
INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP'09) MUSCAT, FEBRUARY 15-18, 2009

© SQU-2009 ISSN: 1813-419X

Contextual Conflict Determination Among
Sensory Events Using Cooperating Agents

V.K.Murthy1 , E.V.Krishnamurthy2

Abstract - A cooperating-agents based algorithm is
described to detect temporal consistency among sensory
events and for constraint processing. We describe the
algorithm using an example. Also we describe the
cooperative aspects of the agent -based algorithm using
an UML activity diagram.

Index Terms-Agents, Conflicts, Cooperation, Sensory
agents , Temporal consistency, UML activity diagram

 I. INTRODUCTION

 Temporal consistency and conflict detection among a
number of related sensory events perceived by a network of
agents is very important for many practical applications,
Ribaric [10], including contextual-conflict determination,
Murthy [8], Murthy and Krishnamurthy [9], criminology
and forensic sciences. The main goal in temporal reasoning
is to validate the different propositions involving time and
evaluate the consistency among these statements using the
various local constraints that can be either qualitative or
quantitative, and arriving at a globally consistent picture of
the whole scenario. This is a computationally hard problem,
in general. However, if we restrict ourselves to a problem,
in which any two events are related by a single temporal
constraint involving positive integer inequalities (by a
suitable choice of time units), then the problem is solvable
in polynomial time. If there are many constraints among
events, the problem needs to be broken into pieces involving
the possible combinations among the various constraints.
This leads to an exponential growth in complexity. In this
paper, we will only deal with the simple temporal
consistency problem among a set of agents. For this purpose
we need to assume that the agents are using the same
accurate clock and the constraints are exact.

 1 Colleges of Applied Sciences, Ministry of Higher Education, Sultanate
of Oman, and Australian National University, Canberra, ACT 0200,
Australia edayathuk@gmail.com and ariyalurk@gmail.com.
 2Australian National University, Canberra, ACT 0200 Australia,
Evk.Krishnamurthy@anu.edu.au

 We first describe the qualitative and quantitative temporal
consistency problem and its representation as a
Directed graph. Then we describe the basic directed graph
representation of temporal constraints among agents, where
each agent corresponds to a node representing an event.
Following this, we describe the multi-agent paradigm and its
applications to temporal consistency problem and evaluate
the global consistency based on a simple yet powerful
theorem by Shostak [11]. Also we describe the agent-based
detection of temporal consistency through an UML activity
diagram. The last section contains the conclusion.

II. TEMPORAL CONSISTENCY PROBLEM

 Given a set of sensory events, satisfying certain time
constraints, the temporal consistency problem deals with
reasoning of this set of events and evaluate whether the set
is consistent or conflict-free. We assume that we are dealing
with real-life macro-events and not cosmic or subatomic
events and time has a beginning and has an arrow towards
the future. We consider a simple set of constraints in which
any two events are related by a single constraint in a well-
defined range.

Events
Events are uniquely labelled and ordered thus: E(0), E(1),
E(2) ,... E(i), E(i+1),...., E(j),....,where we assume that E(0)
is the standard reference time point or the beginning of the
world we consider .E(i) is before E(i+1) is denoted by E(i) <
E(i+1). Accordingly we assume that the events belong to a
well-founded set , defined below .

Well-founded sets
A binary relation < is well-founded over a class of objects,
if it satisfies the no-decreasing condition; that is, there is no
infinite sequence of objects decreasing with respect to that
relation. In other words, there are no infinite sequences
{x(0), x(1), x(2), x(3),....} of objects such that: x(0) > x(1)
> x(2) > x(3)>... where > is the inverse binary relation of <.
For a detailed study of well founded sets and relations, and
related temporal logic, see Manna and Waldinger [7].A set
in which the elements are related through a well-founded
relation is called a well-founded set..

