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ABSTRACT

The transverse current correlations are analyized using the formalism of extended mode
coupling theory. The undercooled liquid can sustain shear waves up to a minimum
wavenumber. With the increase of density this wave number decreases, indicating a
growing length scale that is related to the dynamics. The speed of the propagating shear
waves goes to zero approaching a critical wave number. The maximum wavelength shows
an initial enhancement approaching the mode coupling transition and finally grows at

slower rate as the sharp transition is cutoff.

PACS number(s) : 64.70P, 05.60.4+w, 64.60C, 47.35.+,05.20.-y



The solid like nature of a supercooled liquid is often expressed in terms of a finite shear
modulus. Thus while a low density fluid cannot sustain a shear stress, in an elastic
solid the stress is proportional to the strain produced. The viscoelastic response of the
supercooled liquid is formulated in terms of the combination of the above two behavior.
Theories of liquid state which only include the short time or uncorrelated collisions [1, 2]
in a liquid therefore does not account for the appearance of propagating shear waves. By
formulating the the dynamics in a dense liquid in terms of the memory function [3, 4, 5]
, the propagating shear waves at large wavenumbers are accounted. The memory effects
accounts for the dynamic correlations that build up at high density and are expressed
with the mode coupling terms. In recent years the self consistent mode coupling theory
(MCT) [6] for glassy relaxation has been proposed by considering the contribution to
the transport coefficients coming from the nonlinear coupling of collective modes in a
liquid. In the kinetic approach to glassy behavior, the widely studied model is obtained
from a self consistent mode coupling approximation of the memory function in terms
of the slowly decaying density fluctuations. This model undergoes a dynamic transition
to an ideal glassy phase beyond a critical density while the structure of the liquid does
not undergo any drastic change. In the ideal glassy phase the density correlation func-
tion freezes to a nonzero longtime limit. However, study of the equations of Nonlinear
Fluctuating Hydrodynamics [7] shows that the dynamic feed back mechanism causing a
divergence of the viscosity is cutoff as a result of coupling of density fluctuations to cur-
rent in a compressible fluid. In these so called extended mode coupling models [7, 8, 9, 10]
it has been shown that the dynamic transition is removed. The relaxation times keeps
increasing, but the density correlation function finally decays to zero in the longtime
limit. The ideal glassy phase predicted within the simple mode coupling approximation

has solid like properties and it can support propagating shear waves at all length scales.



In a recent work [11] the behavior of propagating shear waves in the supercooled liquid
was analized taking into account the proper structural effects at high density, through a
mode coupling calculation. The extent of slowing down in relaxation near the instability
is determined from the wave vector dependence of the mode coupling contributions in
the theory. It was shown that the longest wavelength for the propagating shear waves
that the undercooled liquid can sustain grows with density. This length scale which is
linked to a characteristic solid like behavior of the supercooled liquid, follows a power law
divergence with an exponent 1.2 in the vicinity of the ideal glass transition density. In
the present paper we consider the extended mode coupling model where any transition to
an ideal glassy phase is absent and the density correlation that contributes to the mode
coupling effects decays to zero in the long time limit. With the proper approximation
to the memory function essential for the dynamics of shear waves, the divergence of the

characteristic length scale is removed.

The shear relaxation in a fluid is studied by analyzing the transverse auto correla-
tion function. The nature of the dynamics is usually expressed in terms of the Laplac
transform [12] and the corresponding poles in the complex z plane. The transverse au-
tocorrelation function ¢(q,t) normalized with respect to its equal time value can be

expressed in the Laplac transformed form, [12]

1

o(q, 2) = S inh(q.2) (1)

in terms of the memory function or the generalized shear viscosity (g, z). In the low
density fluid, where the collisions are random, memory effects are negligible giving an n#
which is independent of frequency z. In this limit, ¢(q, z) has a simple pole [12] signifying
a diffusive process. For the dense fluid at small enough length scales (i.e. large enough ¢

) the memory effects are important, a damped oscillatory mode the shear wave [13, 14] is



obtained. The dynamics of the transverse autocorrelation function is then expressed in
terms of the corresponding generalized shear viscosity [12] 1(q, 2) = 0o + Nme(q, 2), where
1o is the short time or bare part arising from uncorrelated binary collision of the fluid
particles. The mode coupling contribution for 7,,. takes into account the cooperative
effects in the dense fluids and has contributions from the coupling of the hydrodynamic
fields. In the supercooled liquid the density fluctuations are assumed to be dominant
and 7, is expressed self consistently in terms of the density auto correlation functions.
In the formalism of the mode coupling theories density correlation function is the key
quantity in terms of which the glassy relaxation is formulated. The Laplace transform
of the density correlation function (¢, t) normalized with respect to its equal time value

can be expressed in the form, [7]

z+il'"(q, 2)

