∂xη.

In the deep asymptotic region, the string theory massless tachyon is a
nonlocal transform of η(x, t) [6]. In the presence of folds we do not know
how to extract the string theory space-time from the matrix model, since the
w±,n 6= 0 while in the far asymptotic region the collective field configurations
alone exhaust the possible configurations of the string theory tachyon field 1.

As shown in [4] the Poisson bracket algebra for β± is that of a chiral (an-
tichiral) boson, while the wn,± commute with the β± and themselves satisfy
a w∞ algebra, for the ± components separately. In the following we will omit
the ± subscript.

We will also concentrate on free fermions. A background potential can
be easily incorporated and is not essential to the main point.

1Away from the asymptotic region higher moments of u(x, p, t) are required for deter-
mining the string theory tachyon. See Dhar et. al. in [6].
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For free relativistic right moving fermions one has a hamiltonian H =
∫

dx
∫

dp p u(x, p, t). The Poisson brackets lead to the equations of motion

∂tβ = −∂xβ ∂twm = −∂xwm (4)

For free nonrelativistic fermions one has H =
∫

dx
∫

dp 1
2
p2 u(x, p, t) and

using the Poisson brackets one gets the evolution equations

∂tβ = −β∂xβ − ∂xw1

∂twm = −2wm ∂xβ − β ∂xwm − ∂xwm+1 (5)

The β, wn are expressible in terms of the (pi, qi) introduced in (3). We
choose a parametrization associated to the upper edge of the fermi surface,
i.e. we will choose all the w−,n = 0 and

β−(x, t) = qim β+(x, t) =
im
∑

i=1

pi −
im−1
∑

i=1

qi (6)

For relativistic fermions the fermi sea has no lower edge and one has to set
all β− = w−n = 0. Using (6), (2) and (3) we can now easily calculate all the
w±,n ’s. Clearly, the wn ’s are independent of h̄.

Each of the pi, qi satisfy an evolution equation determined by the sin-
gle particle hamiltonian: ∂tpi = −∂xpi for relatvisitic fermions and ∂tpi =
−pi∂xpi for nonrelativistic fermions (and similarly for qi’s). It may be checked
that these equations then imply the corresponding evolutions for the β and
wm ’s.

Let the profile of the fermi surface at t = 0 be given by p(x, 0) = a(x).
Then at a later time t it is easy to show that p(x, t) = a(x− t) for relativistic
chiral fermions and p(x, t) = a(x − p(x, t) t) for nonrelativistic fermions. If
there is a fold, there must be some point where dx/dp = 0. Since the profile
in a relativistic system is unchanged in time a fold cannot develop from a
profile with no folds. On the other hand for a nonrelativistic system, even
if we start with a single valued a(x) one will have dx/dp = 0 at some point
on the fermi surface at some time. We give the result for the time of fold
formation tf for two initial profiles:

p(x, 0) = b e−
(x−a)2

c2 − (a→ −a), tf ≈ ce
1
2

b
√

2

p(x, 0) = k Re(Ck e
ikx), tf =

1

(|Ck|k2)
(7)

where a >> c. Thus fold formation can occur for pulses of arbitrarily small
energy density (and total energy), provided the width is sufficiently small.
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In the following we will only consider low energy pulses so that we can ignore
the presence of the bottom edge of the fermi sea.

It may be noted that the notion of folds depends on a particular choice of
coordinates and momenta in phase space. In fact for nonrelativistic fermions
in an inverted harmonic oscillator potential, one may perform a transforma-
tion to light cone like coordinates x± = p ± x in phase space in which the
fermions appear relativistic and the resulting bosonic fields β± would be free

(see O’Loughlin in [6]). In such a parametrization a non-folded profile can-
not evolve into a fold. However, in the physical scattering process incoming
states are defined in terms of quanta using x− as the “space” while for the
outgoing state x+ has to be used as “space”. The classical scattering matrix
is in fact given in terms of a Bogoluibov transformation Since a nonfolded
profile in the x− parametrization generically becomes a folded profile in the
x+ configuration one cannot evade the question of fold formation.

