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AVERAGES OF CHARACTER SUMS
P. T. BATEMAN AND S. CHOWLA

Suppose that x is a primitive residue character! modulo %, £>1,
and that for y non-negative, S(y) = D _osi=y x(J). It is important [see,
for example, 11] in the analytic theory of numbers to have as much
information as possible about the sums S(y), in particular about
their maximum order of magnitude; it is known (cf. [13; 14; 8]), for
example, that S(y) <kY? log %k, but unknown whether or not M(x)
=o0(kY? log k) as k tends to infinity, where M(x) is the maximum

of | S()|, - - -, | S(k—1)|. Hua [4; 5; 6] has shown that it is often
helpful to consider the averages n~1) 7, S(m). In this paper we

consider some further developments of this idea.

1. Preliminaries. We recall [7, pp. 483-486, 492-494] that if
x is a primitive residue character mod kand if 7(x) = X _%m1 X(1)e2*in/%,
then |7(x)| =%'2 and

k
(1) 2 x(m)erwimnlk = x(m)7(x)

n=1

for any integer m, x being the complex conjugate of x.

Presented to the Society, April 30, 1949; received by the editors September 23,
1949.

1 For the basic facts about residue characters see [7, pp. 401-414, 478-494 ]. Num-
bers in brackets refer to the bibliography.
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The function S(kx) is of bounded variation and period unity, and
as such has an everywhere convergent Fourier series. It may be de-
duced from (1) (cf. [13, pp. 23-24] and [8, pp. 81-82]) that this

Fourier series is

2 A(x) — () > MC—Zrimx’

e m=0 m

where m runs over the positive and negative integers and
1 1 k—1
®) AG) = | S(kx)dx = — 3 S(m).
0 m=0

Thus if we define a function S*(y) as S(y) if y is not an integer and
as S(y) —x(¥)/2 if y is an integer, we have
(X) < X(n)
2
T n=1 n

Ay -2 5 X

Tl n=1 n

sin 2rnx if x(—1) =1

A(x) +
4)  S*(kx) =

cos2mnx if x(—1)=—1

for all non-negative x.

2. Another proof of Paley’s Q-result for S(z). If we put x=0 in
(4) we get a formula for the arithmetic mean 4 (x) of S(0), - - -,
S(k—1), namely

0 if x(—1)=1
© A= 0 i x-n =,
i
where L(s, X= 2 n=1 X(n)n~* for R(s) >0. The second half of formula
(5) can of course be proved by the method used in [9] to prove the
second part of Satz 217 (of which the second half of (5) is a general-

ization), but some use of Fourier series is essential.?

The second part of (5) enables us, when x(—1)= —1, to use in-
formation about the order of magnitude of L(1, x) to get informa-
tion about the order of magnitude of A4(x). For example, a slight
change in the argument of [2] shows that for real primitive x with
x(—1)=—1 we have

. L(1, x)
(6) lim syp———— = ¢7»
1= loglog &

2 Naturally (5) can be proved in a roundabout way by showing that both sides are
equal to L(0, x). The argument indicated here essentially stems from Minkowski
(cf. [13, p. 26]).
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v being Euler’s constant. (The lim sup is unambiguous, since for
each k there is at most one real primitive x with x(—1)= —1.) Now
7(x) =1kY? for real primitive x with x(—1)=—1 [9, Satz 215] and
thus (6) gives the following result.

THEOREM 1. If x runms through all real primitive characters with
x(—1)=—1 in order of increasing size of the modulus k of x and if
A(x) is as defined in (3), then

. A(x) &
lim sup ——— = — -
oo kY%loglog kb =«

This theorem is a slightly stronger form of Paley’s result (see [12;
10; 1]) that if x is a primitive character modulo k, then M(x)
= Q(k'Y? log log k), where M(x) is the maximum of |S(0)|, e,
| S(k—1)|; for our theorem shows that this Q-result is true even for
the arithmetic mean of S(0), - - -, S(k—1).

We remark in passing that Parseval’s formula applied to (2) or (4)
gives

1 k—1 1
— X |stm —A(x)|’=j; | S(kz) — A(x) |4z

m=0
k21 k 1
LA S —H(l ___),
21!'2 n=1 n’ 12 plk Pz
where the ’ indicates summation over the positive integers relatively
prime to k. Alternatively we have, in view of (5),
E 21 i
— 2~ if x(—1)=1

S sl = {7 "
k= ELet _
(G Hlzanl) i x-n=-1
n=1

3. Estimation of certain partial averages of S(n). We saw above
that if x is a primitive character with x(—1)=1, then the arith-
metic mean of the numbers S(0), - - -, S(2—1) is zero. Hence in this
case we should expect a fairly good estimate of the arithmetic mean
of S(0), - - -, S(n—1) for n<k. And in fact Hua [4; 5; 6] has proved
that we have

1 n—1 1 n
— 2 S(m)| = ?(km——) for 0<n <=k x(—1) =1

7 m—o k2

()

If x is a primitive character with x(—1)= —1, such a neat result
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cannot be expected, since the arithmetic mean of S(0), - - -, S(k—1)
is not zero. However we prove the following result, which is valuable
for n not too small relative to &, especially if IL(I, x)] is large.

