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Abstract

Measurements of the small-, intermediate-, and large-ion concentrations and the atmospheric
electric conductivity of both polarities have been made over the Arabian Sea on four cruises of
ORYV Sagarkanya during the Arabian Sea Monsoon Experiment (ARMEX)during the monsoon
and pre-monsoon seasons of 2002 and 2003. Seasonally averaged values of the total as well as
polar conductivity —are much higher during the monsoon than pre-monsoon season.
Surprisingly, however, the concentration of small ions are less and those of large and
intermediate ions are more during the monsoon than pre-monsoon season. The diurnal
variations observed during the pre-monsoon season show that the nighttime small ion
concentrations are about an order of magnitude higher than their daytime values. On the
contrary, the daytime concentrations of the intermediate and large ions are much higher than
those of their nighttime values. No such diurnal variations in ion concentrations are observed in
monsoon season. Also examined are the variations in ion concentrations of different categories
with distance from the coastline in different seasons and the ion-concentration changes
associated with the precipitation of various types that occurred over ORV Sagarkanya. It is
sufficient to invoke the ion-aerosol attachment process to explain our pre-monsoon
observations. However, the generation of highly charged large ions by the bubble-breaking
process caused by the wave breaking due to strong southwesterly surface winds (10 — 12 m s™)

over the Arabian Sea is postulated to explain the monsoon season observations.



1. Introduction

Cosmic rays are the main source of ionization over sea on a global scale. Production of ions and
aerosols by breaking waves during the high wind speed periods and the raindrops splashing
below raining clouds are other strong but local sources of ions at air-sea interface [Blanchard,
1963]. Normally, the high mobility small ions produced from these sources are mainly
responsible for atmospheric electric conductivity over sea. However, these small ions soon get
attached to aerosol particles and loose their mobility. Hoppel (1985) has solved the time-
dependent ion-aerosol balance equations using the size-dependent ion-aerosol attachment
coefficients and conclude that the assumption of charge equilibrium is valid for the typical ocean
environment and is expected to be fairly good for environments, away from direct sources of
particles. Since the intensity of cosmic rays does not significantly vary upto ~ 40° of latitude,
the atmospheric electric conductivity over sea is mainly determined by the aerosol particle
concentration. Several measurements carried over different oceans of the world show that the
atmospheric electric conductivity over ocean surface is inversely proportional to the aerosol
concentrations. Consequently, the electric conductivity has often been suggested to act as an
index of the background air pollution [Cobb and Wells, 1970; Morita, 1971; Misaki et al., 1972;
Kamra and Deshpande, 1995; Deshpande and Kamra, 1995]. Measurements of the
conductivity variation across the coastlines have also been used to study the extent of the
transport of air pollution from land to ocean in the coastal regions [Ruttenberg and Holzer, 1955;
Misaki and Takeuti, 1970; Morita et al., 1973; Deshpande and Kamra, 1995]. Kamra et al.
[1997] reports a decrease in conductivity due to large values of relative humidity that exist in the
region of Somali current. Based on the mobility spectrometry measurements of the atmospheric

ions, Misaki et al. [1975] report that when the aerosols of land origin are dispersed over ocean,



their size distribution is deformed in such a way that the center of gravity of the distribution is
shifted towards smaller size with the increasing age of aerosols.