It is now clear what happens if we set wn = 0 in the time evolution
equations (5). The evolution of β proceeds smoothly till t = tf at which
point ∂xβ diverges. The equations cannot be evolved beyond this point and
the collective field theory fails. The time evolution of u(p, q, t) is of course
unambiguous. The point is that one needs nonzero values of wn beyond
this time, whose presence render the classical time evolution of the entire
β, wn system completely well defined. The same phenomenon happens in the
presence of a background potential.

2.2 The quantum theory

Let us now turn to the quantum theory. Since the bottom edge of the fermi
sea is irrelevant for the question of fold formation, we can completely ignore
its presence. Then we have an exact operator bosonization of the system.
Define Schrodinger picture field operators

ψ̂(x) =
1√
L

∞
∑

n=−∞

ψ̂n e
i 2πn

L
x (8)

with a similar mode decomposition for ψ†(x) which define the modes ψ†
m. ψ̂n,

ψ̂†
n are annahilation and creation operators for a fermion at level n obeying

the standard anticommutation relations [ψ̂†
n, ψ̂m]+ = δn,m and all other

anticommutators being zero. The vacuum is defined by 2 ψ̂n|0 >= 0 for
n > 0 and ψ̂†

n|0 >= 0 for n ≤ 0.
Let

α−n =
∞
∑

m=−∞

: ψ̂†
n+mψ̂m : (9)

2We have chosen phases in (8) so that n = 0 is the vacuum fermi level

5



The position space field is defined by a usual fourier transform. The modes
αn are thus shift operators on fermion levels. (See e.g. [7].) The normal
ordering is defined according to the vacuum defined above. Then it may be
verified that

[αn, αm] = nδn+m,0 (10)

The inverse correspondence to (9) is also well known and given e.g.in [7].
In the classical limit, the classical quantities in (2) are then related to

expectation values of appropriate operators in some quantum state, |ξ, t >
∫

dp u = <: ψ†ψ :>=< α(x) >
∫

dp p u = <
ih̄

2
[: (∂xψ

†)ψ − ψ†(∂xψ) :] >

= 2πh̄ <:
α2

2
:> (11)

Similarly,
∫

dp pn u ∼<: αn :>. In (11) < A >=< ξ, t|A|ξ, t >. The second
equalities in (11) follow from the operator expressions of ψ in terms of α [7].
The equations (11) demonstrate the main point : wn are a measure of the

quantum fluctuations in the bosonic field. Thus, e.g. comparing (2) and (11)
we have

w1(x, t) =
(2πh̄)2

2
[<: α2(x) :> − < α(x) >2] (12)

Note that in the normalizations we are using, the fluctuations of α must be
O( 1

h̄2 ) for wn ∼ O(1).

2.3 The classical limit of the quantum theory

Normally the classical limit of a quantum system is obtained by considering
coherent states. In such states, quantum dispersions of operators are sup-
pressed by powers of h̄. In an interacting theory, time evolution does not keep
the state coherent, but once again the departures are such that the quantum
dispersions are still suppressed in the h̄ → 0 limit. Consequently, expecta-
tion values of operators in such coherent states act as classical dynamical
variables and obey the classical equations of motion.

In our system the coherent states which represent the deformations of the
fermi sea are coherent states of the boson field φ(x, t). Consider such a state
at t = 0 given by

|ξ, 0 >=
∞
∏

n=1

e
Cn
h̄

α
−n |0 > (13)
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It is straightforward to check that

< ξ, 0|α(x)|ξ, 0 >=
2

h̄L

∞
∑

n=1

Re[nCne
2πinx/L] (14)

Note that < α(x) >∼ 1
h̄

which is required for β ∼ O(1) (see (11)). It may
be easily shown that (at t = 0)

<: αn(x) :>=< α(x) >n (15)

Thus the wn vanish at t = 0, and we have a fermi surface without folds. In the
following we will consider a state with only one nonzero Cn for n = n̄. The
classical fluid profile is then given by (7) This is sufficient for our purpose.

