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Abstract - A cooperating-agents based algorithm is 
described to detect temporal consistency among sensory 
events and for constraint processing. We describe the 
algorithm using an example. Also we describe the 
cooperative aspects of the agent -based algorithm using 
an UML activity diagram. 
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agents , Temporal consistency, UML activity diagram 
 

                       I.    INTRODUCTION  
 
  Temporal consistency and conflict detection among a 
number of related sensory events perceived by a network of 
agents is very important for many practical applications, 
Ribaric [10], including contextual-conflict determination, 
Murthy [8], Murthy and Krishnamurthy [9], criminology 
and forensic sciences. The main goal in temporal reasoning 
is to validate the different propositions involving time and 
evaluate the consistency among these statements using the 
various local constraints that can be either qualitative or 
quantitative, and arriving at a globally consistent picture of 
the whole scenario. This is a computationally hard problem, 
in general. However, if we restrict ourselves to a problem, 
in which any two events are related by a single temporal 
constraint involving positive integer inequalities (by a 
suitable choice of time units), then the problem is solvable 
in polynomial time. If there are many constraints among 
events, the problem needs to be broken into pieces involving 
the possible combinations among the various constraints. 
This leads to an exponential growth in complexity. In this 
paper, we will only deal with the simple temporal 
consistency problem among a set of agents. For this purpose 
we need to assume that the agents are using the same 
accurate clock and the constraints are exact.  
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 We first describe the qualitative and quantitative temporal 
consistency problem and its representation as a  
Directed graph. Then we describe the basic directed graph 
representation of temporal constraints among agents, where 
each agent corresponds to a node representing an event. 
Following this, we describe the multi-agent paradigm and its 
applications to temporal consistency problem and evaluate 
the global consistency based on a simple yet powerful 
theorem by Shostak [11]. Also we describe the agent-based  
detection of temporal consistency through an UML activity 
diagram. The last section contains the conclusion.  
 
II.   TEMPORAL CONSISTENCY PROBLEM  
 
   Given a set of sensory events, satisfying certain time 
constraints, the temporal consistency problem deals with 
reasoning of this set of events and evaluate whether the set 
is consistent or conflict-free. We assume that we are dealing 
with real-life macro-events and not cosmic or subatomic 
events and time has a beginning and has an arrow towards 
the future. We consider a simple set of constraints in which 
any two events are related by a single constraint in a well-
defined range.  
 
Events  
Events are uniquely labelled and ordered thus: E(0), E(1), 
E(2) ,... E(i), E(i+1),...., E(j),....,where we assume that E(0) 
is the standard reference time point or the beginning of the 
world we consider .E(i) is before E(i+1) is denoted by E(i) < 
E(i+1). Accordingly we assume that the events belong to a 
well-founded set , defined below .  
  
Well-founded sets 
A binary relation < is well-founded  over a class of objects, 
if it satisfies the no-decreasing condition; that is, there is no 
infinite sequence of objects decreasing with respect to that 
relation.  In other words, there are no infinite sequences 
{x(0), x(1), x(2), x(3),....} of objects such that: x(0) >  x(1) 
> x(2) > x(3)>... where  > is the inverse binary relation of <. 
For a detailed study of well founded sets and relations, and 
related temporal logic, see Manna and Waldinger [7].A set 
in which the elements are related through a well-founded 
relation is called a well-founded set..  
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   III. QUALITATIVE TEMPORAL RELATIONS 
 
