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ABSTRACT

We analyze results for the Boson Peak from the neutron time of flight spectroscopy data
on Ge-As-Se, and Raman spectra data on m-TCP and OTP, using a recent mode coupling
model that takes into account the coupling of density fluctuations with vibrational modes
in presence of defects in the supercooled state. From the experimental results for different
materials we observe that for more fragile systems characterized by increasing fragility
parameter m, a slower relaxation of the defect-density correlation is needed to give rise

to the observed peak in the spectra.
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The extra intensity observed in undercooled liquids in the neutron scattering [[ll, B as
well as in Raman scattering [, fl] at low frequencies, distinct from the quasi-elastic peak
is usually referred to as the Boson peak in the literature. This characteristics feature of
the supercooled liquid has been ascribed to the coupling between the relaxational and
vibrational motions in the supercooled liquid in a recent work [H] with self consistent
mode-coupling [, [J] model. The mode coupling theory has a better agreement with
dynamics in fragile glassy systems. The classification [§] used for glassy systems as
strong and fragile depends on the ease with which structural degradation occur in those
systems. A convenient measure for the fragility of the system [[] is computation of the
slope m of the relaxation time 7 curve against temperature T scaled with respect to the
corresponding glass transition temperature 7,

—_— dlog < 7 >
d(Tg/T)

|7=1, (1)
In Ref. [f] we have described an extension of the simple mode coupling formalism to
include the distinct vibrational modes that develop at low temperatures in the amor-
phous state for understanding the extra intensity appearing for the structure factor. The
model follows from the equations of Nonlinear Fluctuating Hydrodynamics [{] extended
to include the defect density in an amorphous solid like system which also sustains trans-
verse sound modes. Here we have applied the model [§] to extensive data comparison
to understand the underlying relationship between the fragility of the system and the
Boson Peak formation. We fit the model with respect to the data of Russina et. al.
from neutron time-of-flight-spectroscopy for Ge0.033 As0.033 Se0.934 glass, as well as
the data for m-tricresyl phosphate (m-TCP) by Sokolov et. al. from Raman scattering.
The present analysis demonstrates that the criteria for the appearance of the peak is

crucially related to the dynamics of defect densities in the disordered system.

In studying the feedback effects on dynamics due to slowly decaying density fluctua-



tions at supercooled states, the memory function H[¢(t)] is obtained as a functional of

the hydrodynamic correlation functions, in the following q independent form,

H(t) = a1 Flor(t), or(t)]e(t) + c2t(1) (2)

where ¢; and ¢y are dimensionless constants determined in terms of the wave vector
integrals due to the mode coupling vertex functions. ¢; and ¢ are the correlation

functions for the longitudinal and transverse sound modes. The function F'(t) is expressed

as [,
Flp(t)) = e + f(o)or(t) (3)

where § represents the time scale of very slowly decaying defect density and f(o) =
(12 — 140)/9(1 — 20) with 0 = (3\ — 2u)/[2(3X + p)] is the Poisson’s ratio. For more
details we refer to Ref. [[J]. Following the procedure described there we have used this
model to fit the data of Russina et. al. [I{, [[1] for Ge-As-Se. The central quasi-elastic
peak is fitted a Lorentizian of width ¢, and is equivalent to taking the time scales of
relaxation of the defects to be same [[3, [3] as that of the final time scale of relaxation of
the density fluctuations. We show in Fig. la the dynamic structure factor as a function
of frequency. The time scale for the decay of the defect density denoted by ¢ plays a
central role in appearance of the peak on the shoulder of the quasi-elastic peak. This
intermediate peak disappear in the shoulder of the quasi elastic peak as d become large.
This is shown by the fit of the data of Russina et. al. for a higher temperature in
Figure 1b. We analyze the data for temperatures, T = 252, 334, 359, 402, 440 and 502
degree Kelvin, with suitable values of ¢; and ¢y in the expression () for the memory
function. The parameter ¢ which gives the time scale of relaxation of defects is used
here as the only adjustable parameter. It is considered in inverse units of the time 7

in terms of which the MCT equations are expressed in the dimension less form. 7, can



be obtained in terms of the microscopic frequencies of the liquid state. To study the
behavior of § with the fragility parameter we have considered data on another material
m-TCP with a different m, used by Sokolov et. al. []] and done a similar fitting to the
Boson peak at temperatures T = 205, 235, 262 and 287 degree Kelvin. In Fig. 2 the
fit to the Boson Peak data [[] for m-TCP is shown. Variation of log(d) with the inverse
temperature T, /T is shown in Fig. 3, where T}, is the glass transition temperature of the
corresponding material. The data points for m-TCP are shown by stars (x) and for OTP
[[4] by filled circles (o). Variation of log(d) with temperature for Ge-As-Se alloy is shown
in the inset by squares (O). Solid lines show the straight line fit to the data points. For
lower temperatures the quantity ¢ is small indicating that the defect densities are long
lived and the Boson Peak appears to be more pronounced. The more fragile the system
is, sharper is the fall of  which represents the time scale of defect correlation. In all three
cases 0 shows an Arrhenius fall with temperature and a corresponding activation energy
can be computed from the slope of the curve. In figure 4 we show the plot of activation
energy A (in units of temperature T) for different systems with the corresponding fragility
index m. With the systems of increasing fragility, more long lived defects are needed to
give rise to the observed peak in the spectra.

We have approximated here through § relaxation of the defect density by single ex-
ponential mode. The full wave vector dependence has to be considered to account the
coupling of the structural relaxation to the vibrational modes. The explicit temperature
dependence of the peak is not captured in the present model. This can be computed
through proper input for the static or thermodynamic properties that appear in the
mode coupling integrals. Figure 3, demonstrates the key result of this paper that for
more fragile systems ¢, inverse of which relates to the defect density correlation, shows a

sharper fall with temperature. Also we like to point out here that the temperature range



covered for the materials in this paper actually correspond to the part where the fragile
glasses starts showing a sharp increase of viscosity on the Angell plot[§] - more fragile

the liquid is, more dramatic is the increase giving a higher value for the fragility index

m [, [3].
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Figure Captions

Figure 1

The neutron scattering data ( in arb. units) of Ref. [0, [ normalized with respect to
the Bose factor win(w) + 1] ( open circles) at (a) 7" = 252° K and (b) T" = 440° K, Vs.
the frequency in Mev. The solid line presents the result obtained from the present model

for the normalized correlation function .

Figure 2

The Raman Spectra data ( in arb. units) for TCP normalized with respect to the Bose
factor w[n(w) + 1] ( open circles) at T' = 205° K, vs. the frequency in GHz. The solid
line presents the result obtained from the present model for the normalized correlation

function 1.

Figure 3

log(d) as a function of temperature (7,/7") for OTP (e) and for m-TCP(x). Inset: For

Ge-As-Se alloy (O). The solid lines represent the straight line fit to the data points.

Figure 4

Slope for the §-1/T curve, A ( in unit of °K ) Vs the fragility parameter [g] m.
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