The time evolution of n-point functions of α(x) is most easily computed in
the Heisenberg picture using the free equations of motion of the fermi fields.
The details of the calculation are given in [2]. To illustrate our main point
it is sufficient to give the result for the quantity G(p, t) =< ξ, t|α−pαp|ξ, t >

G(p, t) =
∑

s> p

n̄

(n̄s− p)J2
s (Φ(n̄, p)) (16)

where Js denotes the Bessel function and

Φ(n, p) =
4|Cn|
h̄

sin [(
2π

L
)2 h̄pnt

2
] (17)

It may be seen from (16) and (17) that when

p > pM =
4|Cn̄| n̄

h̄
(18)

G(p) vanishes exponentially with increasing p regardless of the h̄ → 0 limit.
This is because in this case the index of the Bessel function is always greater
than the argument and Bessel functions decay exponentially when the ratio
of the index to the argument grows large (see (19) below).

Consider now the classical limit for p >> n̄, but p < pM . The argument
of the Bessel fucntion is now smaller than the index and the dominant contri-
bution comes from the minimum allowed value of s in the sum in (16) which
is sm = p

n̄
. For large p the relevant Bessel function in (16) behaves as

Jsm
(Φ(n̄, p)) ∼ e−

p

n̄
(β−tanh β)

(2 p
n̄
π tanh β)(1/2)

(19)

where we have defined

cosh β = (2|Cn̄|(
2π

L
)2n̄2t)−1 (20)

7



So long as β > 0, G(p) is thus exponentially suppressed for large p. The
exponential suppression disappears when β = 0 or when

t = t0 = (2|Cn̄|(
2π

L
)2n̄2)−1 (21)

The time t0 is exactly equal to the time of fold formation tf as calculated in
equation (7).

In fact the above results are expected in the absence of folds. For the
calculation of G(p, t) with p >> n̄ the fermi surface may be considered to be
flat in a small interval in x. Since αp is a lowering operator for p > 0 it is
clear that G(p) = 0 for such large p since there is no empty level below the
fermi surface. However, if there are folds, there are empty bands separating
filled levels and G(p) can be nonzero. However for p very large (of O( 1

h̄
) in

order to have an order one momentum) G(p) has to be again zero since αp

would try to move a fermion into the bulk of the fermi sea.
Indeed for t > tf the relevant Bessel function behaves, for large p/n̄ as

J p

n̄
(x) ∼ cos( p

n̄
tan β − nβ − π/4)

( p
n̄
π tan β)(1/2)

(22)

where cos β = (2|Cn̄|(2π
L

)2n̄2t)−1. At late times it may be shown that for
p/n̄ >> 1 (but p << pM)

G(p) ∼ 2|Cn̄|(
2

L
)2πn̄2pt = p nfold (23)

where nfold = 2|Cn̄|( 2
L
)2πn̄2t = 2|pmax(x)| n̄t

L
is the number of folds computed

from the classical motion of the fermi fluid.
Finally we estimate the quantities wn(x, t) and see whether they are

nonzero in the classical limit. We will consider the quantity

w1,0(t) ≡
∫

dxw1(x, t) = 2(2πh̄)2
∑

p>0

G(p, t) (24)

Since G(p, t) decays exponentially for p > pM , we can effectively put an upper
bound on the sum over p at pM .

1. For t < tf , one has a G(p) which decays exponentially with p at a rate
independent of h̄ (see equation (19)), and the upper limit of integraion
is irrelevant. Thus in this situation one has w1,0(t) ∼ h̄2 which vanishes
in the classical limit.

2. For t > tf one hasG(p) ∼ p. In this case one clearly has w1,0(t) ∼ h̄2p2
M .

Using (18) one then has w1,0(t) ∼ O(1) and survives in the classical
limit.
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Thus we see that the presence of folds in the classical description signifies
quantum fluctuations of the bosonic field which survive in the h̄→ 0 limit.

While we have demonstrated our result in a simple model, it is clear
from the derivation that our main contention is valid for the matrix model
described in terms of fermions in an inverted harmonic oscillator potential
- though the details would be more complicated. Furthermore the effect of
the lower edge of the fermi sea becomes relevant for states with high energy.
As mentioned the question of folds is independent of this, but a complete
treatment should incorporate this feature.