Large number of studies conducted in the last decade emphasize the role of atmospheric ions in
the generation and growth of particles (e.g. Arnold, 1980; Yu and Turco, 2000; Nadykto and Yu,
2003; Harrison and Carslaw, 2003). Improvement in our measurement capabilities of aerosol
size distributions down to 3 nm size over last decade has largely contributed to our
understanding of the ion-aerosol interactions and the new particle formation in the atmosphere.
Kulmala et al. [2004] has reviewed large number of such measurements made in different
environments such as polluted continental boundary layer, marine boundary layer, upper
troposphere, Arctic and Antarctic, boreal forests and coastal regions. These measurements
suggest some aerosol formation mechanisms that can operate under specific meteorological
conditions. Among a variety of different nucleation mechanisms proposed for particle
formation, are the binary nucleation [Kulmala and Laaksonen, 1990], ternary nucleation
[Kulmala,et al., 2003], ion-induced [Yue and Hamill, 1979] and ion-mediated nucleation [Yu and
Turco, 2000], mechanisms. The last two mechanisms involve strong ion-aerosol interactions in
the atmosphere. Yu [2002], Harrison and Carslaw [2003], Lovejoy et al. [2004] discuss how the
atmospheric ions and charged aerosols can cause particle formation in the atmosphere. Tammet
and Kulmala [2005] propose a model which includes ion induced and homogeneous nucleation,
depletion of ions and nanoparticles, the electric charges of particles to explain the atmospheric

nucleation bursts such as those reported by Horrak et al. [1998].

Recently, Laakso et al. [2003, 2004a, b] have measured the ion production rate over boreal

forests and discuss how these ions may be involved in the particle formation mechanisms.



Particle production in the aircraft or ships engine’s exhaust is another source of their
introduction in the atmosphere under some conditions (e.g. see Yu and Turco, 2000;
Gopalakrishnan et al., 2005).

As a consequence of its utility to study the change in background air pollution, the atmospheric
electric conductivity has been one of the frequently measured parameters over oceans. The
conductivity is made up of different types of ions whose number concentrations and mobilities
differ under different conditions. However, the relative contributions of various categories of
ions to the electric conductivity under different meteorological conditions prevailing over ocean
surface, has never been investigated. In this paper, we report our measurements of the small-,
intermediate- and large-ion concentrations in addition to those of the conductivity of both
polarities made over the Arabian Sea near to the west coast of India during the pre-monsoon and
monsoon seasons in the Phase-I and II of the Arabian Sea Monsoon Experiment (ARMEX). To
the author’s knowledge, such simultaneous measurements of different categories of ions and
conductivity over sea have never been made and are being reported here for the first time.

Measurements were made onboard ORV Sagarkanya during 2 cruises each of the ARMEX-
2002 (Phase I) and ARMEX- 2003 (Phase II). The ship was kept at stationary position for 12-14
days during each cruise and the results obtained during these periods have been described
elsewhere [Pawar et al., 2005]. Here, we present the diurnal and seasonal variations in ion
concentrations and conductivity in the pre-monsoon and monsoon seasons and discuss the
changes in these parameters associated with some particular meteorological conditions.

2. Instrumentation
Measurements of the small-, intermediate-, and large-ion concentrations are made with an ion-

counter consisting of three separate condensers. Table 1 shows the mobility and particle size



ranges covered by the small-, intermediate-, and large-ion condensers. The ion-counter is similar
to that described by Dhanorkar and Kamra [1991]. It need be mentioned here that transfer
functions for three ion groups will determine the precise discrimination of mobility groups in
three ion counters. Each condenser consists of two-coaxial cylinders with the outer cylinder
raised to a higher potential with respect to inner one, and is shielded with another earthed
coaxial cylinder around it. Air is drawn through each of the three condensers with a common
fan fixed in a cylinder fitted at one end of the condensers. Table 2 shows dimensions and
potentials applied to the three condensers. The lowest concentration of ions that can be reliably
measured by the small-, intermediate-, and large-ion condensers are 2, 9, and 54 jons m™,
respectively. Atmospheric electric conductivity of both polarities is measured with a Gerdien’s
apparatus consisting of two identical coaxial condensers each with a critical mobility of 3.6 x 10
*m” V's™. Details of the apparatus are described by Dhanorkar and Kamra [1992].

