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Abstract

A metastable state, characterized by a low degree of mass localization is identified using

Density Functional Theory. This free energy minimum, located through the proper evalu-

ation of the competing terms in the free energy functional, is independent of the specific

form of the DFT used. Computer simulation results on particle motion indicate that this

heterogeneous state corresponds to the supercooled state.

PACS number(s) : 64.70Pf, 64.60 Cn, 64.70 Dv

http://arXiv.org/abs/cond-mat/0008436v1


The properties of supercooled liquids are of much current interest and are being studied

from different approaches related to their thermodynamic as well as dynamic aspects [1]-[6].

A normal liquid is characterized by a homogenous density and when it is supercooled below

the freezing transition it continues to stay in the amorphous phase. With the increase in

density a solid like phase is formed with the particles being localized around their mean

positions on a random structure. The underlying lattice on which such localized motion

takes place is related to the time scales of relaxation in the supercooled liquid. While the

supercooled liquid starts to attain solid like properties, structurally it does not have any

long range order like the one present in a crystal. The Heterogeneity in glassy systems over

length and time scales has been studied in several recent works, [7], related to computer

simulations. Here we consider the heterogeneous density profile in the liquid and investigate

the question of having metastable states in between the homogeneous liquid state and the

regular crystalline state. The stability of such a structure has been studied in this work from

a thermodynamic point of view, using the standard methods of Density Functional Theory

(DFT). It provides the means to test if a given structure i.e. a configuration of atoms is

the “most” stable at a specified temperature and density. This method has generally been

used [8]-[12] for the study of a liquid freezing into an ordered crystalline state through a first

order transition.

In practical calculations of the DFT an explicit functional form for the inhomogeneous

density function against which the Free energy functional is tested, is needed. One very

successful prescription of density distribution is as a superposition of density profiles centered

on a Lattice,

ρ(~r) =
∑

i

(
α

π
)

3

2 e−α|~r− ~Ri|
2

. (1)

where the {~Ri} denotes the underlying lattice. Here α is the variational parameter that

characterizes the width of the peak, which represents the degree of localization of mass in

the system. Thus the homogeneous liquid state is characterized by Gaussian profiles of very
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large width such that each provides the same contribution in the sum at all spatial positions.

Singh et.al. [13] have shown that the distribution of ~Ri over a random lattice determined

from the Bernal packing [14] allows a metastable minimum for the free energy functional

for packing fraction η beyond .59. This is obtained for very large α, that corresponds to

an inhomogeneous and highly localized density distribution that has been termed as the

“hard sphere glass”. This metastable state however is not compatible with the experimental

findings [5, 6] which find the metastable supercooled state with a much lower degree of

localization.

We have studied this through the various [8, 11] formulations of the DFT for the density

profiles centered around a random lattice that corresponds to a heterogeneous density distri-

bution. Here we consider the density profiles that are less localized than the so-called hard

sphere glass by evaluating the Free energy of the system for α values that are considerably

smaller than what was previously studied. We also consider the effects of fluctuations in the

width around a mean value. The key result of this study is the observation of a free energy

minimum where the density function corresponds to the small α region. This minimum is

seen apart from the usual high α minimum, as reported in the earlier works, [13, 15, 16] and

this state can be reached in a continuous path from both the liquid and the high α state on

the free energy landscape.

The expression for the total free energy contains two parts - the ideal gas term and the

interaction term, F [ρ] = Fid[ρ] + Fex[ρ]. The ideal gas term of the free energy functional (in

units of β−1) is given by,

Fid[ρ] =
∫

d~rρ(~r)(ln[∧3ρ(~r)] − 1) (2)

∧ being the thermal wavelength. In the earlier works, [13, 15, 16], where highly localized

structures have been investigated, generally α was chosen to be large ( greater than ≈ 50)
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and eqn.(2) was approximated by its asymptotic value for large α,

Fid[ρ] ≈ N [−
5

2
+ ln(∧3(

α

π
)

3

2 ] (3)

