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1. Introduction

Recently D-branes [[[] have provided significant insights into the thermodynamics of
black holes in string theory [[]. In particular, a configuration of 1-D branes and 5-D branes
compactified on a suitable five dimensional compact space (which can be K3 x S* or T9)
represents a six dimensional black string, or a five dimensional black hole for distance
scales larger than the size of the string. For such a configuration which is BPS saturated,
it was shown that the degeneracy of states for a given mass and charges leads to an entropy
which is exactly equal to the Beckenstein-Hawking entropy of the corresponding black hole
B]. This is a realization of the idea that the degeneracy of string states is responsible for
Hawking-Beckenstein entropy [f], which was pursued for holes with NS-NS charges and
zero extremal area in [{] and through quantisation of metric fluctuations for nonzero area
holes in [d]. For other work on extremal holes, see [[].

The nature of non-BPS states of D-branes was discussed for the D-string in [§]. Re-
markably, it was found in [J] and [[I(] that the degeneracy of slightly excited non-BPS states
also agrees with the Beckenstein-Hawking entropy for the corresponding nonextremal hole.
The nature of excitations responsible for the nonextremal entropy is in fact quite similar
to that of the D-string - these are now open strings moving along the 1 brane, but with
polarizations which lie entirely in the brane directions H. m [[Z it was found that the non-
BPS excitations of some other black branes have thermodynamical properties that agree
with predictions from black hole thermodynamics, though there are also many exceptions
that arise at least from a naive application of this correspondence. See [[[J] for some recent
work on nonextremal holes.

Even more remarkably, [ showed that the rate of decay of such an excited state via
annihilation of oppositely moving open strings into a closed string which then escapes from
the brane qualitatively (i.e. apart from numerical factors) agrees with the expectations
from hawking radiation and the effective temperature of the outgoing state agrees exactly
with the hawking temperature of the nonextremal hole. (The analogue of this calculation
for absorption has been recently analysed in [[4] where it is also shown that the classical
cross-section for absorption of low energy scalars by the black hole is proportional to the

area like the D-brane calculation in [f]. )

3 The nature of these open strings depend on whether the 5 brane charge is equal to or greater
than 1. See [[L1]]



These results for nonextremal holes could appear surprising, since the regime in which

the branes act as black holes is when the open string coupling is large, whearas the above

calculations were performed at weak coupling. (It was argued in [§], however, that when the

length of a D-string is large, the weak coupling results remain accurate for long wavelength

modes even at somewhat larger coupling.) The issues in this regard are not clear, and there

is no clear reason to expect that non-BPS processes agree between D-brane calculations

at low orders in coupling and semiclassical results based on the geometry produced by the

branes at stronger coupling.

(a)

(b).

In this paper we carry out two calculations:

In the first calculation we take the configuration discussed in [B] and [f] . We take the
case with a single 5-brane wound on a T, and a collection of D-strings (wound along
one of the directions of the T°), with net momentum along the D-string direction. We
compute the rate of emission of low energy quanta from a slightly nonextremal state
of this configuration. To compute the decay amplitude we use the Born-Infeld action
for describing the long wavelength fluctuations of the D-string within the 5-D-brane.
(Note that as discussed in [§] and [[5] the D-strings should behave as one long string
rather than a collection of singly wound strings, and we adopt this model here.) From
this action we derive the coupling of the oscillations of the string to the gravitons
in the 10-dimensional spacetime. Because of the compactification on T, we further
decompose these gravitons into scalars, vectors and gravitons of the 5-dimensional
non-compact spacetime . Because the D-string can only vibrate within the 5-brane,
of these fields only the 5-dimensional scalars will be emitted.

