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It is known that the existence of m + 1 integers (called a perfect dif-
ference set of order m + 1) dy, d, ..., dny 1 such that the congruence
dy — dy= n(mod m? + m + 1) has exactly one solution for every n =
0(mod m? + m + 1), leads to the construction of a finite projective plane
with m + 1 points on a line. All known cases of such planes have m =
17, where p is a prime and g is a positive integer. It seems natural to
conjecture that a perfect difference set of order m -+ 1 can exist only if
m is a power of a prime. Only recently Bruck and Ryser (Bull. Am.
Math. Soc.) announced the startling result that there exists no finite
projective plane with 7 + 1 points on a line whenever 7 = 1 or 2(mod 4),
provided m is divisible by a prime 4k + 3 to an odd power. It follows
from their result that for such values of m there exists no perfect difference
set (P.D.S.) or order m + 1. Moreover Singer proved the existence of
a P.D.S. of order m + 1, whenever m = pt.

In this paper I obtain some (but not all) assertions on the non-existence
of perfect difference sets implied by the results of Bruck and Ryser. I
also obtain some results not implied by their work. For example, I
prove that there exists no P.D.S. of order m + 1 when m = 10 or 159.

We introduce the idea of a difference set (D.S.) of m numbers (mod g).
We call the set of m numbers di, ds, ..., dn a difference set (mod g) if
the congruence d; — d; = n(mod g) has the same number of solutions
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[which must be m(m — 1)/(g — 1)] for every n = O(mod g). The set of
5 numbers 1, 3, 4, 5, 9 furnishes an example of a D.S. of 5 numbers (mod 11).
Again the set of 4 numbers 0, 1, 3, 9 forms a D.S. (mod 13). [This set
occurs in Veblen and Bussey, Trans. Am. Math. Soc., 1906, and is used to
generate a finite projective plane with 4 points on a line.]

‘We now prove ' .

THEOREM 1. Let m and g be positive integers such that m(m — 1) =
O(mod g — 1). Write6 = m — m(m — 1)/(g— 1). Letg contain a prime
factor N = 3(mod 4) such that — X\ is a quadratic non-residue of some prime
factor ¢ of 0, where ¢ occurs in 0 to an odd power. Then there exists no D.S.
of m numbers (mod g).

Proof: 1If possible let there exist a D.S. of m numbers (mod g), say ‘the
numbers dy, ds, ..., dn. Consider the sum

hicd :
S =3 0"
=1

where p = exp (2wi/X). Clearly S is an algebraic integer of the field
K(p). Further, since the d’s form a difference set (mod g), we have

SS=m+ ngm D lo+o24+03+ .. +p‘§
_ _M_
=T Te-n %

S8 =16 a

Now it is implicit in the theory of cyclotomy (as developed by Gauss)
that the norm of S in the field generated by p is an integer of the form
(u? + \v?)/4, where # and v are integers (we here use the fact that A is
of the form 4k 4+ 3). On the other hand it follows from (1) that this
norm is also equal to 6* = /2, Hence we have

u? + \? = 4.® — D72,

Since (\ — 1)/2 is odd, it follows .from the last equation that — X is a
quadratic residue of ¢ contrary to our assumption. Our theorem is
proved.
Examples: 1. There exists no P.D.S. of order 7; i.e., there exists no
. D.S. of 7 numbers (mod 43). [Problem proposed by Veblen in Am. Math.
Monthly, 13, 46 (1906).]
2

4
Proof: Hereg =\ = 43,0 =7 — yrhe 6; take § = 3. Clearly —A is

a quadratic non-residue of ¢.
2. There exists no P.D.S. of order 11, i.e., there exists no D.S. of 11
numbers (mod 111), This result is new.
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Proof: Hereg = 111, X = 3,0 = 10. Take ¢ = 5. Clearly —\isa
quadratic non-residue of ¢.

3. There exists no P.D.S. of order 22 (Bruck and Ryser), i.e.,, no D.S.
of 22 numbers (mod 463).

Proof: Here g = N\ = 463, 0 = 22. Take ¢ = 11. Clearly —\is a
quadratic non-residue of ¢. ’

4. There exists no P.D.S. of order 160. This result is new.

Proof: We show that there cannot exist a D.S. of 160 numbers (mod
159* + 159 + 1). Since 1592 + 159 + 1 =0 (mod 19), we may take A =
19. Take ¢ = 3 since § = 159. Clearly —X\ is a quadratic non-residue
of ¢. :