W(q2) = 5— O2(q) + il%(q, 2)[z + i7(g, )]’

(2)

Q, = q/4/BmS(q) corresponds to a characteristic microscopic frequency for the liquid
state dynamics where (3 is the Boltzmann factor and m is the mass of the fluid particles..
The corresponding memory function, the generalized longitudinal viscosity T'#(q, 2z) =
[o(q) 4+ Tne(q, 2) has a part [y related to bare or short time dynamics with uncorrelated
collisions and the mode coupling contribution I',,,. signifying the correlated motion in the

dense liquid.

W dk
Cucle,t) = [ VIR RIOE D005 5 (3)

where k,_; =q-— k. ou= q - l%, the dot product of two corresponding unit vectors. The

vertex function for the longitudinal viscosity is given by,

VI k] = QEm [uke(k) + urkie(k)]2S (k) S (k) (4)



where u; = -k, and c(k) is the direct correlation function related to the static structure
factor S(k) through the Ornstein-Zernike relation, S(k) = [1 — ne(k)]'. The quantity
v(g, z) in the R.H.S of eqn. (2) plays a crucial role in determining the asymptotic dy-
namics. If v is ignored the simple mode coupling approximation for memory function
obtains the sharp transition to an ideal glassy phase beyond a critical density, with the
density correlation function developing a 1/z pole. This model has been widely studied
[15] for the dynamics of supercooled liquids and involves transition to an ideal glassy
phase beyond a critical density. However, with the presence of v at high density when
['* gets large, the pole shifts to 1/(z + 7). It has been demonstrated [7, 9] that in the
small ¢ and w limit, v ~ ¢2. This give rise to a diffusive decay of the density correlation
restoring ergodicity in the longtime limit. Formal expression was obtained in ref. [7] for
the quantity v using nonperturbative analysis. For calculations here we use the one loop

results in the simplest form, in the small ¢, w limit.

1(0.8) = 0” [ Akl (k, DS ()] (5)

1) refers to the time derivative of the function ¢ (g, t) and v, = v,%/(6no*n?) , v, being the
thermal velocity of the particles. The quantity v provides a mechanism that cuts off the
sharp transition of the fluid to an ideal glassy phase. It is O(kgT) to leading order is an
effect of the coupling of the density and current correlations in the compressible fluid and
gives rise to a diffusive process whereby complete freezing of the dynamic correlations in

density fluctuations are smoothed.

We solve for the time evolution for the transverse correlation function ¢(q,t) for ¢
small, with a self consistent evaluation of the density correlation function ¢ (g, ) from
the equation (2). It has been demonstrated [16] that in a simplified model where the

quantity v coming from the coupling of currents to the density fluctuations is ignored,



the density auto correlation function freezes [6] to a nonzero value for densities above a
critical value n.. For a hard sphere system whose static structure factor is approximated
with the Percus-Yevick[17] (PY) solution with the Verlet-Weiss (VW) [18] correction this
take place at a critical value of the packing fraction n* = .525 [19]. We focus here our
study for the densities above the critical density corresponding to the dynamic transition
to the ideal glassy phase. At these densities in the simple MCT there will be complete
freezing at all length scales. The wave vector dependent bare transport coefficients in the
equations of motion for ¢ are relevant for the short time dynamics over different length
scales specially at short distances. In the present calculation we use for the bare transport
coefficients relevant for the short tyme dynamics the results obtained from hard sphere
models [20] with T'g(z) and 7 (z) are respectively expressed as, 2/(3tg)[1 — jo(z) + 2j2(z)]
and 2/(3tg)[1 — jo(x) — j2(x)] with x = go, being the wave vector ¢ in terms of the
hard sphere diameter 0. j; the spherical Bessel function of order [ and ¢z the Enskog
collision time [14]. To investigate the nature of the shear waves at small wave numbers we
compute the memory function in terms of the density correlation function. In the present
calculation the later is obtained from the extended MC'T computation over a wide range
of wave vectors, from small up to a cutoff value. The extended mode coupling model
that is used here does obtain a form of the cutoff function in the hydrodynamic limit.
Indeed for analyzing the nature of the shear waves the small wave vector region become
more important with increasing density. However, in computation of the mode coupling
integrals the large wave vector part contributes. For small wave numbers as was indicated
above there is a diffusive mode restoring ergodicity. We choose the cutoff function giving
a diffusive pole by approximating v(q,?) by the hydrodynamic limit given in (5) value.
We assume that the the cutoff function is constant [21] beyond go = .015 around which

value of the wave vector go the structure factor which is the only in put in the present



theory reaches within one percent of its hydrodynamic limit. For the density range of
interest here we use this as the cutoff value for using the hydrodynamic expression for +.
To compute the transverse auto correlation function for different wave numbers we use
the standard form for the mode coupling contribution to the generalized shear viscosity

or the memory function.