3 Geometric entropy in the 2d string

Let us now turn to an effect which is a direct result of the presence of a
lower edge of the fermi sea of nonrelativistic fermions. The physical question
relates to the notion of geometric entropy or the entropy of entaglement
and is relevant in black hole physics. The entropy of black holes has a part
which is intrinsic - the Hawking-Beckenstein entropy [8]. This is a classical
contribution and is usually evaluated by computing the classical action for
euclidean black holes. In addition to this, there is the quantum correction to
the black hole entropy [9] , which is the entropy of matter outside the black
hole horizon. This, in turn, is related to the entropy of entanglement [10] (in
a given quantum state of matter) between the region inside and outside the
black hole.

The large mass limit of a black hole is Rindler space. In Rindler space
the geometric entropy can be obtained as follows. Let x denote a spatial
coordinate in flat space. Denote fields in the region x > 0 (x < 0)by φR(φL).
In some given quantum state with a wave functional Ψi[φL, φR] the reduced
density matrix (unnormalized) is obtained by integrating out φL is given by

ρ[φR, φ
′
R] =

∫

DφL Ψi[φL, φR]Ψi[φL, φ
′
R] (25)

Then the geometric entropy is given by

Sg = −tr[ρlogρ] (26)

For scalar and spinor fields the geometric entropy and the quantum correction
to the Rindler space entropy are exactly the same. For like gauge fields the
two differ by contact terms corresponding to states exactly on the horizon
[11].

The geometric entropy is in turn the same as the ordinary thermal entropy
in a space with position-dependent temperature, the position dependence
being given by the standard Tolman relation in Rindler space.
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A crucial property of the geometric entropy is that it is ultraviolet di-
vergent in usual field theories. This may be understood from the above
thermodynamic interpretation. For Rindler space the position dependent
temperature is given by T (x) = 1

β(x)
= 1

2πx
. Consider for example a massless

scalar field in d + 1 dimensions. The geometric entropy may be calculated
by integrating the entropy density in this position dependent temperature.

Sg =
∫

dx
∫

ddk

(2π)d
[log(1 − e−2πx|k|)

− 1

1 − e−2πx|k|
] (27)

The ultraviolet divergence in (27) may be seen by either performing the
x integral first so that the resulting k integral is divergent from the high
momentum limit for d > 1, or by integrating over k first so that the resulting
x integral is divergent at the small x end. For d = 1 there is an additional
infrared divergence coming from k = 0 or equivalently x = ∞ behaviour.

In the following we will be interested in 1 + 1 dimensional theories. In
that case there is a simple way to understand the divergence of the geometric
entropy [12]. Consider dividing space x in a box of size L into two halves at
x = 0. The minimum wave number is k0 = 2π

L
. Now construct a set of non-

overlapping wave packets with wave numbers in the range 2jk0 < k < 2j+1k0

with integrers j to be specified in a moment. For each j there is just one wave
packet which has support both in the region x < 0 as well as x > 0. This one
wavepacket alone contributes to the geometric entropy an amount of order
one. By conformal invariance we have an equal contribution from each wave
number range, i.e. for each allowed value of j. However since there is an
ultraviolet cutoff Λ this allowed range is 1 < j < jmax where jmax ∼ log(LΛ).
The total geometric entropy is given by some number proportional to jmax,
thus explaining the d = 1 answer.

The above reasoning may be applied to a situation which is more closely
related to the calculation of the entanglement entropy in an evolving black
hole geometry [13],[12]. This is the entropy of entanglement between the
region x1 < x < x2 and the region outside this one on a one-dimensional
line. The relevant part of entanglement is now due to modes of wavelengths
less than the size of the region integrated over, i.e. λ < (x2 − x1). Applying
the above argument one gets

SG({x1, x2}) ∼ log[(x2 − x1)Λ] (28)

There is another cutoff independent contribution to this entropy : this comes
from modes which are constant in the region (x1, x2), and will be unimportant
for our purpose.
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In an evaporating black hole geometry, the ultraviolet cutoff in (28) has
to be multiplied with the scale factor of the metric at the horizon. This gives
the true significance of the ultraviolet divergence : the evolution of the scale
factor gives the time dependence of the geometric entropy. In this case this
implies that the geometric entropy may increase indefinitely and one may
dump arbitrarily large amounts of information into the black hole. Thus, as
long as the semiclassical approximation is valid information will be lost.