THEOREM 2. If x is a primitive character modulo k with x(—1)=—1
and if ak <n =k, where o is a number between 0 and 1, then

1 2! 1
ZS(m) - ﬁL(l, x)‘ < (2.1 + % log —) Rz,
o
ProoF. Put ¢=[k/2], p=e?*¥/*. Then by (1) we have
r@Sm) = 2 xNrX) = 25 2 x(A)p*
1=0 1=0 h=—qg
q m
= 2 %) 22 (b4 — oY)
h=1 =0
e Bmtl) — ] — ph - phm
= > x(h) 7
h=1 pt—1
a AmtD) | phm
= >am? 4
h=1 - 1
g h
+ i3 %(k) cot — -
h=1 k
Hence
(7) n—1 1 @ ph(a-l-l) —_— p—h(n—l)
Y Sm) = — 2 x(h) ——
N m=0 N he=1 (P - 1)2

1 & sin (2whn/k)
" 2in Z_—E X = i

+ i %00 cot 2.
A1 k
Now 7(x)7(X) = —7(x)7(x) = —k for x(—1)=—1 and thus
"] st - 1, o}

T(x) =

Z S(m) — —L(l. X)
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sm (2xhn/k)

® sin2 (wh/k)

]
“I
—

]
— 2 x(
7 h=l

1

Th
+ z’E x(k) | cot - = _h/k)

ik & )
-— 2 —(‘—)—R1+R2+Rz,
™ h=g+1 h
say. If we put Si(h) = D *_.41 X(n) and use the fact that | Sy(k)| <2k,
we have

E & Si(k) 2712 =® 1
|Ri| =|— ¥ — < P,
o) T a5 h(h+ 1) T aieia k(B + 1)
2-1p2 k
=—— <
w(g+1) =
Using the fact that 0 <x~!—cot x<2/7 for 0<x<w/2, we find
2 1
(10) |R:| = —g= —Fk
™ ™

We divide the summation in R; into two parts, namely 1=#h
<[a'+1] and [a~!'+2] Sk =<gq. In the first part we use sin (2whn/k)
<27hn/k, in the second part we use sin (2rhn/k) <1, and in both
parts we use sin (wh/k)=2k/k. Thus
1 241 2xhn/k 1 g 1
| R1| é - -
2n b1 ‘]:hz/k2 2n h=[a—1+2] 4h2/k2
lei41] | p2 w 1
EOY —+—

.
4 w1 B 81 hefait2) n
T
4

k(s o 1)_|_k2
2 % 8n "

n

(11)

Combining (8), (9), (10), and (11), we get our theorem.

4. A theorem of Davenport. Davenport [3] has proved that if s is
a fixed complex number with 0 <¢=R(s) <1, then for any primitive
x we have IL(s, x)| =< Ck@-9/2 where C is a constant depending on s.
In this section we show how Hua's inequality (7) gives a very simple
proof of this result in the case x(—1) =1, with a specific value of the
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constant. Unfortunately our Theorem 2 is too weak to give Daven-
port’s result for the case x(—1)=—1.

TrEOREM 3. If X is a primitive character with x(—1)=1 and if
0<o=R(s)<1, then
Is(s + 1)
- 0)

ProOF. Put T'(n) = X _n_o S(m). Then we get by two partial sum-
mations

a0z,

[Lis, %) | =

L

1 d
L(s, x) = E "(”) = st [ T

- R L
= é T(n)s(s + l)j; j; "t 5t

For n < [kY?] clearly | T(n)| < Xm0 m <n?, while for n= [kV241] we
have by (7)

| T(n) | < 27612 {n + 1 — (n + 1)%/k} < 271k 2,

Thus
2 | T |
|L(s, )| = |s(s + 1) ] E e
12 % 2—-1p1/2
-lss+ 01 f
I s(s ) , ; ”Blkm]_,_l n'+‘
kl/’] w©
<[sG+ 1) { —x + 21 f —di}
(k2] xot1

k(l—v)l2 — l 2—1kl/2
<|sts+ 1)|{ —+ a[k”’]"}

k(l—«)/z k(1—a) /2 1
R e e

which proves our theorem.
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