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Elastic Behavior in a Supercooled Liquid - analysis ofViscoelasticity using extended mode coupling modelShankar P. DasSchool of Physical Sciences, Jawaharlal Nehru University,New Delhi 110067, India.ABSTRACTThe transverse current correlations are analyized using the formalism of extended modecoupling theory. The undercooled liquid can sustain shear waves up to a minimumwavenumber. With the increase of density this wave number decreases, indicating agrowing length scale that is related to the dynamics. The speed of the propagating shearwaves goes to zero approaching a critical wave number. The maximum wavelength showsan initial enhancement approaching the mode coupling transition and �nally grows atslower rate as the sharp transition is cuto�.PACS number(s) : 64.70P, 05.60.+w, 64.60C, 47.35.+i,05.20.-y



The solid like nature of a supercooled liquid is often expressed in terms of a �nite shearmodulus. Thus while a low density uid cannot sustain a shear stress, in an elasticsolid the stress is proportional to the strain produced. The viscoelastic response of thesupercooled liquid is formulated in terms of the combination of the above two behavior.Theories of liquid state which only include the short time or uncorrelated collisions [1, 2]in a liquid therefore does not account for the appearance of propagating shear waves. Byformulating the the dynamics in a dense liquid in terms of the memory function [3, 4, 5], the propagating shear waves at large wavenumbers are accounted. The memory e�ectsaccounts for the dynamic correlations that build up at high density and are expressedwith the mode coupling terms. In recent years the self consistent mode coupling theory(MCT) [6] for glassy relaxation has been proposed by considering the contribution tothe transport coe�cients coming from the nonlinear coupling of collective modes in aliquid. In the kinetic approach to glassy behavior, the widely studied model is obtainedfrom a self consistent mode coupling approximation of the memory function in termsof the slowly decaying density uctuations. This model undergoes a dynamic transitionto an ideal glassy phase beyond a critical density while the structure of the liquid doesnot undergo any drastic change. In the ideal glassy phase the density correlation func-tion freezes to a nonzero longtime limit. However, study of the equations of NonlinearFluctuating Hydrodynamics [7] shows that the dynamic feed back mechanism causing adivergence of the viscosity is cuto� as a result of coupling of density uctuations to cur-rent in a compressible uid. In these so called extended mode coupling models [7, 8, 9, 10]it has been shown that the dynamic transition is removed. The relaxation times keepsincreasing, but the density correlation function �nally decays to zero in the longtimelimit. The ideal glassy phase predicted within the simple mode coupling approximationhas solid like properties and it can support propagating shear waves at all length scales.1



In a recent work [11] the behavior of propagating shear waves in the supercooled liquidwas analized taking into account the proper structural e�ects at high density, through amode coupling calculation. The extent of slowing down in relaxation near the instabilityis determined from the wave vector dependence of the mode coupling contributions inthe theory. It was shown that the longest wavelength for the propagating shear wavesthat the undercooled liquid can sustain grows with density. This length scale which islinked to a characteristic solid like behavior of the supercooled liquid, follows a power lawdivergence with an exponent 1.2 in the vicinity of the ideal glass transition density. Inthe present paper we consider the extended mode coupling model where any transition toan ideal glassy phase is absent and the density correlation that contributes to the modecoupling e�ects decays to zero in the long time limit. With the proper approximationto the memory function essential for the dynamics of shear waves, the divergence of thecharacteristic length scale is removed.The shear relaxation in a uid is studied by analyzing the transverse auto correla-tion function. The nature of the dynamics is usually expressed in terms of the Laplactransform [12] and the corresponding poles in the complex z plane. The transverse au-tocorrelation function �(q; t) normalized with respect to its equal time value can beexpressed in the Laplac transformed form, [12]�(~q; z) = 1z + i�R(q; z) (1)in terms of the memory function or the generalized shear viscosity �R(q; z). In the lowdensity uid, where the collisions are random, memory e�ects are negligible giving an �Rwhich is independent of frequency z. In this limit, �(q; z) has a simple pole [12] signifyinga di�usive process. For the dense uid at small enough length scales (i.e. large enough q) the memory e�ects are important, a damped oscillatory mode the shear wave [13, 14] is2