We use the terminology of Apt [1] and Dechter [3] to 
describe the qualitative temporal consistency problem and 
then extend it to the quantitative temporal consistency 
problem. 
  We assume that every event A has a trigger-beginning Ab 
and a trigger-end Ae, and the duration of an event is the 
time interval in integral units, between these two well-
defined points. This means also for real-world events Ab 
occurs before Ae, or Ab<Ae and Ab=Ae, if and only if, the 
event is a trigger event. The trigger events are like impulse 
(delta) functions having no width. This approach helps us to 
extend the qualitative temporal consistency problem to 
quantitative temporal consistency. 
We denote the following seven temporal relations, Apt [1], 
Dechter [3] in the above notation; note that we are permitted 
to use only the relation < to preserve the well-founded 
relation; however, we will write x = y, if and only, if x< y  
and y< x meaning  that x and y are coincident. 
Also the “ inverse relations” – such as after, met by, started 
by, overlapped by, finished by, contains, as in Apt[1], 
Dechter [3] which are grammatical transformations from the 
active to passive voice in English, can equally well be 
represented by the following relations: 
0. For every event: Ab<Ae, and Ab =Ae when A is a trigger 
event. 
1. A before B : Ae<Bb. 
2. A meets B: Ae=Bb and Ab< Bb 
3. A overlaps B: Ab<Bb and Bb<Ae and Ae <Be 
4. A starts B : Ab=Bb and Ae <Be 
5. A during B: Bb<Ab and Ae<Be 
6. A finishes B: Ae=Be and Bb<Ab 
7. A equals B (coincident): Ab=Bb and Ae =Be 
    The above relations are qualitative, since no numerical 
quantity is assigned to measure the time differences. Since 
we have defined < and = , we can use conventional type of 
arithmetic to convert them to quantitative reasoning by 
using addition and subtraction of integers representing time 
steps. For example if x = y - k where k is a positive integer 
representing basic time units, then we can write  x < y ; i.e  
x is k units of time before y or  x+k = y. We say that two 
events are coincident, if they use the same clock and the 
events x and y occur simultaneously. This means the 
shortest time difference between these two events x and y is 
Zero or x < y and y<x; that is x and y are coincident. In fact 
, the composition, and disjunction among the  relations 
(including ternary and n-ary relations) can be dealt with 
using the arithmetic of inequalities and the directed graph 
approach, to be described below. 
 
Examples 
 
(i) Consider the qualitative temporal logic statement: A 
during B and B overlaps C: 
This means Bb<Ab and Ae<Be; further, since A is a real 
event: Ab<Ae. 
Also B overlaps C means: Bb< Cb, Cb<Be and Be <Ce. 
   Thus Bb<Cb< Be <Ce; Bb <Ab<Ae< Be<Ce. 
Although we know Bb <Cb and Bb<Ab ; further we know 
that Ae<Ce; but we cannnot compare Ab and Cb; 

However, Ae <Ce; this means A does not finish C and A is 
not equal to C.  
Thus A  can occur in any of the five following modes: 
 A  before C, A meets C, A overlaps C,A starts C,A can be 
during C.  
Hence, the statements provided are therefore incomplete to 
resolve these cases uniquely. 
(ii) Consider the qualitative temporal logic statement: A 
starts B and B finishes C 
This means Ab=Bb and Ae <Be; Be =Ce and Cb<Bb; that is 
Cb <Ab and Ae <Ce 
Thus Cb <Ab<Ae<Ce ; or A is during C (or C contains A). 
We can also say that if A starts B and B finishes C, then A 
before C is inconsistent, since Cb <Ae or C before A. 
(iii) Consider the qualitative temporal logic statement: 
Ameets B and B overlaps C:  
This means Ae =Bb, Ab< Bb, Bb<Cb and   Cb<Be and Be 
<Ce; Thus we have Ab<Ae(=Bb)<Cb <Be <Ce. 
That is Ae<Cb  or A before C. 
(iv) Consider the qualitative temporal logic statement: A 
meets B and A starts B: 
This means Ae=Bb and Ab=Bb or Ab=Ae. Thus A is just a 
trigger event. 
(v) Consider the qualitative temporal logic statement : A 
before B and A during B. 
That is Ab<Ae and Ae <Bb; and Bb<Ab; Ae<Be. 
This means, Ab<Bb <Ab or Ab <Ab ; this is inconsistent. 
    We can now use this example to move on to quantitative 
temporal consistency through this example. If we assume 
that the duration of A is x positive units of time, and B starts 
after  y positive units of time and ends after  z positive units 
of time then Ab+x=Ae; Ae+y =Bb . This means Ab+x+y 
=Bb; A during B means Bb <Ab or Bb occurs at least one 
unit of time earlier than Ab. That is Bb  = Ab- 1;. 
Combining the equations we find that Ab+x+y =Ab-1 or 
x+y  = -1; this is impossible since x and y are positive. 
Hence the statement is inconsistent. 
  