In the second calculation we compute the probability that a low energy scalar is
absorbed by an extremal black hole with geometry corresponding to the charges carried
by the D-branes in calculation (a) above. Here we follow the method of [[If], which
has also been used in the context of a slightly nonextremal 5-dimensional hole recently
in [[4]. Tt is found that the effective cross-section is the area of the horizon, just as
was the case in the 3+1 dimensional case of [[G]. At least in 3+1 dimensions the
absorption cross section (and therefore the emission rate) of low energy particles of
spin one and spin two vanish for low energies [[[7]. It is plausible that such is the case
here as well, but we do not address that calculation in this paper.

We find that the absorption rate for scalars agree between the calculations (a) and

Photons and gravitons are not emitted at this order in the calculation (a); if the 3+1

dimensional calculation is an accurate guide to the 441 dimensional extremal case then

there is agreement here as well.



2. General features of D-string amplitudes

In a companion paper [[§] we have considered various aspects of amplitudes for the
decay of an excited D-string into a massless closed string state of low energy. Since the
relevant massless excitations of the 1D brane and 5D brane configuration are similar to
those of a D-string, we recall some of the basic features. For such low energy processes
we can use the Dirac-Born-Infeld action to compute the amplitudes. This may be written
in terms of the coordinates of the D-string X#(£™) (where p runs over all the 10 indices
whereas £ are parameters on the D-string worldsheet) and the gauge fields on the D-string
worldsheet A™ (™) as follows [[9]

Sgr =T / d?¢ e=?X)\/det [Gmn(X) + Bomn(X) + Fpn) (2.1)

where F),,, denotes the gauge field strength on the D-string worldsheet and G,,,,, By, are
the background (string) metric and NS-NS 2-form fields induced on the worldsheet

Grn = G$5)(X) 0, X180, X" Byn = B (X)0,, X409, X" (2.2)

T is a tension related to the D-string tension by TP = e~%/2T. We will work in the static
gauge which means
X0 =¢° Xt =¢ (2.3)

In this gauge the massless open string fields which denote the low energy excitations of
the brane are the transverse coordinates X*(X°% X1), i=2,..-9.

In the following we will set the gauge field and the RR field to be zero. The lowest
order interaction between the metric fluctuations around flat space and the open string
modes is obtained by expanding the metric as G, = 7, + 2kh,, (X), expanding the
transverse coordinates X*(¢) around the brane position X = 0 and treating h,, and X*
to be small. Here & is the ten dimensional gravitational coupling present in the bulk action
(in terms of the einstein metric)

gL /dl% VIR~ %(wf 4o (2.4)

 2k2

For purely transverse gravitons, i.e. only h;; # 0, the terms upto two open string fields is
(after rescaling X — VTP X)

1 . .
5((523 + 2/-chij)6aXl6“XJ (25)

3



Note that to this order the lagrangian is independent of T”. We will be interested in the
decay amplitude for a closed string state in a specific polarization state, say hgr. Note
that the quadratic action for the h;; which follows from the bulk action (2.4) is (in the

harmonic gauge)
/ dl%%(ahij)@hij) (2.6)

Since h;; are symmetric the field hg7 does not have a properly normalized kinetic term.
The properly normalized field is then hgy = v/2hg7. This means that the interaction term
with a hery with two open string fields is, from (2.7),

V25 hgr0X50XT (2.7)

Consider a D-string which is excited above the BPS state by addition of a pair of
open string states with momenta (on the worldsheet) (po,p1) and (qo,q1) respectively.
The decay of this state into the extremal state is given by the process of annihilaton of
this pair into a closed string state, like a graviton. For a graviton represented by Bij with
momentum (ko, k1, k) (where k denotes the momentum in the transverse direction), the

leading term for this amplitude for low graviton energies can be read off from (B7) as
Ap = V2kAp = V2kp - ¢ (2.8)

When the outgoing graviton does not have any momentum along the string direction one

has
p-q=0p"¢"—p'¢" =2|p:|? (2.9)

where we have used momentum conservation in the string direction and the masslessness
of the modes. As shown in [B{] a direct conformal field theory calculation of the decay
rate agrees with the above answer for low energies and transverse polarizations.

