
162 RECORDS OF PROCEEDINGS AT MEETINGS.

The following papers were taken as read:—

A theorem in arithmetic : S. Chowla.
A universal Waring theorem for eleventh powers: L. E. Dickson.
The asymptotic paths of integral functions of finite orders: A. J.

Macintyre.
A note on Fourier transforms: G. W. Morgan.

A THEOREM ON IRRATIONAL INDEFINITE QUADRATIC FORMS

S. CHOWLA*.

THEOREM^. / / the c's are not all of one sign and if all the ratios cjct (s ^ t)
are irrational, we can find integers nv ...,nr (not all zero) such that

T

2 csn
8 = 1

where e is an arbitrary positive number and r ^ 9.

Proof. Of nine positive or negative numbers, at least five must have
the same sign. Hence we may suppose. cx, ..., c5 positive. I t is well known
from the modern theory of lattice points thatj (since cjct is irrational for

(1)

Here nx, n2, ... are integers, positive, negative, or zero, x is not necessarily
an integer, and A is independent of x. Hence

(2) S 1 > 0
X<C\ n^+^.+Csflj2 ^ X+e

for every positive e and all x > a^e). Since at least one 6f the numbers
c6, ..., cr is negative, we can find y > xo(e) such that

(3) Zc8n*=-y.
8=6

* Received 8 January, 1934; read 18 January, 1934.
f It has been conjectured that the theorem is true for r^6. See A. Oppenheim,

" The minima of indefinite quaternary quadratic forms ", Proc. Nat. Acad. Sc, 15 (1929),
No. 9, 724-727 (7).

\ V. Jarnik and A. Walfisz, " Uber Gitterpunkte in mehrdimensionalen Ellipsoiden ",
Math. Zeitechrift, 32 (1930), 152-160 (154). The force of my argument rests on the " little "
o in (1).
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Having fixed y, we can find from (2) integers nv..., ns (not all zero) such that

'(4)

Prom (3) and (4),

where the n's are not all zero; this proves the theorem.

A THEOREM IN ARITHMETIC

S. CHOWLA*.

HYPOTHESIS. Let dv .."., #5 be positive numbers and such that at least
one of the ratios dsj91 (s = 2, 3, 4, 5) is irrational. Let [y] denote the
greatest integer contained in y.

THEOREM. Every n ~^no(dv ..., 9&) satisfies

wh/tre c may be 0, 1, 2, 3, or 4, and the n's are integers.

Remarks. Two points about this theorem are:

(i) It is not a consequence of Schnirelmann's recent generaliza-
tion f of Waring's problem.

(ii) It is not capable, as proved here, of generalization to higher
powers.

Proof. I t follows from (1) of the preceding paper that the number of
solutions of

is asymptotically Bx§ for all x ^xo(6v ..., 05), where B > 0. Hence

is equal to one of x, x—1, x—2, x—3, x—4, where a; is a sufficiently large
integer. This proves the theorem.

* Received 27 January, 1934 ; read 15 March, 1934.
t "Uber additive Eigenschaften von Zahlen", Math. Annalen, 107 (1933), 649-691

(682, § 3).
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