For small q expression this obtains up to quatric order,

2 dk
4072
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where the vertex functions V7’s are respectively given by, V(© = §k4c’2(l~c) and V) =
$[4c’2(l€) — 3k (k)" (k) + %c”Q(k)]. We make detailed calculation of the transverse auto
correlation function for different values of the wave number and study the nature of its
relaxation with time. ;From the study of the dynamics a wave number ¢, is identified
such that with ¢ > ¢, the relaxation of transverse current correlation is oscillatory indi-
cating that the system sustains shear waves up to this wave number. For wave vectors
smaller than ¢, the decay of the correlation function is no longer oscillatory and ¢ never
goes negative. In order to make a quantitative estimate of the cross over wavenumber
we have adopted the procedure outlined for the calculation with the simplified model
[11], namely extrapolating to zero the inverse of the time ¢, for which the transverse
autocorrelation function goes negative at a given wave vector q. We define a length

L, = 27 /q, corresponding to this critical value of the wave number for the shear wave

which corresponds to the maximum wavelength for propagating shear waves.

In figure 1 the transverse auto correlation function is showed for the packing fraction



n = .57 As the wave number is decreased we see that the nature of time relaxation of
the transverse correlation function changes from a propagating to an exponential decay.
Thus at a given density, as the critical wavenumber is approached the propagating shear
mode transforms to a diffusive mode reflecting the liquid like behavior. For ¢ > ¢, the
speed of the propagating shear waves are computed from the decay of the time correlation
function. In figure 2, we show the behavior of the speed of shear waves vs. wave vector
for reduced density no® = 1.08. As the critical wave number is approached the speed of
the shear waves goes to zero. For large wave number the speed of the shear wave reaches
its hydrodynamic value which is equal to /G /p where G, is the high frequency limit
of the shear modulus. Using this limiting value of the shear wave speed we can thus
compute the shear modulus and the result is shown in figure 3. This is related [5] to the
short time value of the memory function. The only input in the present calculation comes
from the structure of the liquid. In Figure 4 the variation of ¢, with packing fraction
n ( = mno?/6 ) is shown for a system of hard spheres. As the critical packing fraction
.525 is approached the observed length scale L, tends to diverge, with g, becoming small.
However as the density is further increased the approach to the sharp transition is cutoff

for a less severe enhancement takes place.

Indeed, the length scale L, does not represent any underlying thermodynamic phase
transition but indicates how the cooperative nature of the dynamics of structural relax-
ation accounted through the mode coupling terms, grows with the density and is affected
by the dynamic instability of ideal glass transition. Solid like nature of undercooled
liquids have also been observed from the transverse sound modes [23]. Mountain has
observed [24] a similar behavior of propagating shear waves from Molecular Dynamics

simulations of fragile liquids which are also the systems where the mode-coupling models



apply. This length scale of maximum wavelength for propagating shear waves observed
from molecular dynamics simulations grows indefinitely approaching the glass transition.
In the present work we have demonstrated that for the self-consistent mode coupling
model such a growing length scale can be identified and it shows a change in its growth
pattern around the mode coupling instability. We have used the expression (5) for small
wave vectors by having a diffusive mode that comes out of the collective dynamics at
supercooled densities. While the small q value of the quantity + has been obtained
through a proper analysis of the NFH equations, we extrapolate this form to large q
using simple approximations to estimate it. The large q behavior which should involve
large wave vector extension of the mode coupling formalism going beyond the simple
one loop approximation [10] to investigate the hopping motion in the supercooled liquid.
The present version of extended MC'T is using the hydrodynamic form and being used to
study the nature of the shear waves at small wave numbers. It has been established by
independent works [7, 9] that in the small wave q limit, the final decay process restoring
ergodic behavior in the density auto correlation function is diffusive. Beyond the hydro-
dynamic regime, the central peak has a width independent of ¢, commonly called the
Mountain Peak [21] which is highly non-Lorentzian, reflects faster processes and does
not play a crucial role here. The coupling to thermal fluctuations are also ignored in
the formulation with the presumption that the density fluctuations are the key quantity.
We have also not taken in to account coupling to other slow modes that arises in the
glass forming liquids due to complexity of molecules or properties related to orientational
degrees of freedom [25]. While there can be more involved formalism of the mode cou-
pling terms, the present work demonstrates that the simplest mode coupling terms with

density fluctuations are crucial in understanding shear waves.