The pair of colliding open strings is part of a one dimensional gas of open strings. To
obtain the decay rate of the nonextremal state one has to compute the decay rate for this
specific initial state and then average over initial states. The latter averaging is responsible

for the thermal nature of the outgoing closed string.
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3. D-brane thermodynamics

In this section we discuss the thermodynamics for massless open string states moving
on the D-brane. We essentially have the statistical mechanics of massless particles on
the brane. Typically we have a net momentum in one of the directions so actually we
have an ensemble with given total energy E and total momentum P along say the X!
direction. For large size of the D-brane we can approximate this by a canonical type
ensemble characterized by an inverse momentum [ and a chemical potential o as follows.
Let there be n, particles with energy e, and momentum in the X! direction p,. Define a

partition function Z by

Z=e= Z exp [—ﬁZmeT — aZanT] (3.1)

states
Then «, § are determined by requiring

oh Oh
B=-55 P=—o (3.2)

The average number of particles n, in state (e, p,-) is then given by

1

pler,pr) = oPertomr L1 (3.3)

where as usual the plus sign is for fermions and the minus sign is for bosons. Finally the

entropy S is given by the standard thermodynamic relation
S=h+aP+ pFE (3.4)

For the case of a D-string with f species of bosons and f species of fermions the above

quantities may be easily evaluated

fL7r[ 1 B 1 ] E_fL7r 1 1
8 (B+a) (B-a) -
_ fLmw 1 1

5= 4 [6+a+6—a

P=

]

Since we have massless particles in one spatial dimension, they can be either right moving,

with e, = p, or left moving e,, = —p,.. The distribution functions then become
1
PR = CBraje, R
elreer 1 (3.6)
PL= e £ 1
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Thus the combinations Tr = 1/(f+«) and Tp, = 1/(5—«) act as effective temperatures for
the right and left moving modes respectively. In fact all the thermodynamic quantities can
be split into a left and a right moving piece : ¥ = Fr+FE;, P=Pr+P, S=Sgr+5L
in an obvious notation. The various quantities Er, ER, Pr, Pr, S, Sg may be read off

from (B.§). ¢From (B.H) we get

TR:,/%%% TL:1/%§% (3.7)

The extremal state corresponds to P, = Ej, = 0 so that F = P. Finally we note that

o 4SL . 4SR

T = ——= _
LT nfL R TfL

(3.8)

This relation will be crucial in physical properties of the decay rate which we now calculate.

Finally we note that the left right splitting is a feature of statistical mechanics of
massless particles in one (spatial) dimension, which is relevant to the D-string as well
as other examples of D-strings bound to 5D branes to be considered below. For higher
dimensional branes, like the three brane, such simplifications may not apply, except for
certain limiting values of the parameters. However the method of introducing a chemical
potential for the total momentum can be used in this case as well, as we will discuss in a

later communication.

4. The decay rate for D-string

The S-matrix element for the decay is given by

(—iAp)

Sti = V26(2m)%8(po + g0 — ko)d(p1 + @1 — k1) v (2poL)(2g0 L) (2ko Vo)

(4.1)

where Vg denotes the nine dimensional spatial volume and L is the length of the D-string.
If R is the radius of compactification of the string direction, then for a multiply wound
string one has L = 2mn,R. The total spatial volume V5 = V3(27R) where Vg is the
volume of the noncompact space. The decay rate for this pair to produce a graviton of

zero momentum in the string direction and with a given polarization is then

K (2m)?
4L

[Ap|*  Va[d®K]

I'(p,q, k) =
(P-4, k) PogokoVs (2m)8

6(po + g0 — ko)d(p1 + a1 — k1) (4.2)



1{2

where we have introduced the nine dimensional gravitational coupling k3 = oyl

To obtain the total rate to produce a graviton with the given momentum we have to
average over all initial states. This includes a sum over the momenta and polarizations of
the open string states. When the open string momentum quantum numbers are large (but
still much smaller than the net momentum quantum number) this means that we have to
multiply by the relevant thermal distribution functions obtained in the previous section.