String theories are ultraviolet finite and one may think that the geometric
entropy in string theory is finite (see Susskind in [9]). However this is not so
in string perturbation theory. It turns out that the genus one contribution is
still divergent - though this divergence may be now interpreted as an infrared
divergence related to the Hagedorn transition at the very high local temper-
atures at the horizon [14]. String physics beyond the Hagedorn temperature
is necessarily nonperturbative in nature.

Since two dimensional string theory is the only model for which a nonper-
turbative formulation is known it is interesting to ask how nonperaturbative
effects alter the behviour of the geometric entropy in this theory. Unfortu-
nately despite several attempts we still do not have a description of black
holes in the matrix model. However the notion of geometric entropy can be
formulated in the usual vacuum of the matrix model : and this is precisely
what we will do.

To understand the quantity we want to compute it is best to use the
collective field description of the fermionic field theory of the two dimensional
string [15]. The dynamics of fluctuations of the collective field is denoted by
ξ(τ, t) and is governed by the hamiltonian

Hc =
∫

dτ [
1

2
(π2

ξ + (∂τξ)
2)

+
1

6ρ2
0

((∂τξ)
3 + 3πξ(∂τξ)πξ)] (29)

plus some singular terms which are responsible for a finite quantum ground
state energy, but unimportant for our purposes. In (29) ρ0(x) =

√
x2 − κ

is the classical value of the collective field and we have introduced a time
of flight coordinate τ =

∫ x dx/ρ0. In terms of the space coordinate τ the
effective coupling of the theory is given by geff = 1

x2−κ
= 1

κ sinh2 τ
. The fermi

level κ therefore controls the strength of the coupling. The coupling is weak
in the asympototic region τ = ±∞.

In the asymptotic region the massless field ξ may be related to the mass-
less “tachyon” S(φ, t) of the two dimensional string by a nonlocal transform

S(φ, t) =
∫

dk dτe−ik(φ−τ) Γ(−ik)
Γ(ik)

ξ(τ, t) (30)

11



What we mean by the geometric entropy in this model is the following.
Pick some region I in the space defined by the coordinate τ (or equivalently
x which is locally related to τ) and obtain the entropy of entanglement in
the ground state between this region and its complement. It is clear from
(30) that this is not the same as the geometric entropy of some region in φ
space. However, we we interested in the ultraviolet behavior of the entropy
of entanglement and as we will explain later, we expect this to be similar in
φ space.

3.1 Free nonrelativistic fermions in a box

As explained above the geometric entropy obtained by integrating out the
degrees of freedom in half of the space, x < 0 is the same as the ordinary
thermodynamic entropy in a position dependent temperature T (x) = 1

2πx
.

Let us first consider the entropy density s for a gas of free nonrelativistic
fermions in a box of size L at temperature T = 1

β
and chemical potential µF .

The fermi momentum is kF = 2πN
L

. For βµF >> 1, i.e low temperatures one
has

s =
π

6βkF

+
8π3

45β3k5
F

+ · · · (31)

The first term is the same as that for a relativistic boson or a chiral relativistic
fermion and would lead to a logarithmically divergent geometric entropy.
However the divergence comes from the high temperature behavior where
the expression (31) is invalid. In this regime βkF << 1 and one has

s =
kF

2π
[1 − 1

2
ln (

βk2
F

2π
) + · · ·] (32)

Thus at high temperatures, the entropy density increases only logarithmically
- and this does not lead to any divergence from the x = 0 end of the integral
∫ ∞
0 dxs(β = 2πx) for the geometric entropy. The x = ∞ behavior of this

integral is still governed by (31) and leads to the standard infrared divergence.
However there is no ultraviolet divergence.

