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PEKIODIC SIMPLE CONTINUED FKACTIONS

S. CHOWLA and S. S. PILLAI*.

1. Let N(R) denote the number of elements in the periodic part of
the simple continued fraction for *JR. Vijayaraghavanf has proved that

(1) N(R) = O(R* log R)

for all positive integers JR, and that

<2) N(R) > R*-'

for infinitely many values of the positive integer R, where 8 is an
arbitrarily small positive number.

In this paper we prove the following results.

THEOREM 1. If R is not a perfect square and if no zero of the
function

2 (R\n)n— (s = <r+it, a- > 0)
(n, 2R)=1

lies On the right of <r = £, then

(8) N(R) = OWR log log JR).

Here (R \ n) is the generalized Legendre (not Kronecker) symbol.

THEOREM 2A. There are positive constants d and C2 such that

(4) Cx *JR < N{R)

is true for infinitely many positive integers R.

This theorem is an improvement of (2).

THEOREM 3.

(5) 2 N(x) =
R

In words, N(R) is, on the average, of order y/R.

2. The hypothesis that, for a particular k and x, L(s, x) has no zeros
in o-> £ we call X(k, x)- Little wood I has proved that

if x is a real non-principal character to modulus k and the hypothesis

* Received 8 December, 1930; read 11 December, 1930.
t Proc. London Math. Soc. (2), 26 (1927), 403-414.
X Proc. London Math. Soc. (2), 27 (1928), 367, Theorem 1.
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X(k, x) w true, then

(6) L(l) = O(loglog&).

Since we know that*

(7) h(D)log(T+U*/D) = 2<s/D 2 0\n)n
(n, 2C)=1

andt

- 1

(8) .

Theorem 1 is an immediate corollary.

3̂  Before proving the harder Theorem 2A, it is worth while to notice
that we have

THEOREM 2B. There are positive constants G\ and d such that

(9)

is true for infinitely many R.

This is an immediate corollary of the well known result (7). For
put R = 52n+1 in (7). Observing that!

(10) &(52n+1) = 1,

we obtain (9) from (8), (10), and the simple result that

(11)

where b is positive and independent of D.

4. We require the following lemmas for the proof of Theorem 2A.

LEMMA 1. / / §

(i) 1< m < VR,

(ii) (m, 2B) = 1,

(iii) m\(x*—R) for some x,

(iv) h(R) = 1,

• Mathews, Theory of numbers, 238.
t Vijayaraghavan, he. dt.
% See § 5 of this paper.
§ (x, y) denotes the greatest common divisor of x and y. a\b means that a is a divisor

oib.
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then m occurs exactly ft**.™) times as a partial quotient in the first period
of the simple continued fraction for ^/R. Here zj(m) denotes the
number of distinct prime factors of m.

Proof. There is a well known theorem of Lagrange that if

1 < m < \/B, m' = if—Rv*, (u, v) = 1,

then m occurs as a partial quotient in the simple continued fraction for
\/R. Now from (ii), (iii), and (iv) it follows that

m = y?—Bv2, (u, v) = 1.

Hence, by Lagrange's theorem, u/v is a convergent to the simple
continued fraction for ̂ /R. Now, from the theory of binary quadratic
forms, there are exactly 2ar(w) solutions of

(v) x^—By2 = m,

(vi) (x, y) = l,

(vii) 1 < x+y«/B < t+u*/B,

where x > 0, y > 0, and t and u are the least positive integral values of x, y
in the Pellian equation x2—Ry2 = 1. Since h(R) = 1, x2—i?t/2 = —1 is
solvable, and hence t/u is a convergent just before the end of the second
period. Hence there are exactly 2w(w) even convergents within the first
two periods which give solutions of x2—Rij2 = m; from this and a known
pioperty of continued fractions it follows that there are exactly 2w(m) odd
convergents within the first two periods which furnish solutions of
x^—Ry2 = —m. It follows that m occurs as a partial quotient exactly
2w(w) times in the first period.

5. LEMMA 2. h(5) = h(5*) = ... = 7i(52u+1) = 1,

where n is any positive integer.

Proof. It is known that* /i(5) = 1.

This means that, if all the prime factors of m are of the forms
20Jc+l, 9, 11, 19, then m is of the form x2—5y2. The lemma will be
proved if we can show that when a number m, prime to 10, is of the
form

then it is also expressible in the form

• Mathews, loc. cit., 248.
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Let m = aa-52w+1/3a, 1 = ya-52tt+1<Sa. (i, ii)

It follows, on multiplication, that

m = (ay+52n+1 /38f-52n+1(aS+pyf. (iii)

If ft = 0 (mod 5), then m is of the form z2—52"+3t/3> and we have proved
what we wanted. Hence we may suppose that ft^O (mod 5). Now
a and ft are given while y is either = 1 (mod 5) or = — 1 (mod 5). It
is easy to prove that we can find 8 in (ii) so as to be of any
of the forms 5fc'+l, 5/c+2, 5k+3, 5fc-f-.4 that we choose. Hence, since
/3^£0 (mod 5), in (iii), we can make a$-f-/?y = O (mod 5). Hence m
is of the form re3—52n+sy2 in all cases. The lemma now follows by
induction.

6. LEMMA 3. / / R = 52n+l, then

ly {It) ^ ^ £i J\?n),
l

where f(m) = 1 if all the prime factors of m are of the forms
20/c+l, 9, 11, 19, and /(m) = 0 otherwise.

This follows at once from the preceding lemmas.

LEMMA 4. If s>l, then

where t>(s) is Riemann's zeta function and

L(s) = l-8-8-8-7-+9-8+ll"8-13-

This is proved by expressing the right-hand side as an infinite
product.

LEMMA 5. 2 2~<m>/(m) = ^ ^ x + O(x*\ogx).

Proof. Let, for

Then we know that*

(12) 2 an =

Lemma 5 follows easily from (12) and Lemma 4.

• Landau,Handbuch, 472-4.
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7. Since L(l) is positive, Lemmas 3 and 5 give

(18)

where c is an absolute positive constant. Theorem 2A follows from (13)
and the second inequality in (9).

8. We now prove Theorem 3. Since*

(14) ff(B)< 2 g(R-y\R,y),
VR

where g(R—y*, R, y) is the number of divisors of R—y* between y/R—
and A/JR+2/, it follows that

(15) 2 N(R) < 2 S g(R-y\ R, y)
R R VR

= 2 2 g{R-y\R,y)

y+Vx

m=l

where 6(m) is the number of solutions of values of R such that

(16) R—y* = 0 (mod m)

and

(17) VB-y <™<

From the latter condition

Hence R takes 4mt/—1 consecutive values, of which only +
[(4mi/—l)/m] = 4t/—1 satisfy (16). Hence 0(m) = 4y—1, and it follows
from (15) that

(18) 2 JNT(E)< 2 (4y -

This is Theorem 3.

• Vijayaraghavan, loc. tit., 407.
t [%] denotes the greatest integer contained in x.