IV.  QUANTITATIVE TEMPORAL CONSISTENCY 
 
    We now introduce numerical measures in the qualitative 
temporal relations to convert them to quantitative temporal 
relations. We assume that all the events described below are 
trigger events and time difference between the occurrence of 
these two events   E(i) and E(j) satisfy the inequality of the 
form: a ≤ E(i)-E(j) ≤ b, where and b are non-negative 
integers. We use the following notation to map the positive 
integer inequalities among the events into a directed graph. 
Note that a and b can be zero for coincident events, and a= 
b, if there is no slackness in the constraint or the events 
occur with exact time difference. 
    Given any two events there is only one constraint, 
namely: L(i,j) ≤ E(j)-E(i)≤ U(i,j). 
Here L(i,j) and U(i,j) are non-negative integers denoting 
lower and upper limits. The subtraction sign indicates 
obviously, E(j) is later than E(i) or equivalently,  E(i) is 
earlier than E(j), thus satisfying the requirement that the 
time flows forward.  
The above inequality can be split into two one-sided 
inequalities: 
E(j)-E(i)≤ U(i,j) and   E(i)-E(j) ≤ - L(i,j) 
We now map the inequality to a directed graph 
(digraph)thus:  the lower limit L(i,j) appears as an edge with 
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a negative weight along the j-i direction and the upper limit 
U(i,j) appears as a directed edge with a positive weight 
along the i-j direction, as shown in Figure 1. Note that 
U(i,j)-L(i,j)≥ 0. Also, U(i,j)= L(i,j) if the events have 
exactly specified time differences and  U(i,j)= L(i,j) = 0 
when the events are coincident. 
 
                             U(i,j)                         
                               
                   
     E( i)                   -L(i,j)           E( j ) 
    
 Figure 1: Mapping Inequality to a Digraph  
                                
Hence, if there are n events [i =0,1,...,(n-1)] , then we will 
have n(n-1)/2  directed edges in the graph each representing 
one side of an inequality. The adjacency matrix of this 
directed graph that represents the simple constraint problem 
will have [ n + n(n-1)/2]  or n(n+1)/2 entries in which n of 
the entries corresponding to E(i,i)= 0. 
Further, note that the least time path between two connected 
nodes i and j  representing event E(i) and E(j) respectively, 
is given by: Time  (0,j) ≤ Time ( 0,i) + U(i,j). 
 We now state and prove a variant of a theorem, proved by 
Shostak [11], in the context of linear inequalities..  
 
Theorem 1 
  
A directed graph that describes a single temporal constraint 
at each edge represents a temporally consistent problem, if 
and only if, the sum of distances across a cycle is non- 
negative. 
Proof: 
If part: Since the elements of the set are well founded, if the 
problem is consistent then it implies that, they satisfy the 
no-decreasing condition across a cycle from the starting 
node of the cycle; or E(k)-E(k) ≥ 0 
Only if part: If the cycle sum is negative it implies that 
across a  cycle E(k)-E(k) < 0 ; this implies E(k)<E(k)  which 
is not true since E(k) is non-decreasing with respect to itself 
and at the worst E(k)= E(k)  and the cycle sum is zero. 
Further, if there are no negative cycles, it is a consistent 
problem and the least-time path between any two nodes is 
well-defined . This can be obtained using the shortest path 
algorithm for spatial distances. This is because, for any pair 
of connected nodes i and j, the least time path satisfies: 
Time  (0,j) ≤ Time ( 0,i) + U(i,j). 
Remark: If U(i,j)=L(i,j) for all i,j then all the inequalities 
become equalities and the cycle sums are zero in both 
directions, for consistent problems. 
 
Example 
A simple illustration of this theorem is in the creation of the 
International date- line for setting up consistency of the 
local time of clocks having a well-defined time difference, 
at different places across the globe. To the left of the date-
line , in clockwise direction  we add +24 hours to denote 
next day, and to the right  of the international date line in the 
anticlockwise direction we subtract 24 hours to denote the 
previous day  to the travelling clock so that the cycle sum is 
zero either way, and the travelling clock is synchronized 
with the local clock , as shown below in Figure 2. Note that 

the time differences are exact here and we have equalities 
between different nodes. 

