

PERIODIC SIMPLE CONTINUED FRACTIONS

S. CHOWLA and S. S. PILLAI*.

1. Let $N(R)$ denote the number of elements in the periodic part of the simple continued fraction for \sqrt{R} . Vijayaraghavan† has proved that

$$(1) \quad N(R) = O(R^{\frac{1}{2}} \log R)$$

for all positive integers R , and that

$$(2) \quad N(R) > R^{\frac{1}{2}-\delta}$$

for infinitely many values of the positive integer R , where δ is an arbitrarily small positive number.

In this paper we prove the following results.

THEOREM 1. *If R is not a perfect square and if no zero of the function*

$$\sum_{(n, 2R)=1} (R|n) n^{-s} \quad (s = \sigma + it, \sigma > 0)$$

lies on the right of $\sigma = \frac{1}{2}$, then

$$(3) \quad N(R) = O(\sqrt{R} \log \log R).$$

Here $(R|n)$ is the generalized Legendre (not Kronecker) symbol.

THEOREM 2A. *There are positive constants C_1 and C_2 such that*

$$(4) \quad C_1 \sqrt{R} < N(R) < C_2 \sqrt{R}$$

is true for infinitely many positive integers R .

This theorem is an improvement of (2).

THEOREM 3.

$$(5) \quad \sum_{x \leq R} N(x) = O(R^{\frac{3}{2}}).$$

In words, $N(R)$ is, on the average, of order \sqrt{R} .

2. The hypothesis that, for a particular k and χ , $L(s, \chi)$ has no zeros in $\sigma > \frac{1}{2}$ we call $X(k, \chi)$. Littlewood† has proved that

if χ is a real non-principal character to modulus k and the hypothesis

* Received 8 December, 1930; read 11 December, 1930.

† Proc. London Math. Soc. (2), 26 (1927), 403-414.

‡ Proc. London Math. Soc. (2), 27 (1928), 367, Theorem 1.

$X(k, \chi)$ is true, then

$$(6) \quad L(1) = O(\log \log k).$$

Since we know that*

$$(7) \quad h(D) \log(T + U\sqrt{D}) = 2\sqrt{D} \sum_{(n, 2D)=1} (D|n) n^{-1}$$

and †

$$(8) \quad N(D) = O\{\log(T + U\sqrt{D})\},$$

Theorem 1 is an immediate corollary.

3. Before proving the harder Theorem 2A, it is worth while to notice that we have

THEOREM 2B. *There are positive constants C_1 and C_2 such that*

$$(9) \quad \frac{C_1\sqrt{R}}{\log R} < N(R) < C_2\sqrt{R}$$

is true for infinitely many R .

This is an immediate corollary of the well known result (7). For put $R = 5^{2n+1}$ in (7). Observing that‡

$$(10) \quad h(5^{2n+1}) = 1,$$

we obtain (9) from (8), (10), and the simple result that

$$(11) \quad N(D) > b \frac{\log(T + U\sqrt{D})}{\log D},$$

where b is positive and independent of D .

4. We require the following lemmas for the proof of Theorem 2A.

LEMMA 1. *If §*

$$(i) \quad 1 < m < \sqrt{R},$$

$$(ii) \quad (m, 2R) = 1,$$

$$(iii) \quad m|(x^2 - R) \text{ for some } x,$$

$$(iv) \quad h(R) = 1,$$

* Mathews, *Theory of numbers*, 238.

† Vijayaraghavan, *loc. cit.*

‡ See § 5 of this paper.

§ (x, y) denotes the greatest common divisor of x and y . $a|b$ means that a is a divisor of b .

then m occurs exactly $2^{\omega(m)}$ times as a partial quotient in the first period of the simple continued fraction for \sqrt{R} . Here $\omega(m)$ denotes the number of distinct prime factors of m .

Proof. There is a well known theorem of Lagrange that if

$$1 < m < \sqrt{R}, \quad m = u^2 - Rv^2, \quad (u, v) = 1,$$

then m occurs as a partial quotient in the simple continued fraction for \sqrt{R} . Now from (ii), (iii), and (iv) it follows that

$$m = u^2 - Rv^2, \quad (u, v) = 1.$$

Hence, by Lagrange's theorem, u/v is a convergent to the simple continued fraction for \sqrt{R} . Now, from the theory of binary quadratic forms, there are exactly $2^{\omega(m)}$ solutions of

$$(v) \quad x^2 - Ry^2 = m,$$

$$(vi) \quad (x, y) = 1,$$

$$(vii) \quad 1 < x + y\sqrt{R} < t + u\sqrt{R},$$

where $x > 0$, $y > 0$, and t and u are the least positive integral values of x, y in the Pellian equation $x^2 - Ry^2 = 1$. Since $h(R) = 1$, $x^2 - Ry^2 = -1$ is solvable, and hence t/u is a convergent just before the end of the second period. Hence there are exactly $2^{\omega(m)}$ even convergents within the first two periods which give solutions of $x^2 - Ry^2 = m$; from this and a known property of continued fractions it follows that there are exactly $2^{\omega(m)}$ odd convergents within the first two periods which furnish solutions of $x^2 - Ry^2 = -m$. It follows that m occurs as a partial quotient exactly $2^{\omega(m)}$ times in the first period.