Denoting the distribution functions by p(po, p1) and p(qo, 1) the total decay rate is

> Ld > Ld
= [ PSR a)pn. ) (13

— 00 — 00

We will consider the emission of a graviton of a specified polarization, say g7 = 1 and
the others zero. Let us first specialize to the case where the outgoing particle has k; = 0.
Then this graviton may be produced only by the annihilation of two open strings with
exactly equal and opposite momenta. There are two possible polarizations of the initial
state. The first would be when the left moving open string has a polarization in the 6
direction and the right moving in the 7 direction and the second would be the other way
round. However once the momentum integral in ([.3) is over the entire range [—o0, co] we
have automatically summed over these two polarization states.

We will evaluate the rate for low energies where we can use the expression for Ap in

the previous section. The integral over ¢; sets g = —p; and one is left with
k2 L[d%k] [
() = 20 [ il - Kl Pollmlpotlol ) (@)

The integration can be done

(0.@]
[ s@lpl = ko)lpiP pllerl.p) pllpal ~0)
g ko ko, ko k (45)
— 9.2 (20y2 (0 RO\ PO RO
where the factor 2 comes from the two values of p; where the delta function clicks and the
factor of % comes from the Jacobian involved in performing the integration. Note that the
two distributions which appear are the left and right distributions defined in (B.6).
Since the intial state is only slightly nonextremal, we have F;, = Egpps + AE and

Epr = AE and AE << Eppg Then (B.7) implies that 7> is small.
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First consider the case where the open string states are bosonic. Then we can approx-

imate pr(po) in (E4) as
Tr, 457,
~n —— T 4~6
pr(po) po  poLmf (4.6)

where we have used (B.§). In this case of a multiply wound D-string we have f = 8. The

final result is

[d®K] k01 (4.7)

elerr — 1

2
’igsext
21071'9

(k) =

where we have defined an effective temperature of the graviton spectrum to be
Teps =2TR (4.8)

and have used the fact that S; ~ Sc;; where S¢.; is the extremal entropy. It is important
to note that the size of the compact direction has disappeared from this answer.

When the initial open string states are fermionic pr(po) becomes order unity in the
near extremal case rather than the large quantity (f.6)) for the bosonic case. Thus when
the extremal entropy is large, these states do not contribute to I'(k) in the leading order.

The crucial fact about ([I.7) is that the answer comes out to be proportional to the
extremal entropy. This is a consequence of the fact that we have essentially one dimensional
thermodynamics where the temperature is proportional to the entropy. In the next section
we will deal with brane configurations which correspond to nonzero extremal horizon area
and where the extremal entropy agrees with the Hawking-Beckenstein formula and hence

proportional to the horizon area. We then get a result proportional to the horizon area.

5. Decay Rate for 1-Brane 5-brane configurations

The results of the previous section may be used to calculate the decay process for
situations where the configuration of branes produce a spacetime which has a large horizon
in the extremal limit. In the following we will do so for the model similar to that considered
in [f]. We will consider a configuration of one 5D-brane wrapped around a T in the
(X° - X6 - X7~ X8 — X9) direction and single D-string wound Q; times around the X°
direction. The radius of the X direction is R which is taken to be large. When the 7% in
the (6 — 7 —8—9) direction is small this represents a black string in six dimensions one of
which is compact but large.

In this case, as argued in [[[1]] the low energy excitations of the system are described by

massless modes of open strings which begin and end on the D-string and whose polarization
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vectors A¢ lie in the 6 — 7 — 8 — 9 plane. These modes thus live on an effective length
L = 27Q1R. There are 4 such bosonic and 4 fermionic modes. The extremal state
corresponds to the case when all these open strings are moving in the same direction and
a nonextremal situation corresponds to strings moving in either directions.