Sydney

Date Line

Los Angeles London

Singapore

+24 Hrs

- 3  1/2

- 8  hours

-  8 hours        - 2                     

-2 1/2 

 hours

hours

hours

 
Figure 2: Consistency of International Clock 

 
  V.  DETECTING TEMPORAL CONSISTENCY 
  
A cooperating multi-agent system can be defined as a 
loosely coupled network of agents that interact among them 
and through the environment to solve a problem [6]. 
Operationally, the multiagent system carries out distributed 
computation by sending, receiving, handshaking and 
acknowledging messages and performing some local 
computations and has the following features: 
1. An agent can carry out elementary computations and it 
knows its neighbour’s names and other neighbourhood 
connectivity information. 
2. There is a seeding (initial) agent which initiates the 
solution process. 
3. Each agent can be active or inactive. 
4. Initially all agents are inactive except for a specified 
seeding agent that initiates the computation. 
5. An active agent can do local computation, send and 
receive messages and can spontaneously become inactive. 
6. An inactive agent becomes active, if and only if, it 
receives a message. 
7. Each agent may retain its current belief or revise its belief 
as a result of receiving a new message by performing a local 
computation. If it revises its belief, it communicates its 
revised state of belief to other concerned agents; else it does 
not revise its solution. 
Thus:  
1.Each agent offers only a partial solution to a problem and 
holds only a  partial information. 
2. Control and Data are decentralized 
4. Computation is not necessarily synchronous. 
5. The computation terminates when the solution is reached 
collectively and the multi-agent system is said to be self-
stabilizing. 
  We now describe how several agents, Krishnamurthy and 
Murthy [6] can cooperate to check global temporal 
consistency of a temporal constraint problem. For this 
purpose, we consider the problem of finding a least time path 
between any two vertices in a directed graph whose edges 
have a certain assigned positive or negative costs. The 
vertices of this directed graph correspond to events 
represented by agents. Here the agents communicate directly 
through messages (Message passing method). Here we use 
the terminology similar to the Agent language KQML 
(Knowledge Query and Manipulation Language), designed 
by Finn et al. [4], consisting of the following Six primitives: 
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1. A Performative: A single word describing the purpose of 
the message, e.g.,Tell, Reply 
2. Identity of Sender 
3. Identity of Receiver 
4. Language used in Content 
5 Ontology-Vocabulary: Context within which the message 
content is to be interpreted 
6. Message content 
 
Example  
 
Let E0,E1,E2,E3 and E4 denote sensory events constrained 
by the following inequalities: 
(1) 10  ≤ E1-E0 ≤ 20 
(2) 30 ≤ E2-E1≤ 40 or      (2’)   60 ≤ E2-E1≤ 70. 
(3) 20 ≤ E4-E3 ≤ 30  or   (3’) 40 ≤ E4-E3≤ 50. 
(4) 10 ≤ E2-E3≤ 20 
(5) 60 ≤ E4-E0≤ 70 
  The above inequalities are mapped into the directed graphs 
to describe the relationship among the events. Since there 
are two possible inequalities  (2) &(2’) and (3) & (3’) , we 
need to consider four different possibilities. Thus the 
temporal constraints among the events can be represented 
by four different directed graphs.  
Figures 3 and 4 represent the two out of four possible 
constraints, where the former represents a  consistent 
situation, while the latter represents an inconsistent 
situation. 
We will now describe the use of cooperating agents to solve 
this problem. 
 