Both instruments, ion counter and Gerdien’s apparatus were installed on the balloon launching
platform of the ship with their intakes perpendicular to the ships direction of motion and ~ 9 m
above mean sea level. The balloon launching platform is 34 m away from the ship’s chimney
and 15 m below the chimney’s exhaust. So the chances of the exhaust polluting the
measurement site and contaminating the data are very small unless there is strong downward
motion in the vicinity of the chimney. However, the data obtained during the periods when the
measurement site was visually observed to be polluted, which happened very rarely or when the
measured variables experienced some adrupt and abnormal changes are not included in our
analysis. Stability of the instruments was maintained by cleaning the insulators and checked by
checking the zero-shift of each output at least twice daily and correcting it, if necessary. No

significant zero-shift was observed except during the periods of heavy rain Therefore,



observations taken during periods of heavy rain were not included in our analysis. After each
incident of precipitation the apparatus was cleaned, dried and put in operation after checking its
Zero.

Cruise and Weather

Figure 1 shows the four cruise routes — one in the pre-monsoon season (March 14 to April 10,
2003), one around the monsoon-onset period (May 15 to June 19, 2003) and two in monsoon
season (June 21 to July 15 and July 17 to August 16, 2002). The stationary position during each
cruise is shown by a circle. Continuous observations of all parameters, except rainfall, are made
throughout the cruises. However, observations could not be made during some time- periods in
the beginning and end of the cruises because of the lack of sufficient time required to install the
equipment before the cruise starts or the time required to pack-up the instruments at the end of
the cruise.  Moreover, there are large data-gaps due to the time required for the frequent
cleaning and maintenance of the equipment in the marine atmosphere, rain spells and other
logistic and technical difficulties. As a result of these data-gaps and rejection of some data due
to possible contamination as discussed above, an average of only 74%, 80%, 70% and 55% of
data recorded in the observational periods of the pre-monsoon, monsoon-onset, monsoon I and
monsoon Il cruises, respectively, were available for analysis.

The southwest monsoon extending from June to September, each year, is the dominant feature
of this region when a seasonal wind flows with consistency and regularity from the southwest
direction . Towards the end of May, a southwesterly wind from Somalia coast spreads
northwards over the Arabian Sea, the Bay of Bengal and the Indian sub-continent. The onset of
southwesterly winds over the west coast of India is often sudden. Generally, it is referred to as

the bursts of the monsoon over India. Strong winds continue to blow most of the time during the



southwest monsoon period and exhibit periodic movements to the north and south of the mean
location of the tropical easterly jet. Normally 75% of annual rainfall over India is received
during the southwest monsoon season. However, the rainfall during the monsoon has short
period rainfall fluctuations and is characterized by heavy rain followed by lean periods known as
break monsoon. The southwest monsoon withdraws from this region at the end of September.
Winds undergo a reversal in direction and weak northeasterly winds flow in winter monsoon
season.

The NCEP average winds for the period of each cruise are shown in Figure 2. The diagrams
clearly show the systematic transition from weak northerly winds during the pre-monsoon cruise
to strong southwesterlies during the monsoon season. The difference in ion concentrations
during different airflows and the conductivity caused by them are discussed below.
Observations
Seasonal Average lon Concentrations

Table 3 shows the average values alongwith their standard deviations of the small-,
intermediate-, and large-ion concentrations of the positive polarity and the positive, negative and
total conductivity at the four stationary positions. Large variability of each parameter within an
individual cruise especially during the monsoon season, is noticeable. Total conductivity as well
as the conductivity of each polarity are much higher during the monsoon than the pre-monsoon
periods. Surprisingly, the concentration of small ions which contributes most to the conductivity,
is less during monsoon season than in the pre-monsoon season. However, the concentrations of
the large and intermediate ions are much more during the monsoon periods as compared to the

pre-monsoon periods.



Table 4 shows the average values of the parameters for the whole period of each cruise instead
of only for the stationary period. Although, the magnitudes of individual corresponding values in
Tables 3 and 4 are little different from each other, the trends in variation of average values in
different cruises (or seasons) are similar. The observation indicates that the time-averaged
values of ion concentrations along a cruise in this area fairly well represent the temporal/
seasonal changes of the various ion-category concentrations.

