THE LAST ENTRY IN GAUSS'S DIARY

BY S. CHOWLA

The Institute for Advanced Study

Communicated by H. Weyl, March 24, 1949

Herglotz, in his paper "Zur letzten Eintragung im Gaußschen Tagebuch" [Leipsig. Ber., 73, 271–276 (1921)] proves by means of the complex multiplication of elliptic functions, the following conjecture of Gauss (entered in his Tagebuch on July 9, 1814):

For a complex primary prime modulus \(\pi \equiv 1 \mod (1 - i)^2 \) the number of solutions of the congruence (including the solutions \(x, y \equiv \pm i, \infty \); \(\infty, \pm i \)):

\[
x^2y^2 + x^2 + y^2 \equiv 1 \pmod{\pi}
\]

is equal to the norm of \(\pi - 1 \). Dedekind verified this for \(N(\pi) < 100 \). We give a proof (Theorem 1 below) based on elementary number theory.

Notation: \(p \) denotes a prime \(\equiv 1 \pmod{4} \); \(g \) is a primitive root of \(p \);
(\(n/p\)) is the Legendre symbol of quadratic residuacity; \(\theta\) is defined uniquely by \(p = \theta^2 + \phi^2, \theta \equiv 1 \text{ or } 3 \pmod{4}\) according as \(p \equiv 5 \text{ or } 1 \pmod{8}\); finally

\[
S_m = \sum_{x=1}^{p-1} \left(\frac{x^4 - g^m}{p} \right) \quad [m = 0, 1, 2, 3].
\]

Theorem 1:

\[S_0 = 2\theta - 2.\]

Proof: We observe that our theorem follows immediately from the 5 relations:

(A) \(S_1 = -S_3\)

(B) \(S_0 + S_2 = -4\)

(C) \(S_0^2 + S_1^2 + S_2^2 + S_3^2 = 8p + 8\)

(D) \(p = \theta^2 + \phi^2, \theta \equiv 1, 3 \pmod{4} \pmod{p = 5, 1 \pmod{8}}\)

(E) \(p = \theta^2 + \phi^2, \theta \equiv 1, 3 \pmod{4} \pmod{p = 5, 1 \pmod{8}}\)

(A) \(\sum_{1}^{p-1} \left(\frac{x^4 - g}{p} \right) = \sum_{1}^{p-1} \left(\frac{1 - gy^4}{p} \right) = -\sum_{1}^{p-1} \left(\frac{g^3 - g^4}{p} \right) = -\sum_{1}^{p-1} \left(\frac{g^3 - t^4}{p} \right) \left[x = \frac{1}{y} = \frac{g}{t} \right]\)

(B) \(\frac{p-1}{4} (S_0 + S_1 + S_2 + S_3) = \sum_{a=1}^{p-1} \sum_{x=1}^{p-1} \left(\frac{x^4 - a}{p} \right) = \sum_{x=1}^{p-1} \sum_{a=1}^{p-1} \left(\frac{x^4 - a}{p} \right) = -(p-1)\)

(C) \(\frac{p-1}{4} (S_0^2 + S_1^2 + S_2^2 + S_3^2) = \sum_{a=1}^{p-1} \sum_{x=1}^{p-1} \sum_{y=1}^{p-1} \frac{x^4 - a}{p} \left(\frac{y^4 - a}{p} \right) = \sum_{x=1}^{p-1} \left\{ \sum_{y=1}^{p-1} \sum_{a=1}^{p-1} \left(\frac{a^2 - a(x^4 + y^4) + x^4 y^4}{p} \right) \right\}\)

Consider the sum inside the braces. If \(y^4 = x^4\), the innermost sum = \(p - 2\); for the remaining \((p - 5)\) values of \(y\) the innermost sum is \(-2\) since writing \(f = \frac{1}{2}(x^4 - y^4)\) this sum easily transforms into

\[-1 + \sum_{a=1}^{p-1} \left(\frac{a^2 - f^2}{p} \right) = -1 + \sum_{t=1}^{p-1} \left(\frac{t^2 + 2}{p} \right) = -1 + \sum_{t=1}^{p-1} \left(\frac{2t + 1}{p} \right) = -2[a = t + 1; tl = 1; f \not\equiv 0].\]

(D) This follows at once by noting that \(x^4\) has the same non-zero value mod \(p\) for exactly 4 incongruent values of \(x\), and these \(x\) are equidistant from \(1/2p\); further exactly 4 terms of \(S_0\) vanish, while the rest are \(+1\) or \(-1\). Similarly we prove:
Theorem 2:

$$\sum_{x=1}^{p-1} \left(\frac{x^{\theta} - 1}{p} \right) = -2 - 4\theta$$

where θ is defined uniquely by $p = \theta^2 + 3\phi^2$, $\theta \equiv 1 \pmod{3}$ and p is a prime $\equiv 1 \pmod{12}$.

I should like to thank Professor Siegel (who found slightly more general results) and Professor Weyl for their interest in this note.

Note added in proof: Results similar to Theorems 1 and 2 have been found recently by E. Lehmer and A. L. Whiteman. Deuring, in a paper dedicated to Herglotz, finds more general results by advanced methods [see Hamburg Abhandlungen, 14, 1941, 197–272].