However, in the low α range where overlapping Gaussians from different sites contribute, we

evaluate this term exactly from the computation of the integral given in (2) as,

fid[ρ] =
∫

d~rφ(~r)
[

ln

(

∧3

∫

d~Rφ(~r − ~R)
(

δ(~R) + ρog(~R)
)

)

− 1
]

(4)

where g(~R) is the site-site correlation function which provides the structural description of

the random structure used. We have used the Bernal’s random structure [14] generated

through the Bennett’s algorithm [17]. We approximate the g(~R) as,

g(~R) = gB[R(
η

ηo

)
1

3 ] (5)

where η denotes the average packing fraction and ηo is used as a scaling parameter for the

structure, [15, 16] such that at η = ηo Bernal’s structure is obtained. The ideal free energy

value evaluated using this exact treatment, eqn.(4), is shown in Figure 1 for ρo = 1.0. This

agrees on extrapolation to the limit of α → 0 (i.e. ρ(~r) → ρo) result i.e. − 1. The exact

evaluation starts approaching the asymptotic ( large α) result (dashed line), for α > 20

within 5% as shown in the figure. The interaction part is evaluated using the standard

formalism used by Singh et. al. [13] with the expression for the Ramakrishnan-Yussouff

(RY) functional,

∆F ex = −
1

2

∫

d~r1

∫

d~r2c(|~r1 − ~r2|; ρo) δρ(~r1) δρ(~r2) (6)

that gives the difference in the free energies of the solid and liquid phase of average density

ρo. Here δρ(~r) is the density fluctuation from the average value ρo. We use the solution of the

Percus Yevick equation with Verlet Weiss correction for the direct correlation function, c(r)

[18, 19]. The low α minimum becomes a metastable state between the homogeneous liquid

state (α → 0) and the crystal state beyond η = 0.576 (ρo = 1.10). In order to clarify this
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point we have shown in Figure 2, the minimum value for the difference of the free energy per

particle ( for the corresponding α value) against the density. The Free energy corresponding

to the “hard sphere glass” state become metastable w.r.t homogeneous liquid state at average

density ρo = 1.14 [13]. Moreover, the new minimum found in the strongly overlapping region

(low α) can be reached continuously from both the liquid state minima and the hard sphere

glass state. We also like to stress here that the expansion (6) for the Free Energy of the liquid

used in the RY approach is a better approximation for the minima observed at low α than in

the case of the highly localized structure called the hard sphere glass. In figure 3, we show

the free energy evaluated with the density function obtained for alpha extending to small

values. The minimum appears at α ≈ 18 for ρo 1.12. The free energy minimum identified

in Ref. [13] also occurs but for very high value of α and corresponds to highly localized

structures referred to as the hard sphere glass. The Free energy corresponding to the low α

minima is less than that for the “hard sphere glass” state over the density range considered

here. However, if the back ground lattice is taken as a regular crystalline one then the free

energy does not show any minimum in the small α region unlike the case of an underlying

amorphous structure. This indicates an inhomogeneous structure of strongly overlapping

Gaussians centered around regular lattice sites is ruled out. Indeed such uniform structures

are never seen in simulations. This minimum is only seen for the amorphous structure which

signifies a heterogeneous density distribution. This can be given a more quantitative form

in the following way : The α corresponding to the minimum free energy value is inversely

proportional to the root mean square displacement of the particles from their sites, which

also defines the Lindemann [20] ratio. The two minima with the random structure for low

and high value of α, respectively found in the present work and in Ref. [13, 15, 16] correspond

to very different degrees of localization of the particles. The simulation results, [5, 6], show

that the Lindemann ratio of supercooled liquid is approximately three times that of crystal

at freezing(Figure 2 of [5]). We have observed a similar relation for the metastable state
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corresponding to the small α minimum. This is shown in the Figure 4 where we plot the

respective root mean square displacement (d ∼ 1√
α
) for both the supercooled and the crystal

case. This fact strengthens the case for identifying it with the supercooled state seen in

computer simulations as compared to the highly localized hard sphere glass which shows a

level of localization close to that of the corresponding crystal. The Barrier height between

the liquid and the supercooled phase grows with the increase in the average density, as

shown by points in the Figure 5. It follows a power law increase with the height diverging

at packing fraction ≈ 0.62 and exponent 1.57 as shown by the solid line in the Figure 5.