In a viscoelastic theory [26] a phenomenological parameter is introduced to describe a
frequency dependent shear viscosity and using a simple exponential time dependence
in the transport coefficient one can obtain propagating shear waves in terms of this
relaxation parameter. On the other hand, we have considered a theoretical model which
is obtained from first principles. It includes as an input only the static structure factor
of the liquid. The identical model has already been used earlier by the present author
to investigate the nature of the supercooled liquid dynamics. The growing length scale
follows very naturally from the feed back of density fluctuations and without any input
parameters being used. We have used the extended mode coupling model to investigate the
wave vector dependence in the elastic response of the supercooled liquid. The length scale
L, is related to the dynamic behavior of the system and is representative of the distance
over which the supercooled liquid do have enough structure to sustain propagating shear

waves.
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Figure Captions

Figure 1

The normalized transverse current-current correlation function ¢(g,t) for qo= .0025

(solid), .0035 (dashed), .0040 ( dot-dashed) and .005 (dotted), at n = .57.



Figure 2

The speed of shear wave in units of o/tg ( see text ) vs. wave vector ko at density

no®=1.08.

Figure 3

The shear modulus G, in units of (kzgT)/o® ( on a log;, scale ) vs. packing fraction 7.

Figure 4

The wave number ¢, (defined in text ) in units of o~

Table 1

1

vs. the packing fraction 7.

The Length scale L, in units of o for different values of the packing fraction 7.

Ui

L,

0.49
0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61

257.30
415.28
074.86
874.97
1120.20
1267.80
1411.95
1590.67
1841.50
2203.85
2918.34
4390.77
7486.22

10



References

[1] G.F. Mazenko, T.Y.C. Wei and S. Yip, Phys. Rev. A 6 1981 (1972).

[2] J. W. Dufty, M. J. Lindenfield and G.E. Garland, Phys. Rev. A 24 3212 (1981).
13] T. R. Kirkpatrick, Phys. Rev. Lett. 53, 1735(1984).

[4] E. Leutheusser, J. Phys. C 15, 2801 (1982).

[5] J. P. Hansen and J. R. Mcdonald, .I ” Theory of Simple Liquids” (Academic, London,

1976).
6] U. Bengtzelius, W. Go6tze and Sjolander, J. Phys. C. 17, 5915 (1984).
[7] S. P. Das and G. F. Mazenko, Phys. Rev. A. 34, 2265 (1986).
(8] W. Gotze and L. Sjogren, Z. Phys. B 65, 415 (1987).
9] R. Schmitz, J. W. Dufty and P. De, Phys. Rev. Lett. 71, 2069 (1993).

[10] C. Z. Liu and I. Oppenheim, Physica A, 235 369 (1997); M. Manno and I. Oppen-

heim Physical A 265 520-534 (1999).
[11] R. Ahluwalia and S. P. Das, Physical Review E, 57 5771 (1998).

[12] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Func-

tions, (Benjamin, Reading, Mass., 1975).
[13] W. E. Alley, B. J. Alder and S. Yip, Phys. Rev. A 27, 3174 (1983).
[14] J. P. Boon and S. Yip, Molecular Hydrodynamics, (McGraw Hill, New York 1979)

[15] Transp. Theory Stat. Phys. 24 Nos. 6-8 (1995) special issue edited by S. Yip and

Paul Melman.

11



[16] S. P. Das, Phys. Rev. A. 42, 6116 (1990)

[17] J. K. Percus and G. J. Yevick, Phys Rev, 1 1103 1958

[18] L. Verlet and J. J. Weiss, Phys. Rev. A, 5, 939 (1972).

[19] S. P. Das, J. of Chem. Phys. 98 3328 (1993).

[20] J. F. Lutsko, J. W. Dufty and S. P. Das, Phys. Rev. A, 39 1311 (1989).

[21] R. D. Mountain, Journal of Research of the National Bureau of Standards - A.

Physics and Chemistry T0A, 207 (1966).
[22] G. D. Patterson and A. Munoz-Rojas, Ann. Rev. Phys. Chem. 38 191 (1987).
[23] M. Grimsditch, R. Bhadra and L. M. Torell, Phys. Rev. Lett. 62 2616 (1989).
[24] R. D. Mountain, J. Chem. Phys. 102 5408 (1995).
[25] T. Keys and D. Kivelson, J. of Chem. Phys, 54 1786 (1972).

[26] S. M. Rytov, Soviet Phys. JETP 31 1163 ( 1970).

12