Diurnal Variations

All the three categories of ions and both polar conductivities show diurnal variations in the pre-
monsoon period. Figure 3 shows these variations on a typical fair-weather day on May 19, 2003.
The nighttime small ion concentrations (from 1800 — 2000 to 0600 — 0900 hours) are about an
order of magnitude higher than their daytime values. On the contrary, the daytime intermediate
and large ion concentrations are much higher than their nighttime values. Moreover, contrary to
the small-, and large-ion concentrations which experience large fluctuations during nighttime as
compared to daytime values, the intermediate ion concentrations remain comparatively steady
during daytime but experience large fluctuations during nighttime. The corresponding polar
conductivities are little higher but much more fluctuating during daytime than during nighttime.
During the pre-monsoon season, the variations in small ion concentrations are generally found to
be inverse of those in large ion concentrations.

The situation changes much with the onset of monsoon season. The systematic diurnal
variations observed in ion concentrations and conductivity in the pre-monsoon season,
disappear during the monsoon-onset and monsoon periods. Values of ion concentrations and

conductivity arbitrarily change over large ranges and do not show any regular variation from day



to day. Moreover, the concentration variations observed in one ion-category become independent
of variations in other ion-category.
Variations of lon Concentrationswith Distance from the Coastline

The land-to-sea transport of aerosols, as studied by Ruttenberg and Holzer [1955], Misaki and
Takeuti [1970], Morita et al. [1973], Deshpande and Kamra [1995], is one prominent process in
determining the concentration of ions and aerosols across coastlines. Several other sources and
sinks can operate and influence their concentrations near coastlines. For example, the processes
of nucleation, bubble bursting and raindrop splashing can introduce new ions and aerosols into
the atmosphere. On the other hand, the processes of surface deposition, in-cloud and below
cloud scavenging can remove them from the atmosphere. Fog also significantly influences their
concentrations (e.g. Deshpande and Kamra, 2004). Air mass history at the place of
measurements is another factor that strongly influences the ion and aerosols concentrations. Our
present measurements are not sufficient to assess the contributions of different processes.

Unfortunately, our observations could not be made in the first 50 — 150 km from the coastline
because the time available between the loading of the instruments and scientists onboard the ship
and the start of the cruise was not sufficient to install the equipments. However, the variations in
ion concentrations and conductivity observed from ~ 100 km to 400- 500 km from the coastline

on some legs of the cruise showed following features in different seasons.

In the pre-monsoon period in Figure 4c, the trends in variations of the small and
intermediate ion concentrations with distance are almost opposite to that of large ions. The
small- and intermediate-ion concentrations increase upto ~ 250 km, decrease by almost two

orders of magnitude at ~ 370 km and then again start increasing beyond 370 km. On the

10



contrary, the large ion concentrations decrease upto 300 km, sharply increase by almost two
orders of magnitude at ~ 370 km and then again start decreasing beyond ~ 370 km. The
conductivity shows a general decrease upto ~ 320 km except some higher values around ~ 250
km and then settles down to comparatively constant values beyond ~ 320 km (Fig. 5).

Ion concentrations of all categories show perhaps most unique distributions with distance in the
monsoon-onset period in Figure 4d from all other seasons. Concentrations of all category of ions
remain almost constant for long distances, but show some rather abrupt changes. Most
noteworthy are the sharp decrease at ~ 200 km and rather gradual increases in the 50 — 100 and
300 — 400 km regions in the large ion concentration. Corresponding values of conductivity in
Fig. 5d also show almost uniform values upto ~ 300 km and then some increasing trend beyond
300 km.

Except for some very high values of large ion concentrations at ~ 200 km, the intermediate
and large ion concentrations remain nearly constant from 150 to 500 kms in the monsoon-I
period in Fig. 4a. The small ion concentration during this period, however, fluctuate over a large
range. The conductivity during this period, sharply decreases to low values at some locations but
soon recovers to values somewhat higher than during the monsoon onset season.