     

E0

E1
E2

E3

E4

-10
20

70 -40

--3020

40

-10

-60
50

 
                 Figure 3 

 

E0

E1
E2

E3

E4

-10
20

70 -40

-6020

70

-10

-60
50

 
                  Figure 4 
 
A. Detecting Temporal Consistency 
 
To detect the temporal consistency , we assume that there are 
N agents with names identical to the nodes in the graph and 
each agent is connected to other agents in an isomorphic 

manner to the given graph.  Such an assumption on the 
topology of the network simplifies the organizational 
knowledge. Also each agent knows the identity of its 
neighbours, the direction and cost of connection of the 
outgoing edges. Note that the outdegree of each node is the 
number of sending channels and the indegree is the number 
of receiving channels.The production rules for multi-agent 
computation are as follows: 
a.Initialization and update of beliefs:  Agent X (root) sends 
to all its neighbours Y the tuple: (X, s= 0,Y, t=0) describing 
the name X of the root, and the distance s= 0 from its source 
neighbour, its distance t= 0 from root; all the neighbours of 
the root  handshake, receive, and store it. This corresponds 
to the initialization of beliefs. 
Each agent Y at a distance u from X then sends its neighbour 
Z at a distance w from it, the tuple (Y, u, Z, u+t)  describing 
its name, its distance u from the source neighbour, its 
distance u+t from the initial node. This is the initial set of 
beliefs of the agents. 
b. Halting: Finally, the initial node checks its cycle lengths; 
if any one cycle is negative, it declares that the problem is 
inconsistent. 
 
Example 
Consider the directed graph in Figure 3, in which the edge 
costs are as shown; we denote the graph by the triplet , a 
pair of nodes (X,Y) followed by the cost s of the edge ,thus: 
(X,Y,c). The graph in Figure 3 is then given by, (To denote 
nodes, we omit the letter E and use only the suffix i of Ei as 
the labels): 
(0, 1, 20); (1, 2, 40); (2, 3, -10); (3, 4, 50); (4, 0, -60) ; (0, 4, 
70); (4, 3, -40);  
(3, 2, 20); (2, 1, -30); (1, 0, -10).  
We choose the vertex 0 as the root. The graph is encoded 
and assigned to the agents as shown in Figure 5. Here we 
indicate by arrows the direction of communication , and  
names of the communicating agents and inside the box we 
indicate by an ordered pair the distance of neighbour and 
distance of root. We apply the rules systematically. 
The collective agent communication protocol and 
computational tree of Figure 5 is obtained from Figure 3 , 
using the rules described. At initiation, the node labelled E0 
is the root and the seeding agent. In Figure 5, we indicate by 
arrows the direction of communication 
among the agents, and an ordered quadruplet indicates: node 
name (the distance from neighbour , its distance to root) 
credit retained. The root E0 contains the ordered pair  : 
(0,0).E1 contains the pair (20,20) indicating that its distance 
from the neighbour is 20 and from the root is 20. Note that 
the constraints in Figure 5 are consistent since the cycles are 
nonnegative, the constraints in Figure 6 are inconsistent 
since one of the cycles is negative.  
 
B.   UML ACTIVITY DIAGRAM 
 
It is convenient to visualize the above interaction among the 
agents using the Unified modelling language (UML) 
diagram , Figure 7. UML 2.0 has 13 behavioural diagrams 
meant specially for improved understanding Booch et al [2], 
Holt [5] . Among these diagrams the “Activity Diagram” 
permits a very low level modelling and is suitable for our 
needs, since the agent actions are at a low-level. Also it 
specifies the dynamic behaviour of the agents, their message 
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and control flow and how they cooperate.  Activity 
diagrams are made up of three basic elements: (i) Activity 
Node, (ii) Activity Edge, and (iii) Region. 
(i) Activity Node: There are three types of activity nodes: 
Activity invocation, Object and control node. The Activity 
invocation permits us to establish traceability to the rest of 
the model, via operations,  activities and actions. 
(ii) Activity edge: This can be of two types: control flow and 
message or object flow. 
(iii) Region: This has two main types: Interruptible activity 
region ands Activity partition. The former allows us to put a 
boundary on the diagram where activities can be 
interrupted; while the latter mechanism allows us to group 
together the different activity invocations.  
 

VI. CONCLUSION 
 
We described a cooperative agent-based algorithm to solve 
the simple temporal consistency problem among a set of 
events, using a directed graph representation. In this 
representation of temporal constraints among agents, each 
agent corresponds to an event. This algorithm for detecting 
the global consistency is based on a simple yet powerful 
theorem by Shostak [11]. Also we illustrated the agent-
based cooperative process using an example and the UML 
activity diagram. 
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