obtained. The dynamics of the transverse autocorrelation function is then expressed interms of the corresponding generalized shear viscosity [12] �(q; z) = �0+ �mc(q; z), where�0 is the short time or bare part arising from uncorrelated binary collision of the uidparticles. The mode coupling contribution for �mc takes into account the cooperativee�ects in the dense uids and has contributions from the coupling of the hydrodynamic�elds. In the supercooled liquid the density uctuations are assumed to be dominantand �mc is expressed self consistently in terms of the density auto correlation functions.In the formalism of the mode coupling theories density correlation function is the keyquantity in terms of which the glassy relaxation is formulated. The Laplace transformof the density correlation function  (~q; t) normalized with respect to its equal time valuecan be expressed in the form, [7] (~q; z) = z + i�R(q; z)z2 � 
2q(q) + i�R(q; z)[z + i(q; z)] : (2)
q = q=q�mS(q) corresponds to a characteristic microscopic frequency for the liquidstate dynamics where � is the Boltzmann factor and m is the mass of the uid particles..The corresponding memory function, the generalized longitudinal viscosity �R(q; z) =�0(q) +�mc(q; z) has a part �0 related to bare or short time dynamics with uncorrelatedcollisions and the mode coupling contribution �mc signifying the correlated motion in thedense liquid. �mc(q; t) = Z V L[~k; ~k1] (~k; t) (~k1; t) d~k(2�)3 (3)where ~k1 = ~q � ~k. u = q̂ � k̂, the dot product of two corresponding unit vectors. Thevertex function for the longitudinal viscosity is given by,V L[~k; ~k1] = n2�m [ukc(k) + u1k1c(k1)]2S(k)S(k1) (4)3



where u1 = q̂ � k̂1 and c(k) is the direct correlation function related to the static structurefactor S(k) through the Ornstein-Zernike relation, S(k) = [1� nc(k)]�1. The quantity(q; z) in the R.H.S of eqn. (2) plays a crucial role in determining the asymptotic dy-namics. If  is ignored the simple mode coupling approximation for memory functionobtains the sharp transition to an ideal glassy phase beyond a critical density, with thedensity correlation function developing a 1=z pole. This model has been widely studied[15] for the dynamics of supercooled liquids and involves transition to an ideal glassyphase beyond a critical density. However, with the presence of  at high density when�R gets large, the pole shifts to 1=(z + ). It has been demonstrated [7, 9] that in thesmall q and ! limit,  � q2. This give rise to a di�usive decay of the density correlationrestoring ergodicity in the longtime limit. Formal expression was obtained in ref. [7] forthe quantity  using nonperturbative analysis. For calculations here we use the one loopresults in the simplest form, in the small q, ! limit.(q; t) = oq2 Z dk[ _ (k; t)S(k)]2 (5)_ refers to the time derivative of the function  (q; t) and o = vo2=(6n�2�2) , vo being thethermal velocity of the particles. The quantity  provides a mechanism that cuts o� thesharp transition of the uid to an ideal glassy phase. It is O(kBT ) to leading order is ane�ect of the coupling of the density and current correlations in the compressible uid andgives rise to a di�usive process whereby complete freezing of the dynamic correlations indensity uctuations are smoothed.We solve for the time evolution for the transverse correlation function �(q; t) for qsmall, with a self consistent evaluation of the density correlation function  (~q; t) fromthe equation (2). It has been demonstrated [16] that in a simpli�ed model where thequantity  coming from the coupling of currents to the density uctuations is ignored,4