Effect of Precipitation

Observations of only total rainfall during 24 hours period were made during the cruise. Rain
intensity was not measured. However, some incidents of rain were manually recorded.
Therefore, the details of the time, period or intensity of rain wherever available in the following
cases, need be taken as approximate only. We present below, three cases in which rainfall

produced three distinct types of changes in ion concentrations of different categories :

11



Casel: With the arrival of the southwest monsoon a rainfall of 10.4 mm was recorded on the
first day, on June 7, 2003 on board of Sagarkanya; the whole of rainfall falling in the morning
hours. With the onset of showers, the meteorological records made at ORV Sagarkanya (Figure
6) showed a fall of ~ 3°C in atmospheric temperature, a rise of ~ 17% in relative humidity and a
sudden burst of southwesterlies of upto ~ 11 m s™'. Concentrations of the small and intermediate
ions decreased as shown in Figure 6, most probably because of the scavenging of ions and
aerosols by raindrops. After the showers, the concentrations of small and large ions, however,
started increasing because of the cessation of the scavenging process, but the intermediate ion
concentration continued to fall, perhaps due to no fresh formation of intermediate ions under the
post-shower meteorological conditions. Magnitude of negative conductivity initially decreases
at 0200 hours but then recovered to its original level at ~ 0500 hours. Nearly constant values of
conductivity observed around 0800 hours, inspite of decrease in small and intermediate ion
concentrations are most likely due to introduction of higher mobility ions of either category.
Almost noise-free values of conductivity and intermediate ion concentrations before 0200 hours
reflect that the changes occurring in these parameters are less than the sensitivity of these
channels.

Case |l: Drizzle type of rain produced different types of changes in ion concentrations. On
July 23, 2002, drizzle started at ~ 0800 hours and continued for ~ 30 minutes. Thereafter,
intermittent periods of  light drizzle and mild sunlight continued upto 1225 hours when
moderate drizzle occurred continuously from 1225 to 1320 hours. Strong winds of 9 — 12 m s™
from southwest continued for the whole day. As shown in Figure 7, ion concentrations in any
category did not show any sharp or adrupt changes at 0800 hours. However, the large and

intermediate ion concentrations started to gradually decrease with the start of the drizzle period
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but started increasing after 1330 — 1400 hours. On the contrary, the small ion concentrations
showed an opposite trend i.e. an increase with the start of drizzle and decrease after the drizzle.
(Figure 7). The small ion signal was out of the range for some periods between 1230 and 1600
hours. The electrical conductivity of both polarities somewhat increased during the drizzle but
decreased soon after its ceasation. Comparatively smaller changes in conductivity during diurnal
cycle in view of about an order of magnitude change in the small ion concentration indicate
introduction of lower-mobility small ions and/or reduction in mobility of the existing small ions
during the drizzle period. It may also be partially ascribed to the reduced values of
intermediate/large ion concentrations during the drizzle period.  The above results of ion
concentrations can be interpreted if one considers the following two mechanisms. Firstly, the
collection efficiency of drizzle size drops for small ions is much smaller than those for the
intermediate or large ions. Secondly, the film-drops produced by splashing of drizzle drops on
sea surface introduce some highly charged positive ions of larger size into the atmosphere
(Chapman, 1938; Gathman and Hoppel, 1970a; Pawar et al., 2005). In addition, processes such
as the evaporation of ions from the aerosol particles and/or Rayleigh explosions of drying rain

droplets can significantly contribute to the ion-aerosol budget in such environmental conditions.

