

The following papers were taken as read:—

A theorem in arithmetic: S. Chowla.

A universal Waring theorem for eleventh powers: L. E. Dickson.

The asymptotic paths of integral functions of finite orders: A. J. Macintyre.

A note on Fourier transforms: G. W. Morgan.

A THEOREM ON IRRATIONAL INDEFINITE QUADRATIC FORMS

S. CHOWLA*.

THEOREM†. *If the c 's are not all of one sign and if all the ratios c_s/c_t ($s \neq t$) are irrational, we can find integers n_1, \dots, n_r (not all zero) such that*

$$\left| \sum_{s=1}^r c_s n_s^2 \right| < \epsilon,$$

where ϵ is an arbitrary positive number and $r \geq 9$.

Proof. Of nine positive or negative numbers, at least five must have the same sign. Hence we may suppose c_1, \dots, c_5 positive. It is well known from the modern theory of lattice points that‡ (since c_s/c_t is irrational for $s \neq t$)

$$(1) \quad \sum_{c_1 n_1^2 + \dots + c_5 n_5^2 \leq x} 1 = Ax^5 + o(x^5).$$

Here n_1, n_2, \dots are integers, positive, negative, or zero, x is not necessarily an integer, and A is independent of x . Hence

$$(2) \quad \sum_{x < c_1 n_1^2 + \dots + c_5 n_5^2 \leq x + \epsilon} 1 > 0$$

for every positive ϵ and all $x \geq x_0(\epsilon)$. Since at least one of the numbers c_6, \dots, c_r is negative, we can find $y \geq x_0(\epsilon)$ such that

$$(3) \quad \sum_{s=6}^r c_s n_s^2 = -y.$$

* Received 8 January, 1934; read 18 January, 1934.

† It has been conjectured that the theorem is true for $r \geq 5$. See A. Oppenheim, "The minima of indefinite quaternary quadratic forms", *Proc. Nat. Acad. Sc.*, 15 (1929), No. 9, 724–727 (7).

‡ V. Jarnik and A. Walfisz, "Über Gitterpunkte in mehrdimensionalen Ellipsoiden", *Math. Zeitschrift*, 32 (1930), 152–160 (154). The force of my argument rests on the "little" o in (1).

Having fixed y , we can find from (2) integers n_1, \dots, n_5 (not all zero) such that

$$(4) \quad y < c_1 n_1^2 + \dots + c_5 n_5^2 \leq y + \epsilon.$$

From (3) and (4),

$$\left| \sum_{s=1}^r c_s n_s^2 \right| \leq \epsilon,$$

where the n 's are not all zero; this proves the theorem.

A THEOREM IN ARITHMETIC

S. CHOWLA*.

HYPOTHESIS. Let $\theta_1, \dots, \theta_5$ be positive numbers and such that at least one of the ratios θ_s/θ_1 ($s = 2, 3, 4, 5$) is irrational. Let $[y]$ denote the greatest integer contained in y .

THEOREM. Every $n \geq n_0(\theta_1, \dots, \theta_5)$ satisfies

$$n = [\theta_1 n_1^2] + \dots + [\theta_5 n_5^2] + c,$$

where c may be 0, 1, 2, 3, or 4, and the n 's are integers.

Remarks. Two points about this theorem are:

- (i) It is not a consequence of Schnirelmann's recent generalization† of Waring's problem.
- (ii) It is not capable, as proved here, of generalization to higher powers.

Proof. It follows from (1) of the preceding paper that the number of solutions of

$$x < \theta_1 n_1^2 + \dots + \theta_5 n_5^2 \leq x + \frac{1}{2}$$

is asymptotically $Bx^{\frac{5}{2}}$ for all $x \geq x_0(\theta_1, \dots, \theta_5)$, where $B > 0$. Hence

$$[\theta_1 n_1^2] + \dots + [\theta_5 n_5^2]$$

is equal to one of $x, x-1, x-2, x-3, x-4$, where x is a sufficiently large integer. This proves the theorem.

* Received 27 January, 1934; read 15 March, 1934.

† "Über additive Eigenschaften von Zahlen", *Math. Annalen*, 107 (1933), 649-691 (682, § 3).