the density auto correlation function freezes [6] to a nonzero value for densities above acritical value nc. For a hard sphere system whose static structure factor is approximatedwith the Percus-Yevick[17] (PY) solution with the Verlet-Weiss (VW) [18] correction thistake place at a critical value of the packing fraction �� = :525 [19]. We focus here ourstudy for the densities above the critical density corresponding to the dynamic transitionto the ideal glassy phase. At these densities in the simple MCT there will be completefreezing at all length scales. The wave vector dependent bare transport coe�cients in theequations of motion for � are relevant for the short time dynamics over di�erent lengthscales specially at short distances. In the present calculation we use for the bare transportcoe�cients relevant for the short tyme dynamics the results obtained from hard spheremodels [20] with �0(x) and �0(x) are respectively expressed as, 2=(3tE)[1�j0(x)+2j2(x)]and 2=(3tE)[1 � j0(x) � j2(x)] with x = q�, being the wave vector q in terms of thehard sphere diameter �. jl the spherical Bessel function of order l and tE the Enskogcollision time [14]. To investigate the nature of the shear waves at small wave numbers wecompute the memory function in terms of the density correlation function. In the presentcalculation the later is obtained from the extended MCT computation over a wide rangeof wave vectors, from small up to a cuto� value. The extended mode coupling modelthat is used here does obtain a form of the cuto� function in the hydrodynamic limit.Indeed for analyzing the nature of the shear waves the small wave vector region becomemore important with increasing density. However, in computation of the mode couplingintegrals the large wave vector part contributes. For small wave numbers as was indicatedabove there is a di�usive mode restoring ergodicity. We choose the cuto� function givinga di�usive pole by approximating (q; t) by the hydrodynamic limit given in (5) value.We assume that the the cuto� function is constant [21] beyond q� = :015 around whichvalue of the wave vector q� the structure factor which is the only in put in the present5



theory reaches within one percent of its hydrodynamic limit. For the density range ofinterest here we use this as the cuto� value for using the hydrodynamic expression for .To compute the transverse auto correlation function for di�erent wave numbers we usethe standard form for the mode coupling contribution to the generalized shear viscosityor the memory function.�mc(q; t) = n2�m Z d~k(2�)3 hc(k)� c(~k1)i2k2(1� u2) (~k1; t) (~k; t) (6)For small q expression this obtains up to quatric order,�mc(q; t) = 1�m Z [q2VT (0) + q4VT (2) + :::][ (~k; t)S(k)]2 dk40�2 (7)where the vertex functions V T 's are respectively given by, V (0) = 23k4c02(k) and V (2) =k27 [4c02(k)� 43kc0(k)c00(k)+ k22 c002(k)]. We make detailed calculation of the transverse autocorrelation function for di�erent values of the wave number and study the nature of itsrelaxation with time. >From the study of the dynamics a wave number qo is identi�edsuch that with q > qo the relaxation of transverse current correlation is oscillatory indi-cating that the system sustains shear waves up to this wave number. For wave vectorssmaller than qo the decay of the correlation function is no longer oscillatory and � nevergoes negative. In order to make a quantitative estimate of the cross over wavenumberwe have adopted the procedure outlined for the calculation with the simpli�ed model[11], namely extrapolating to zero the inverse of the time to for which the transverseautocorrelation function goes negative at a given wave vector q. We de�ne a lengthLo = 2�=qo corresponding to this critical value of the wave number for the shear wavewhich corresponds to the maximum wavelength for propagating shear waves.In �gure 1 the transverse auto correlation function is showed for the packing fraction6



� = :57 As the wave number is decreased we see that the nature of time relaxation ofthe transverse correlation function changes from a propagating to an exponential decay.Thus at a given density, as the critical wavenumber is approached the propagating shearmode transforms to a di�usive mode reecting the liquid like behavior. For q > qo thespeed of the propagating shear waves are computed from the decay of the time correlationfunction. In �gure 2, we show the behavior of the speed of shear waves vs. wave vectorfor reduced density n�3 = 1.08. As the critical wave number is approached the speed ofthe shear waves goes to zero. For large wave number the speed of the shear wave reachesits hydrodynamic value which is equal to qG1=� where G1 is the high frequency limitof the shear modulus. Using this limiting value of the shear wave speed we can thuscompute the shear modulus and the result is shown in �gure 3. This is related [5] to theshort time value of the memory function. The only input in the present calculation comesfrom the structure of the liquid. In Figure 4 the variation of qo with packing fraction� ( = �n�3=6 ) is shown for a system of hard spheres. As the critical packing fraction.525 is approached the observed length scale Lo tends to diverge, with qo becoming small.However as the density is further increased the approach to the sharp transition is cuto�for a less severe enhancement takes place.Indeed, the length scale Lo does not represent any underlying thermodynamic phasetransition but indicates how the cooperative nature of the dynamics of structural relax-ation accounted through the mode coupling terms, grows with the density and is a�ectedby the dynamic instability of ideal glass transition. Solid like nature of undercooledliquids have also been observed from the transverse sound modes [23]. Mountain hasobserved [24] a similar behavior of propagating shear waves from Molecular Dynamicssimulations of fragile liquids which are also the systems where the mode-coupling models7