Caselll: On June 5, 2003, at ~ 0600 hours the atmospheric temperature suddenly dropped by ~
3° C, relative humidity increased by 18% and weak southwesterlies of ~2 m s changed to
strong southerlies of ~ 12 m s (Figure 8). Light rain was recorded at ~ 0730 hours. However,
its time of ceasation could not be recorded. The sharp increase at 0600 hours followed by a
slow decrease in large ion concentration in Figure 8 as the winds slow down indicates

introduction of wind-produced large ions in the atmosphere. These changes may also be due to
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change in air mass as the wind direction change from northwest to southwest and atmospheric
temperature drops by 3° C (Figure 8). The small ion concentration continued to increase upto ~
1000 hours when it decreased to its original level in ~ 20 minutes. The intermediate ion
concentrations remained almost constant during this period.
Discussion

Our results can be interpreted in terms of the meteorological features and their changes in
different seasons of the region. In the pre-monsoon period, the surface winds over the Arabian
Sea and the northern Indian Ocean are weak, turbulent and frequently change their directions.
So, the aerosols of land origin can be transported to the measurement locations over the sea with
winds and/or by eddy diffusion. Under such conditions, the values of the ion concentrations in
different categories and conductivity will be determined by the equilibrium reached by the ion-
aerosol attachment process. Comparatively higher small-ion concentrations in the pre-monsoon
than monsoon periods are most likely due to the transport of ions and radon from land,
especially from the coastal regions where the sand is known to have very high radioactivity. The
life-time of small ions is only of the order of a few minutes and thus these are not likely to be
transported far away from the coastline before they get attached to aerosol particles. However,
the presence of radon can cause in-situ production of small ions. In case of the land-to-sea
transportation, therefore, concentrations of small ions and neutral aerosol particles should
decrease but of charged aerosol particles should increase with distance from the coastline. Our
results in Figure 4 c support such transportation. Further, the intermediate ion-concentration in
our observations are much higher than those observed by Horrak et al. [1998] at Tahkuse
Observatory in Estonia. It is partly because of much wider range of the intermediate-ion

mobility in our ion-counter. Another, and probably more dominant reason may be higher rate of
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intermediate ion production in tropical areas where atmospheric temperatures and solar radiation
are much higher than at Tahkuse. Availability of plenty of radon-produced small-ions and
sulphate components being transported from land to sea in conditions of relatively low relative
humidity in the pre-monsoon season will also enhance the formation of intermediate ions. Over
and above these high concentrations no bursts of intermediate ions produced by nucleation of
intermediate ions as suggested by Kulmala et al. (2004) and de Reus et al., [1998] and are
observed by Horrak et al., [1998], are observed in our measurements. Unusually large
intermediate-ion concentrations during the June 30 to July 12, 2002 period may be due to
anomalous behaviour of monsoon in 2002 when the month of July, normally the wettest month
in this region, was very dry, with clear skies, almost no precipitation and comparatively weaker
southwesterly flow.

Onset of the southwest monsoon season follows establishment of cross-equatorial flow between
40 and 60° latitudes and strengthening of the southwesterly surface winds over the Arabian Sea
and the north Indian Ocean. An area of strong winds starts extending eastwards from the Somali
coast. The area of low winds prevailing over the central Arabian Sea during the pre-monsoon
season starts getting smaller and slowly almost disappears. The onset of southwest monsoon is
characterized by high surface winds which cause breaking waves at the sea surface. Breaking
bubbles at the sea-air interface eject highly charged water droplets into the atmosphere
[Blanchard, 1963, 66]. These droplets soon evaporate in the unsaturated atmosphere and leave
behind highly charged residue particles. Large space charge densities have been observed to
originate in the surf zones and move along with the wind [Blanchard, 1966; Gathman and
Hoppel, 1970a, b; Gathman and Trent, 1968]. These field investigators indicate that the particles

produced by the bubble breaking process are highly charged and have large mobility.
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Laboratory experiments of Chapman [1938], Woolf et al. [1987], support such conclusion.
These highly charged residue particles not only increase large ion concentrations but can also
contribute to the atmospheric electric conductivity [Pawar et al., 2005]. Occurrence of
comparatively very large concentrations of large ions in the monsoon months in Tables 3 and 4
and their good correlation with wind speed supports such process of the large ion generation.
Similar trends in the average concentration values of different categories of ions in Tables 3 and
4 in different seasons support the fact that the temporal variations in the area of measurements
can be reasonably well represented by the spatial averages for the whole cruise.