199

INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP'09) MUSCAT, FEBRUARY 15-18, 2009

© SQU-2009 ISSN: 1813-419X

 III. QUALITATIVE TEMPORAL RELATIONS

We use the terminology of Apt [1] and Dechter [3] to
describe the qualitative temporal consistency problem and
then extend it to the quantitative temporal consistency
problem.
 We assume that every event A has a trigger-beginning Ab
and a trigger-end Ae, and the duration of an event is the
time interval in integral units, between these two well-
defined points. This means also for real-world events Ab
occurs before Ae, or Ab<Ae and Ab=Ae, if and only if, the
event is a trigger event. The trigger events are like impulse
(delta) functions having no width. This approach helps us to
extend the qualitative temporal consistency problem to
quantitative temporal consistency.
We denote the following seven temporal relations, Apt [1],
Dechter [3] in the above notation; note that we are permitted
to use only the relation < to preserve the well-founded
relation; however, we will write x = y, if and only, if x< y
and y< x meaning that x and y are coincident.
Also the “ inverse relations” – such as after, met by, started
by, overlapped by, finished by, contains, as in Apt[1],
Dechter [3] which are grammatical transformations from the
active to passive voice in English, can equally well be
represented by the following relations:
0. For every event: Ab<Ae, and Ab =Ae when A is a trigger
event.
1. A before B : Ae<Bb.
2. A meets B: Ae=Bb and Ab< Bb
3. A overlaps B: Ab<Bb and Bb<Ae and Ae <Be
4. A starts B : Ab=Bb and Ae <Be
5. A during B: Bb<Ab and Ae<Be
6. A finishes B: Ae=Be and Bb<Ab
7. A equals B (coincident): Ab=Bb and Ae =Be
 The above relations are qualitative, since no numerical
quantity is assigned to measure the time differences. Since
we have defined < and = , we can use conventional type of
arithmetic to convert them to quantitative reasoning by
using addition and subtraction of integers representing time
steps. For example if x = y - k where k is a positive integer
representing basic time units, then we can write x < y ; i.e
x is k units of time before y or x+k = y. We say that two
events are coincident, if they use the same clock and the
events x and y occur simultaneously. This means the
shortest time difference between these two events x and y is
Zero or x < y and y<x; that is x and y are coincident. In fact
, the composition, and disjunction among the relations
(including ternary and n-ary relations) can be dealt with
using the arithmetic of inequalities and the directed graph
approach, to be described below.

Examples

(i) Consider the qualitative temporal logic statement: A
during B and B overlaps C:
This means Bb<Ab and Ae<Be; further, since A is a real
event: Ab<Ae.
Also B overlaps C means: Bb< Cb, Cb<Be and Be <Ce.
 Thus Bb<Cb< Be <Ce; Bb <Ab<Ae< Be<Ce.
Although we know Bb <Cb and Bb<Ab ; further we know
that Ae<Ce; but we cannnot compare Ab and Cb;

However, Ae <Ce; this means A does not finish C and A is
not equal to C.
Thus A can occur in any of the five following modes:
 A before C, A meets C, A overlaps C,A starts C,A can be
during C.
Hence, the statements provided are therefore incomplete to
resolve these cases uniquely.
(ii) Consider the qualitative temporal logic statement: A
starts B and B finishes C
This means Ab=Bb and Ae <Be; Be =Ce and Cb<Bb; that is
Cb <Ab and Ae <Ce
Thus Cb <Ab<Ae<Ce ; or A is during C (or C contains A).
We can also say that if A starts B and B finishes C, then A
before C is inconsistent, since Cb <Ae or C before A.
(iii) Consider the qualitative temporal logic statement:
Ameets B and B overlaps C:
This means Ae =Bb, Ab< Bb, Bb<Cb and Cb<Be and Be
<Ce; Thus we have Ab<Ae(=Bb)<Cb <Be <Ce.
That is Ae<Cb or A before C.
(iv) Consider the qualitative temporal logic statement: A
meets B and A starts B:
This means Ae=Bb and Ab=Bb or Ab=Ae. Thus A is just a
trigger event.
(v) Consider the qualitative temporal logic statement : A
before B and A during B.
That is Ab<Ae and Ae <Bb; and Bb<Ab; Ae<Be.
This means, Ab<Bb <Ab or Ab <Ab ; this is inconsistent.
 We can now use this example to move on to quantitative
temporal consistency through this example. If we assume
that the duration of A is x positive units of time, and B starts
after y positive units of time and ends after z positive units
of time then Ab+x=Ae; Ae+y =Bb . This means Ab+x+y
=Bb; A during B means Bb <Ab or Bb occurs at least one
unit of time earlier than Ab. That is Bb = Ab- 1;.
Combining the equations we find that Ab+x+y =Ab-1 or
x+y = -1; this is impossible since x and y are positive.
Hence the statement is inconsistent.

