Indian Journal of Chemistry Vol. 29B, May 1990, pp. 481-482

Synthesis of a new chiral phase-transfer catalyst: Chemical activity in alkylation reactions

V L K Valli, G V M Sarma & B M Choudary* Inorganic and Physical Chemistry Division,

Indian Institute of Chemical Technology, Hyderabad 500 007 Received 3rd March 1989; accepted 24th October 1989

A new chiral phase-transfer catalyst (3S,4S)-1-benzyl-1-methyl-3,4-pyrrolidin-diol-onium iodide (2) synthesized, is found to be more active than the conventional tetraalkylammonium salts in alkylation reactions on active methylene compounds under usual solid-liquid phase-transfer conditions.

In the last few years growing attention has been focused on the synthesis of chiral phase-transfer catalysts to obviate difficulties encountered in asymmetric synthesis¹⁻⁴. Inspite of growing importance, very few such catalysts are known, derived from ephedrine¹ and cinchonidine²⁻⁴. Herein, we report the synthesis and the chemical activity of a new chiral phase-transfer catalyst **2**, prepared by quaternization of the known intermediate **1** which was prepared from D-(+)-tartaric acid⁵ (Scheme 1).

Alkylation of active methylene compounds under usual solid-liquid phase-transfer conditions^{*} were carried out at room temperature using catalyst 2. All the reactions listed in the Table 1 led exclusively to monoalkylated products with good yields in presence of 1 mole % catalyst. This catalyst is more active than the conventional tetratikylammonium salts, which require higher temperatures when bases like K_2CO_3 or Na₂CO₃ were used⁶. Further, alkylation of benzyl cyanide with dimethyl sulphate could also be effected, which required simple work-up operation compared to conventional tetraalkylammonium salts. As an example in asymmetric alkylation the efficacy of the pre-

51.	Substrate	RX	Product	Time (hr)	Yield (%)	m.p or b.p/mm Hg(°C) ^C	
10.						Found	Lit.
		MeI	Me-COOEt	2.5	96	79-80/10mm	78-80/10mm
2.		EtBr	Et-COOEt ^a	2	78	202	
١.		n-BuBr	n-Bu	4	86	238	235-40
1.		PhCH ₂ Br	PhCH ₂ COOEt COOEt	8	88	107/0.1mm	105/0 .1mm
5 .		Br		3.5	79	178	
5.	OEt	MeI	Me OEt	2.5	92	80-82/11mm	79-81/11mm
7,	PhCH ₂ CN	Me ₂ /SO ₄	Me PhCN	12	82	228	230-32
3.	Ethylcyclopenta- none-2-carbo- xylate	MeI	Ethylcyclopentanone- 2-methyl-2-carboxylate 1.17-1.35(t,6H), 1.83-2.		79	181	

Scheme 1

sent catalyst was tested with alkylation of ethyl cyclopentanone-2-carboxylate, where the product ethyl cyclopentanone-2-methyl-2-carboxylate has $[\alpha]_{D}$ = +0.92 (C=1 in methanol) (Table 1; entry 8).

Further work to extend the application of present catalyst for other type of substrates and to modify the catalyst to induce higher asymmetric induction is in progress.

Experimental

Preparation of 2

A solution of 1 (0.1 mole, 19.3 g) in ethanol was cooled and methyl iodide (0.125 mole, 17.75 g) was added dropwise during 15 min. The reaction mixture was refluxed for 30-45 min, cooled and treated with ether. The separated solid was filtered and washed twice with ether to give 2 as a white powdery solid; yield 24.8 g (92%); m.p. 132; $[\alpha]_D = 2.28$ (C = 4.2, methanol) (Found : C, 42.9; H, 5.3; N, 4.2; I, 37.9. C₁₂H₁₈NO₂I requires C, 43.0; H, 5.4; N, 4.2; I, 37.9%); ¹³C NMR (CD₃OD) : 57.35, 73.36, 74.48, 75.12, 79.81, 80.16, 132.54, 133.02, 134,51, 136.65.

General alkylation procedure

A mixture of diethyl malonate (10 mmole), alkyl halide (13 mmole), catalyst 1 (0.1 mmole) in DMF (15 ml) was treated with anhydrous K_2CO_3 (32 mmole) and allowed to stir at room temperature. After completion of the reaction (see Table 1), the mixture was extracted with dichloromethane, washed with water, brine and dried (Na₂SO₄). The solvent was evaporated and the residue was further purified by column chromatography.

References

- 1 Fiaud J C, Tetrahedron Lett, 40 (1975) 3495.
- 2 Julia S, Ginebreda A, Guixer J & Tomas A, Tetrahedron Lett, 21 (1980) 3713.
- 3 Dolling U H, Davis P & Grabowski E J J, J Am chem Soc, 106 (1984) 446.
- 4 Bhattacharya A, Dolling UH, Grabowski E J J, Karady S, Ryan K M & Weinstock L M, Angew Chem Int Ed Engl, 25 (1986) 476.
- 5 Nagel U, Kinzel E, Andrade J & Prescher G, Chem Ber, 119 (1986) 3326.
- 6 Ferorynski M, Wojciechowski K, Matacz Z & Makosza M, J org Chem, 43 (1978) 4682.
- 7 Brandstrom A & Juggren U, Tetrahedron Lett, 6 (1972) 473.