It is clear that the answer is ultraviolet finite because the fermi sea has
a finite depth. The low temperature expansion is an expansion around the
relativistic limit, in which the depth of the fermi sea is infinite. In terms
of the collective field theory the ultraviolet finiteness is a nonperturbative
effect since for free fermions the effective coupling is geff = 1

µF
. Perturbation

theory would correspond to an expansion around µF = ∞ and would lead to
a divergence by virtue of (31)

We now outline the direct calculation of the geometric entropy from the
ground state wave functional, where the above points can be clearly seen. We
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will write the wave functional in a coherent state basis in terms of grassmann
fields ψ(k) and ψ̄(k) which are eigenvalues of the corresponding operators in
appropriate coherent states. It is convenient to shift the origin of momentum
and define k = kF + q and new fields χ(q) = ψ(kF + q). The ground state
wave functional is then given by

Ψ0 = exp [−1

2

∫ ∞

−∞
dq χ̄(q)χ(q)

+
∫ 0

−2kF

dq χ̄(q)χ(q)] (33)

When the terms in the exponent are converted into position space integrals,
the first term is the integral over a local quantity. Therefore this cannot
contribute to the geometric entropy. The entire contribution comes because
of the second term, which is the contribution of the single particle modes
in the fermi sea. For a finite box size, the number of these modes is finite.
The perturbation expansion in the collective field theory is however an ex-
pansion around the point kF = ∞. With an ultraviolet cutoff Λ, this means
an expansion around kF = Λ. In fact for kF = ∞ the wave functional (33)
exactly reproduces that for relativistic fermions with the fermi sea replaced
by the Dirac sea. In this limit, there are an large number of modes which
contribute to the geometric entropy (the largeness controlled by the ultra-
violet cutoff) and one has the usual dependence on Λ. Non-perturbatively,
however, the finiteness of kF (which is always much less than the ultraviolet
cutoff) renders the answer independent of Λ.

To obtain an expression for the geometric entropy we have to first expand
the field in terms of modes which are localized either in the region x < 0 or
in the region x > 0. A convenient way is to write

χ(x) =
1

√

|x|

∫ ∞

−∞

dω

2π
[θ(x)(x/a)−iωfR(ω)

+θ(−x)(−x/a)−iωfL(ω)] (34)

The modes fR(ω)(fL(ω)) are now modes localized in the regions x > 0(x <
0). One has to now express the modes χ(q) above in terms of fL and fR to
write the wave functional as Ψ0[fL, fR]. The density matrix for the region
x > 0 is then simply given by a grassmann integration over fL, from which
one can obtain the geometric entropy. This calculation, described in [3]
clearly shows that geometric entropy has no dependence on the ultraviolet
cutoff.
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3.2 Geometric Entropy in Matrix Model

The above exercise contains almost all the physics involved in understanding
the geometric entropy in the matrix model. Let us first examine the high
temperature behaviour of the theory. Fortunately, it is sufficient to know the
singlet sector thermodynamics if we are interested in the geometric entropy in
the ground state, which is a singlet. This follows from the relation between
geometric entropy and thermodynamic entropy with a position dependent
temperature. The singlet sector thermodynamics has been completely solved
in [16] whose results will be used below.

Let gc be the critical value of the coupling in the matrix model and define
∆ = gc − g. Then the chemical potential µ is determined by the equation

∂∆

∂µ
= Re[

∫ ∞

0
dt

(1/κ)e−it

2π sinh(t/κ)

(πt/κβ)

sinh(πt/κβ)
] (35)

plus an unimportant constant. The free energy is then given by ∂F/∂∆ =
λ2(µ− µc) and the entropy is given by S = β2[(∂F/∂β)µ − λ2µ(∂∆/∂β)µ].

The expression (35) has an important symmetry - T duality - under β →
π2

β
together with λ→ λβ

π
. The transformation of λ or equivalently the string

coupling gs = 1
κ

is the usual shift of the dilaton field required in T -duality.
This is a very stringy symmetry and it is valid exactly in this model.

The standard genus expansion consists of performing a 1
κ

expansion,
which means expanding both the hyperbolic functions in (35) in power se-
ries. The genus one term in the free energy is exactly equal to the genus
one Polyakov path integral calculation and may be expressed as a modular
invariant integral over the moduli space of the torus [17].

Modular invariance is the underlying reason for ultraviolet finiteness of
string theories. However it is clear from our result that the geometric en-
tropy obtained by simply using this one loop answer is ultraviolet divergent
as usual. Modular invariance is clearly not sufficient to make the geomet-
ric entropy finite in string theory. The issue is the behaviour at very high
temperatures.