Figure 9 shows four typical 5-day back trajectories drawn from NOAA-HYSPLIT model on four
days during the measurement periods. The direction of transportation of the airmass reaching
the measuring site slowly shifts from North (almost along the western coastline of India) in the
pre-monsoon season to the west and then to southwest in the monsoon season. With the setting-
in of the cross-equatorial flow at 40 to 60°E latitudes at the time of monsoon onset, the airmass
being brought to the measuring site is from the southern hemisphere during the monsoon period.
Southwesterly winds in the monsoon season push the aerosols and other pollutants, including
Radon, of the land-origin and limit their extension over sea. Also, the higher southwesterly
winds generate the highly charged ions at the air-sea interface and transport them towards the
western coastline of India.  Scatter plots of large ion concentration vs wind speed plotted for
our data of monsoon-onset period (see Figure 5 in Pawar et al., 2005) shows a good correlation
between the two parameters and stress the importance of wind-generated ions. Thus, two
sources of large ions — first, the ion-aerosol attachment process prominent at land surface, and
second, the bubble breaking process prominent in high wind speed regions at sea surface act

together in monsoon season to determine the net large ion concentration near the coastline.
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Higher concentrations of large ions during daytime and the opposite trends in variations in the
small- and large -ion concentrations reflect the dominance of the first process in pre-monsoon
season. On the other hand, the observations of very large ion concentrations and almost
uncorrelated variations in ion concentrations of different categories indicate dominance of the
second process in monsoon season.

Falling precipitation particles below clouds scavenge ions and aerosols in the subcloud layer.
Reductions in ion concentrations of all categories following rain showers and subsequent
recoveries of small and large ion concentration after rain on June 7, 2003, well demonstrate such
removal of ions by scavenging process. The decrease in the intermediate ion concentration even
after the showers is perhaps due to ceasation of intermediate ion formation process in the
meteorological conditions that prevail after showers. Although our observations on July 23,
2003 (Fig. 7) also show reduction in large and small ion concentrations following drizzle, the
increase in small ion concentration during the drizzle period and their decrease after the drizzle,
perhaps, indicates generation of small ions due to drizzle drops splashing on the sea surface.
Processes of the evaporation of falling charged drops and/or Rayleigh bursting can also

contribute to it.
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Table 1: The mobility and size ranges of ions

Category Small ions Intermediateions Largelons
M Zb"'lty range >0.77 x 10* 121 x 10° 0.97 x 10°
(M=V=m™) -0.77x 10* -1.21x 10°

Diameter range

(nm) <145 1.45-12.68 12.68 - ~130




Table2: Dimensions and other parameters of three condensers of the ion-counter.

Dimensions/constants Small-ion Intermediate-ion Large -ion
Condenser Condenser Condenser

Length of the outer 0.4 0.8 1.2

electrode (m)

Length of the inner 0.2 0.5 1.0

electrode (m)

Diameter of the outer 0.098 0.06 0.038

electrode (m)

Diameter of the inner 0.076 0.037 022

electrode (m)

Potential applied (V) 15 100 600

Critical mobility 0.766 x 10™ 12x10° 0.97x 10

(2 Vim)

Flow rate (1s™) 8.6 1.8 0.29




Table 3: Periods and positions of ship at stationary positions and average values of small-,
intermediate-, and large- ion concentrations (N5, N; and Ny, respectively) of positive polarity and
polar (A+ and A.) and total (A) conductivity during four cruises in the premonsoon, monsoon-
onset and monsoon seasons. Values in parenthesis show their standard deviations.