We thus have a situation similar to the case of a single D-string discussed in the
previous sections with the number of flavors f in Section 5 being 4. As pointed out in
[[5] the thermodynamic formulae are valid when extensivity holds. This is indeed the case

here in the “fat hole” limit. For example in the extremal limit EFr = 0 and Ej = N and

R
from (B.7) one has
T.L=2/NQ, (5.1)

which is large when ()1 and N are of the same order and large. The extremal entropy is

Sewt = 27/ NQq = An (5.2)
4G

where Ap is the horizon area and (5 is the five dimensional Newton constant.

The amplitude for the decay of an nonextremal hole is identical to that in section 4.
However since the low energy open string modes have polarizations A\* where i = 6---9
it follows from (B.§) that at lowest order the only gravitons which are produced have
polarization in these directions. From the five dimensional point of view these are in fact
scalars. In the following we will examine the decay rate for the production of a given
polarization state, say the situation in which only €g7 is nonzero.

The S-matrix element is identical to ([.1]). However the decay rate I'(p, ¢, k) for an
outgoing closed string mode which has no momentum along the X° direction is a slight
modification of (f-7)

K3 (2m)? [Ap|?  Va[d'k]

T(p,q, k) = —>—"-6 — ko)d —k :
(p, g, k) a 0o+ a0 —ko)o(p1 +a 1)p0q0kov4 2n)] (5.3)
V4 denotes the volume of the spatial noncompact four dimensions, while 2 = %";‘74 where

Vi denotes the volume of the compact directions X©--- X2, The total decay rate is given
by (£3), the T'(p, q, k) in this equation being given by (B.3).
We now use the low energy result for Ap given in (B.§) and (B.9) and integrate over

q1 and p;. These integrations are identical to those in the previous section and one has

ko

(3)2 pr(ko/2)pr(ko/2) (5.4)

K2 L[d*k]

P = 5k



For low energies we use ({.6) with f =4 to get

TL AH

pL(po) ~ —

= 5.5
po  4mGsLpg (5:5)

Plugging (b.9) into (5.4), and performing the p; integral as in the previous section and

using k2 = 87G5 we finally get

LK) = 2 a*K)pn(ko/2) (5.6)

Then the total energy emitted in an energy range kg, ko + dko per unit time is obtained
by multiplying (5.6) with kg and writing out the phase space factor [d*k] = 2n2k3dko. We

finally obtain
dE(k)  Am kgdk
dt 82 efuko — 1

The Hawking temperature is Ty = 1/8yg = 2Tr and as noted in [[] agrees with the

(5.7)

temperature defined by the surface gravity at the horizon.

6. The classical cross section.

In this section we find the classical cross section for absorption of low energy scalar
quanta into the extremal black hole having the charges of the D-brane model discussed
in the previous section. The method of computing such low energy cross-sections for four
dimensional holes was given in [[f], and a calculation for a slightly nonextremal hole in
five dimensions has been recently carried out in [[4]. We will carry out the calculation for
the extremal hole, and observe that it agrees with the extremal limit of [[4], though the
actual details of the calculation differ in the extremal case and in the slightly nonextremal
case.

The extremal metric for the five dimensional black hole is given by

ds® = —[f(r)])"3dt> + [f(r))3dr® + [f(r)]3r2d02 (6.1)
where
=0+ as L+ % (6.2

The massless minimally coupled scalar wavefunction is

o(r,t) = R(r)e ™! (6.3)
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where we restrict to spherically symmetric wavefunctions, since as shown in [[[§], the higher
angular momentum components are not absorbed in the limit of low frequencies. The wave

equation reduces to

d? 3
o+ W2 (r) — oghb(r) = 0 (6.4
where
W(r) = r3/2R(r) (6.5)

The idea of [[§] is to solve this equation approximately in three regions, and match
the solutions across the boundaries of the regions. It is assumed that it is adequate to
keep only the lowest order terms in w in each region; we will adopt this assumption here

as well.