Strings in two dimensions do not have a hagedorn transition. In the
matrix model the singlet sector free energy is perfectly well defined in the
genus expansion. This may seem to indicate that there is nothing special
about high temperatures in this carricature string theory.

The crucial result of our work is that the genus expansion breaks down
at sufficiently high temperatures. The genus expansion [16] has the property
that terms with higher and higher powers of the string coupling contain
also higher and higher powers of the temperature - which clearly shows that
while the genus expansion is consistent with a low temperature expansion, it
is inconsistent with a high temperature expansion.
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However we can use T -duality to obtain the high temperature bahviour
from the exact (i.e. nonperturbative) low temperature behaviour, which can
be obtained from the above formulae. The exact low temperature behaviour
is required since T -duality involves a rescaling of the string coupling κ. The
results are given in [3] and show that indeed there is a drastic modification
of the high temperature behaviour compared to perturbative expectations.

However these results turn out to be pathological : the specific heat turns
out to be negative in the high temperature limit. This is due to the fact that
the model of inverted harmonic oscillator with no walls at infinity has a built-
in instability in it which is, however, invisible in the genus expansion. One
may work with a regulated potential by putting walls at a distance of order N
from the hump and there cannot be any instability in this model. In fact at
very high temperatures there are a large number of very high energy fermion
excitations which perceive an almost constant potential. Using our previous
results for free fermions we then expect an ultraviolet finite behaviour of the
geometric entropy. The results would be however necessarily non-universal.

Finally let us turn to an estimate of the geometric entropy of the matrix
model from the direct evaluation of the wave functional and the density
matrix [18]. We want to compute the entropy of entanglement between some
region x2 < x < x1 and its complement. This quantity is logarithmically
divergent (see (28)) in 2d massless scalar field theory - which is the one loop
answer in our model. In principle, this quantity may be computed using
exact eigenstates of the inverted harmonic oscillator hamiltonian (parabolic
cylinder functions) and transforming to a basis of modes which are localized
either inside or outside this interval.

When the box x2 < x < x1 is very far away from the potential hump and
has a size (x1 − x2) much smaller than the total size, it is, however, possible
to obtain an estimate of the geometric entropy. This is because one may use
plane wave modes in this region to obtain an estimate. The logic is similar to
the one used in deriving (28). The entropy comes from wavepackets which are
made of waves of wavelength less than the size of the region, i.e. λ < (x1−x2).
However for fermions the entropy of entanglement comes only from the modes
which are in the filled fermi sea. If x0 = 1

2
(x1 + x2) is the central position of

the box, the effective depth of the fermi sea at this point is
√

x2
0 − κ so that

the relevant wavelengths lie in the interval
√

x2
0 − κ < λ < (x1 − x2). Using

the expression for the effective coupling geff we get [18]

Sgeom ∼ log [(x1 − x2)
2 geff(x0)] (36)

The answer depends on the logarithm of the effective coupling which now
replaces the ultraviolet cutoff.
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4 Conclusions

We have described two effects which throw light on the nature of true de-
grees of freedom in two dimensional string theory. The first demonstrates
that the classical limit of the theory is rather nontrivial : one needs more
variables at the classical level than in the full quantum theory. These extra
dynamical variables are in fact quantum fluctuations which, however, survive
in the h̄ → 0 limit. The second effect implies that the degrees of freedom
which contribute to the geometric entropy in the model are much less in
number than what is expected from perturbative considerations and leads to
a ultraviolet finite answer - the underlying reason is the finite depth of the
fermi sea and hence nonperturbative.

At present the formalism of string theories is inadequate to determine
whether there are similar effects in higher dimensions. However, the first ef-
fect we described has an uncanny resemblance with the discovery that quan-
tum effects are not suppressed even in the gst → 0 limit of Type II strings
moving on a Calabi Yau conifold [19] - though the mechanism appears to
be rather different. Finally there are several circumstancial evidences that
even higher dimensional string theories are fundamentally described by fewer
degrees of freedom than what one might naively think [20]. However we dont
know what these fundamental degrees of freedom (like fermions for two di-
mensions) are.
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