apply. This length scale of maximum wavelength for propagating shear waves observedfrom molecular dynamics simulations grows inde�nitely approaching the glass transition.In the present work we have demonstrated that for the self-consistent mode couplingmodel such a growing length scale can be identi�ed and it shows a change in its growthpattern around the mode coupling instability. We have used the expression (5) for smallwave vectors by having a di�usive mode that comes out of the collective dynamics atsupercooled densities. While the small q value of the quantity  has been obtainedthrough a proper analysis of the NFH equations, we extrapolate this form to large qusing simple approximations to estimate it. The large q behavior which should involvelarge wave vector extension of the mode coupling formalism going beyond the simpleone loop approximation [10] to investigate the hopping motion in the supercooled liquid.The present version of extended MCT is using the hydrodynamic form and being used tostudy the nature of the shear waves at small wave numbers. It has been established byindependent works [7, 9] that in the small wave q limit, the �nal decay process restoringergodic behavior in the density auto correlation function is di�usive. Beyond the hydro-dynamic regime, the central peak has a width independent of q, commonly called theMountain Peak [21] which is highly non-Lorentzian, reects faster processes and doesnot play a crucial role here. The coupling to thermal uctuations are also ignored inthe formulation with the presumption that the density uctuations are the key quantity.We have also not taken in to account coupling to other slow modes that arises in theglass forming liquids due to complexity of molecules or properties related to orientationaldegrees of freedom [25]. While there can be more involved formalism of the mode cou-pling terms, the present work demonstrates that the simplest mode coupling terms withdensity uctuations are crucial in understanding shear waves.
8



In a viscoelastic theory [26] a phenomenological parameter is introduced to describe afrequency dependent shear viscosity and using a simple exponential time dependencein the transport coe�cient one can obtain propagating shear waves in terms of thisrelaxation parameter. On the other hand, we have considered a theoretical model whichis obtained from �rst principles. It includes as an input only the static structure factorof the liquid. The identical model has already been used earlier by the present authorto investigate the nature of the supercooled liquid dynamics. The growing length scalefollows very naturally from the feed back of density uctuations and without any inputparameters being used. We have used the extended mode coupling model to investigate thewave vector dependence in the elastic response of the supercooled liquid. The length scaleLo is related to the dynamic behavior of the system and is representative of the distanceover which the supercooled liquid do have enough structure to sustain propagating shearwaves.
AcknowledgementThe author acknowledges the support under NSF project INT9615212.
Figure CaptionsFigure 1The normalized transverse current-current correlation function �(q; t) for q�= .0025(solid), .0035 (dashed), .0040 ( dot-dashed) and .005 (dotted), at � = :57.
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Figure 2The speed of shear wave in units of �=tE ( see text ) vs. wave vector k� at densityn�3=1.08.
Figure 3The shear modulus G1 in units of (kBT)=�3 ( on a log10 scale ) vs. packing fraction �.
Figure 4The wave number qo (de�ned in text ) in units of ��1 vs. the packing fraction �.
Table 1The Length scale Lo in units of � for di�erent values of the packing fraction �.� Lo0.49 257.300.50 415.280.51 574.860.52 874.970.53 1120.200.54 1267.800.55 1411.950.56 1590.670.57 1841.500.58 2203.850.59 2918.340.60 4390.770.61 7486.22
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