6.1. Quter region:

The outermost region is r >> Q; /2 Tn this region we get

Q
f=1+ 2 (6.6)
where
Q=01 +Q2+ Qs (6.7)

Defining p = wr, the equation is

2 2
A

o =0 (638)

The solution may be written as

(p) = aF(p) + BG(p) (6.9)

where the two independent solutions may be written in terms of Bessel functions

T
F = \/;PI/QJ(1—QM2)1/2(P)

T
G =[50 0 qunlo

In the region p >> 1 we have

(6.10)

F = cos(p —7/2(1 — Qu?)'/2 — n /4)

6.11
G = cos(p+m/2(1 — QW2)1/2 —7/4) ( |
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In terms of a shifted coordinate p’ = p — § we get

’

1 i (% w? —iT w? —ip’ i —T w? (% w?
b= [ (—aet™/ 10 4 fein/AQ | i [ (e im0 g/t

implying a reflection coefficient

8 o—i5Quw’
R Ul ge Y

1— BeigQuw?
(0%
This will give for the absorption probablility

AP =1-|R|?

(6.12)

(6.13)

(6.14)

We thus need to find «, 3, from the requirement that only an inward moving wave exists

at the horizon; we will compute these parameters below.

JFrom the behavior of the Bessel functions at small argument we find that for p << 1,

the solution to the wave equation is

3.1
R(r) ~ \/guﬁ [504 + é—?

6.2. Intermediate region
This region has r ~ QE/Q. Then the equation (for Quw? << 1) is

1 d ;d
JdR

B dr
which gives

D
R=C+=

r2
6.3. Near horizon region:

This region is r << Q; /2 Here the wave equation is

1 d ;dR WP 9
el ip: Sk el 4 | —
r3 drr dr + 76 (L4 pr7) =0

where P = Q1Q2Q3 and = 1/Q1 4+ 1/Q2 + 1/Q3. Define

u=—sg p=wP, 1= guVP = 1o/ GGaQs(1/Qu +1/Q2 +1/Qs)

22’

12

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)



Then the wave equation is

4+ (1-2HR=0 (6.20)

The two independent solutions are given by Coulomb functions [BI]. Very close to the

horizon, p — —oo the two independent solutions are

Fy = sin[r/4+ p + nlog(j—pn

0 (6.21)
Go = cos[t/4+p+ nlog(Q—p)]
The particular linear combination we have to pick is
R(r) = Go(r) — iFy(r) (6.22)
to get an ingoing wave at large negative p. At small |p| we get
R~ %[(1 )= (L4i)g] = %[(1 40 +z’)“’2§] (6.23)
6.4. Matching the solutions
Comparing (6.23) with (6.17) one gets
C = i(l —i) D= L(l + i)wVP (6.24)

V2 2v2
Matching the solution (p.15) with (6.17) and using (6.24) we get

L2010  (1+iWVP
= B = N R (6.25)

We can now easily compute the absorption probability |A|? from (f.14),

A2 = %W?’\/ﬁ (6.26)

This may be expressed in terms of the area of horizon Ay = 272/ P as

1
|A|? = Ew:”AH (6.27)

6.5. The absorption cross section

We now calculate the absorption cross section of a plane wave incident on the hole.
Let us expand a plane wave as follows

) e—iwr
eW? — K

Zooo + other terms (6.28)

3
r2
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where we have kept only the radially inward momentum component and ignored modes that
are not spherically symmetric. (As mentioned above, we expect that the higher angular
momentum waves have an absorption coefficient that is suppressed at low energies.) The
quantity Zggo is normalized over a three sphere Zyog = \/;_

272
Once K is known the absorption cross-section of the S-wave is given by

o= |K]*|A]? (6.29)

Q

An efficient way of determining K is to integrate both sides of (6.28) over all an-
gles with the standard measure of a three sphere. This projects out only the spherically
symmetric part, thus the first term of the right hand side of (5.2§). One gets

4@r(gm(w) — VoK S (6.30)

3
wr r2

Using the asymptotic form of the Bessel function J; (kr) and isolating the outgoing com-
ponent one easily gets
4

2 _
K™= —3 (6.31)

Thus the absorption crosssection is
o= |K]*|A]? = Ay (6.32)
where we have used ([.27).