Period Location Ng N1 N A+ A A
ofship  x10° x10¢  x10° x10"™ x10™  x10™
(Station-  (m™) (m®)  (m”) (Sm")  (Sm")  (Sm™)

ary

period)
June 30- July
12,2002 16.9°N, 842 3060 6859 0.89 0.83 L7
(Mgnsoon 71.2°E (x479) (£849) (£1980) (+0.34) (£0.17) )
period -I)
July 23— 154°N, 373 1081 11401 0.83 0.65 1.48
August 4, 72.2°E (£249) (£599) (£7267) (£0.68) (£0.27)
2002
Monsoon
Period -1I)
March 25- 9.1 N, 895 1116 3571 0.47 0.54 1.01
April 5, 2003 74.5°E (£557) (1241 (£1549) (£0.12) (£0.23)
(Pre-monsoon )
period)
May 23- 9.1° N, 1515 784 6090 0.55 0.51 1.06

June 7, 2003 745°E  (£741) (#357) (£3510) (£0.17)  (£0.20)
(Monsoon
onset period )
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Table 4: Periods and area of ship and average values of small-, intermediate-, and large- ion
concentrations (N, N; and Ni, respectively), of positive polarity and polar (A+ and A.) and total
(A) conductivity during four cruises. Values in parenthesis show their standard deviations in the
pre-monsoon, monsoon-onset and monsoon seasons.

Period Area Ns N1 N A+ A A

-6
x10°  x 100 X 100 g0 x10™  x10M
(m™) (S/m) (S/m) (S/m)

m?)  (m?)

June 21- July o 0
(154 2002 Veos 035 2424 575070 075

onsoon ety +637 +2804 +5397 +0.40 +0.24 '
(Vomsool  Jatp GO (20 @S9 (2040)  (024)
July 17— 14.4 -8.3° 371 1654 11640 0.99 0.83 1.82
August 16, N, 71.5- (+240) (£1311)  (£9052) (+0.78) (x0.78)
2002 72.7°E
(Monsoon
period -II)
March 14 - 8.3-16.9" 1106 1188 4803 0.53 0.62 1.16
April 10,2003 N, 76.3- (+883) (£955) (£3436) (+0.15) (£0.25)
(Pre-monsoon  72.5°E
period)
May 15- 7.5-12.5°N, 1308 870 5528 0.50 0.50 1.00

June 19,2003  71.4-76.4°  (£662)  (+405)  (¥3166) (+0.17)  (£0.21)
(Monsoon- E
onset period)
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L egends

Fig. 1: Cruise track of cruises (a) during monsoon period and (b) during pre-monsoon and around
monsoon-onset period.

Fig. 2: Average NECP derived winds for cruise periods. (a) June, 2002 to July, 2002; (b) July, 2002 to
August, 2002; (c¢) March 15, 2003 to April 9, 2003; and (d) May 16, 2003 to June 19, 2003.

Fig. 3: Typical diurnal variation of small-, intermediate- and large-ions concentration and polar
conductivities observed on a fair weather day.

Fig. 4: Variation of small-, intermediate- and large-ions concentration with distance from coast during (a)
June 21, 2002 to July 15, 2002; (b) July 17, 2002 to August 16, 2002; (c) March 14, 2003 to April 10,
2003; and (d) May 15, 2003 to June 19, 2003.

Fig. 5: Variation of total conductivity with distance from coast (a) June 21, 2002 to July 15, 2002; (b)
July 17,2002 to August 16, 2002; (c) March 14, 2003 to April 10, 2003; and (d) May 15, 2003 to June
19, 2003.

Fig. 6: Variation with local time of temperature, relative humidity, pressure, wind speed and wind
direction, small-, intermediate- and large-ion concentrations and polar conductivities observed onboard
ORYV sagarkanya on 7 June, 2003.

Fig. 7: Same as Fig. 6 but for July 23, 2002.

Fig. 8: Same as Fig. 6 but for June 5, 2002.

Fig. 9: 5-days NOAA-HYSPLIT back trajectories on four different days during the measurement periods.
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