5. LEMMA 2. $h(5) = h(5^3) = \dots = h(5^{2n+1}) = 1$,

where n is any positive integer.

Proof. It is known that* $h(5) = 1$.

This means that, if all the prime factors of m are of the forms $20k+1$, 9 , 11 , 19 , then m is of the form $x^2 - 5y^2$. The lemma will be proved if we can show that when a number m , prime to 10, is of the form

$$x^2 - 5^{2n+1}y^2,$$

then it is also expressible in the form

$$x^2 - 5^{2n+3}y^2.$$

* Mathews, *loc. cit.*, 248.

$$\text{Let } m = a^2 - 5^{2n+1} \beta^2, \quad 1 = \gamma^2 - 5^{2n+1} \delta^2. \quad (\text{i, ii})$$

It follows, on multiplication, that

$$m = (a\gamma + 5^{2n+1} \beta\delta)^2 - 5^{2n+1}(a\delta + \beta\gamma)^2. \quad (\text{iii})$$

If $\beta \equiv 0 \pmod{5}$, then m is of the form $x^2 - 5^{2n+3}y^2$, and we have proved what we wanted. Hence we may suppose that $\beta \not\equiv 0 \pmod{5}$. Now a and β are given while γ is either $\equiv 1 \pmod{5}$ or $\equiv -1 \pmod{5}$. It is easy to prove that we can find δ in (ii) so as to be of any of the forms $5k+1, 5k+2, 5k+3, 5k+4$ that we choose. Hence, since $\beta \not\equiv 0 \pmod{5}$, in (iii), we can make $a\delta + \beta\gamma \equiv 0 \pmod{5}$. Hence m is of the form $x^2 - 5^{2n+3}y^2$ in all cases. The lemma now follows by induction.

6. LEMMA 3. *If $R = 5^{2n+1}$, then*

$$N(R) \geq \sum_1^{\sqrt{R}} 2^{\omega(m)} f(m),$$

where $f(m) = 1$ if all the prime factors of m are of the forms $20k+1, 9, 11, 19$, and $f(m) = 0$ otherwise.

This follows at once from the preceding lemmas.

LEMMA 4. *If $s > 1$, then*

$$\sum_{m=1}^{\infty} \frac{2^{\omega(m)} f(m)}{m^s} = \frac{\zeta(s) L(s)}{(1+2^{-s})(1+5^{-s}) \zeta(2s)},$$

where $\zeta(s)$ is Riemann's zeta function and

$$L(s) = 1^{-s} - 3^{-s} - 7^{-s} + 9^{-s} + 11^{-s} - 13^{-s} - 17^{-s} + 19^{-s} + \dots$$

This is proved by expressing the right-hand side as an infinite product.

LEMMA 5. $\sum_{m \leq x} 2^{\omega(m)} f(m) = \frac{10L(1)}{8\pi^2} x + O(x^{\frac{1}{2}} \log x).$

Proof. Let, for $s > 1$,

$$\zeta(s) L(s) = \sum_1^{\infty} a_n n^{-s}.$$

Then we know that*

$$(12) \quad \sum_{n \leq x} a_n = L(1)x + O(x^{\frac{1}{2}}).$$

Lemma 5 follows easily from (12) and Lemma 4.

* Landau, *Handbuch*, 472-4.

7. Since $L(1)$ is positive, Lemmas 3 and 5 give

$$(13) \quad N(R) > c\sqrt{R} \quad (R = 5^{2n+1}),$$

where c is an absolute positive constant. Theorem 2A follows from (13) and the second inequality in (9).

8. We now prove Theorem 3. Since*

$$(14) \quad N(R) \leq \sum_{y \leq \sqrt{R}} g(R - y^2, R, y),$$

where $g(R - y^2, R, y)$ is the number of divisors of $R - y^2$ between $\sqrt{R} - y$ and $\sqrt{R} + y$, it follows that

$$\begin{aligned} (15) \quad \sum_{R \leq x} N(R) &\leq \sum_{R \leq x} \sum_{y \leq \sqrt{R}} g(R - y^2, R, y) \\ &= \sum_{y \leq \sqrt{x}} \sum_{R=y^2+1}^x g(R - y^2, R, y) \\ &= \sum_{y \leq \sqrt{x}} \sum_{m=1}^{y+\sqrt{x}} \theta(m), \end{aligned}$$

where $\theta(m)$ is the number of solutions of values of R such that

$$(16) \quad R - y^2 \equiv 0 \pmod{m}$$

and

$$(17) \quad \sqrt{R} - y < m < \sqrt{R} + y.$$

From the latter condition

$$m^2 + y^2 - 2my < R < m^2 + y^2 + 2my.$$

Hence R takes $4my - 1$ consecutive values, of which only[†] $\lfloor (4my - 1)/m \rfloor = 4y - 1$ satisfy (16). Hence $\theta(m) = 4y - 1$, and it follows from (15) that

$$\begin{aligned} (18) \quad \sum_{R \leq x} N(R) &\leq \sum_{y \leq \sqrt{x}} (4y - 1)(y + \sqrt{x}) \\ &= \frac{4}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + O(x) = \frac{10}{3}x^{\frac{3}{2}} + O(x) = O(n^{\frac{3}{2}}). \end{aligned}$$

This is Theorem 3.

* Vijayaraghavan, *loc. cit.*, 407.

† $[x]$ denotes the greatest integer contained in x .