Thus we get a result similar to that in [[[], where it was found that for the 3+1
dimensional Schwarzschild hole the low energy cross section for scalars is the area of the
horizon. Thus this cross sections differes by a factor of order unity from the geometrical
cross section, which is the effective cross section expected for quanta with wavelength much
smaller than the horizon size.

The ‘inner region’ that we used above had the form of an infinite throat with constant
diameter, and the solution of the wave equation in this region was taken as (5.21]). But this
solution assumes that the length of the throat Lj is much larger than the wavelength w™!
of the wave. While this condition is indeed satisfied by a throat of infinite length, one sees
that if the hole is slightly nonextremal, then the horizon is encountered after a finite length
of the throat, and the calculation must stop at this horizon. In fact in the calculation of
[[4] the hole was close to extremality, but the limit of w — 0 was taken first, so that the
length L, of the throat became much smaller than the wavelength w™!, and the nature of
the wave equation and the boundary condition in the inner region became different from
what we had above. Nevertheless, the cross section computed from this alternative set of
limits agrees with what was computed above (where the limit of extremality is taken first,

and w — 0 is taken later).
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7. Comparison of the D-brane and Classical result

According to the standard semiclassical derivation of Hawking radiation [P2] the total
luminosity of particles of a given bosonic species radiated from a given black hole in an

energy interval (w,w + dw)

dE(w)]SC _ Z dw wly; (7.1)

o ebrw —

where i collectively denotes the various angular momentum quantum numbers and I';
denotes the absorption probability of a wave with energy w and angular quantum numbers
. As mentioned earlier, for scalars the dominant decay at low w is into S-waves. In this
case I', = |A|?(w) computed in the previous section.

Assuming S-wave dominance and using (B.27) in ([7-I]) we thus get for our case

[dE(w)] _Ag wldw
dt % 8n2efuw —1

(7.2)

This is in ezact agreement with the D-brane calculation (5.7).

8. Discussion

One interesting feature of the D-brane picture for this five dimensional black hole is
that the low energy excitations on the brane are scalars or spin-1/2 fermions from the
five dimensional point of view. As a result, in the lowest order process considered in this
paper, photons or gravitons are not produced. Presumably these may be produced from
annihilation of pairs of fermionic open strings . As mentioned above, in the semiclassical
calculation of Hawking radiation, production of particles with spin one and spin two are
suppressed as well E For four dimensional Schwarzschild holes, the absorption probability
for spin-1 particles behaves as ~ A%w* for spin-2 particles it behaves as ~ A%,wS, while
it is ~ Agw? for scalars [[7. It is reasonable to expect that a similar situation holds
for the five dimensional extremal hole e.g. the absorption probability for spin-1 should
be ~ A%Lwb and ~ A%w? for spin-2. These powers of Ay should follow from the various
thermal distribution functions. It is important to check whether the D-brane results and

the semiclassical calculations for these cases are in agreement as well. We expect to report

4 We would like to thank J. Maldacena, G. Mandal and L. Susskind for discussions on this

point
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on this in the near future. Another interesting computation is a comparison of the emission
of charged particles (i.e. particles which have a nonzero momentum along the D-string
direction).

In this paper we have computed the process of emission of scalars from the collision of
open strings on the D-string. It is also possible to compute the reverse process [[[§], where
an incoming scalar interacts with the D-string to create a pair of oppositely moving open
strings on the D-string. This computation leads directly to an absorption cross section
equal to the area of the horizon of the 5-dimensional hole, as expected from the result

presented here.
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