In all these calculations we have used ηo = .64. The pressure ( P ) and Bulk modulus (

E ) of the corresponding structure are computed using the first and second derivatives of

the total free energy per unit volume ([16]). We show in figure 6, results computed using

the present model, for a random structure corresponding to ηo = .68 in (5). The total free

energy is calculated using the Modified Weighted Density Approx (MWDA) treatment [11]

with a semi-empirical form of c(r) [21].

We have also considered the fluctuation of the Gaussian Density profile’s width parameter

α over different sites in the random lattice to incorporate higher degree of heterogeneity.

This is modeled by attaching an independent probability distribution function, P (αi), to

each lattice site, that governs α value. We chose P to be Gaussian peaked at ᾱ and spread (

half width ) ᾱr, to compute the free energy averaged over the α fluctuations as a function of

the parameters ᾱ and r. These fluctuations in α bring about an overall increase in the free

energy of the system i.e. the system stability decreases on account of increased heterogeneity

at the individual unit of mass concentration. This is also self consistent with the choice of

using the direct correlation function of a hard sphere system with single size.

The motivation of this study has been to evaluate the stability of heterogeneous density

distributions from a purely thermodynamic viewpoint. The existence of the free energy

minimum corresponding to a density distribution of overlapping Gaussians centered around
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an amorphous lattice depicts the supercooled state with a heterogeneous density profile.

This state can be reached continuously from the homogeneous liquid state or the so-called

hard sphere glass minimum. As the density increases the energy barrier to come out of

this minimum grows. The identification of this inhomogeneous state is indeed linked to

the proper evaluation of the ideal gas part of the free energy. In earlier works this was

generally approximated by the asymptotic formula given in equation (3) which works well

for large values of α representing highly localized structures. In the present work with the

proper evaluation of the ideal gas term for the heterogeneous density, role of configurational

packings on the Free energy is taken into account. From our comparison with the Lindemann

parameter values (Fig. 4) it follows that this heterogeneous state with less degree of mass

localization does agree with the computer simulation results better, as compared to the so

called Hard Sphere Glass observed by Singh et. al. [13]. This new minimum does not occur

for the structure centered on an ordered lattice like the f.c.c., strengthens the case for the

heterogeneous glassy phase.

The qualitative nature of the state is different from the hard sphere glass state that was

identified in the earlier works. We have used here the Bernel packing to define the underlying

lattice but these studies can be extended to different types of random structure, even taking

results from Computer simulation studies. We also like to mention that this new minimum

shows up for different forms of the Density functional Theory and with different direct

correlation functions. This minima is observed with both the treatments of RY functional and

the MWDA [11] even with the PY c(r) without any tail. Indeed improvement of these results

can be obtained with a better input for the structure functions using improved techniques

[22]. Including higher order correlations namely the three point functions, in the expression

(6) is also expected to account for increased cooperativity at high density.
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Figure Captions

Fig 1 : Ideal gas part of the free energy per particle ( in units of β−1) vs. α ( in units of σ−2

) for density ρo
∗ = 1.0. The solid line is obtained from the exact evaluation, i.e. eqn. (4)

and the dashed line is the result from the approximation.

Fig 2 : Free Energy difference per particle (∆f) ( in units of β−1 ) vs. density in the low α

regime.

Fig 3 : Difference in Free Energy per particle (∆f) ( in units of β−1 ) vs. α ( in units of

σ−2) in the low α regime (ρo
∗ = 1.12). The inset demonstrates the continuity of the curve

near the maximum.

Fig 4 : Average displacement d ( in units of σ ) vs. ρo. The dashed curve depicts the

supercooled phase and the solid line is for the fcc crystal.

Fig 5: Barrier height h (in units of β−1) between the liquid and the supercooled phase vs.

the average packing fraction η. The solid line is a power law fit to this data.

Fig 6: The Bulk Modulus E(in units of (βσ3)−1) vs. density for the amorphous structure.

In the inset, pressure P (in units of (βσ3)−1) vs. density is shown.
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