IV. QUANTITATIVE TEMPORAL CONSISTENCY

 We now introduce numerical measures in the qualitative
temporal relations to convert them to quantitative temporal
relations. We assume that all the events described below are
trigger events and time difference between the occurrence of
these two events E(i) and E(j) satisfy the inequality of the
form: a ≤ E(i)-E(j) ≤ b, where and b are non-negative
integers. We use the following notation to map the positive
integer inequalities among the events into a directed graph.
Note that a and b can be zero for coincident events, and a=
b, if there is no slackness in the constraint or the events
occur with exact time difference.
 Given any two events there is only one constraint,
namely: L(i,j) ≤ E(j)-E(i)≤ U(i,j).
Here L(i,j) and U(i,j) are non-negative integers denoting
lower and upper limits. The subtraction sign indicates
obviously, E(j) is later than E(i) or equivalently, E(i) is
earlier than E(j), thus satisfying the requirement that the
time flows forward.
The above inequality can be split into two one-sided
inequalities:
E(j)-E(i)≤ U(i,j) and E(i)-E(j) ≤ - L(i,j)
We now map the inequality to a directed graph
(digraph)thus: the lower limit L(i,j) appears as an edge with

200

INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP'09) MUSCAT, FEBRUARY 15-18, 2009

© SQU-2009 ISSN: 1813-419X

a negative weight along the j-i direction and the upper limit
U(i,j) appears as a directed edge with a positive weight
along the i-j direction, as shown in Figure 1. Note that
U(i,j)-L(i,j)≥ 0. Also, U(i,j)= L(i,j) if the events have
exactly specified time differences and U(i,j)= L(i,j) = 0
when the events are coincident.

 U(i,j)

 E(i) -L(i,j) E(j)

 Figure 1: Mapping Inequality to a Digraph

Hence, if there are n events [i =0,1,...,(n-1)] , then we will
have n(n-1)/2 directed edges in the graph each representing
one side of an inequality. The adjacency matrix of this
directed graph that represents the simple constraint problem
will have [n + n(n-1)/2] or n(n+1)/2 entries in which n of
the entries corresponding to E(i,i)= 0.
Further, note that the least time path between two connected
nodes i and j representing event E(i) and E(j) respectively,
is given by: Time (0,j) ≤ Time (0,i) + U(i,j).
 We now state and prove a variant of a theorem, proved by
Shostak [11], in the context of linear inequalities..

Theorem 1

A directed graph that describes a single temporal constraint
at each edge represents a temporally consistent problem, if
and only if, the sum of distances across a cycle is non-
negative.
Proof:
If part: Since the elements of the set are well founded, if the
problem is consistent then it implies that, they satisfy the
no-decreasing condition across a cycle from the starting
node of the cycle; or E(k)-E(k) ≥ 0
Only if part: If the cycle sum is negative it implies that
across a cycle E(k)-E(k) < 0 ; this implies E(k)<E(k) which
is not true since E(k) is non-decreasing with respect to itself
and at the worst E(k)= E(k) and the cycle sum is zero.
Further, if there are no negative cycles, it is a consistent
problem and the least-time path between any two nodes is
well-defined . This can be obtained using the shortest path
algorithm for spatial distances. This is because, for any pair
of connected nodes i and j, the least time path satisfies:
Time (0,j) ≤ Time (0,i) + U(i,j).
Remark: If U(i,j)=L(i,j) for all i,j then all the inequalities
become equalities and the cycle sums are zero in both
directions, for consistent problems.

Example
A simple illustration of this theorem is in the creation of the
International date- line for setting up consistency of the
local time of clocks having a well-defined time difference,
at different places across the globe. To the left of the date-
line , in clockwise direction we add +24 hours to denote
next day, and to the right of the international date line in the
anticlockwise direction we subtract 24 hours to denote the
previous day to the travelling clock so that the cycle sum is
zero either way, and the travelling clock is synchronized
with the local clock , as shown below in Figure 2. Note that

the time differences are exact here and we have equalities
between different nodes.

Sydney

Date Line

Los Angeles London

Singapore

+24 Hrs

- 3 1/2

- 8 hours

- 8 hours - 2

-2 1/2

 hours

hours

hours

Figure 2: Consistency of International Clock

 V. DETECTING TEMPORAL CONSISTENCY

A cooperating multi-agent system can be defined as a
loosely coupled network of agents that interact among them
and through the environment to solve a problem [6].
Operationally, the multiagent system carries out distributed
computation by sending, receiving, handshaking and
acknowledging messages and performing some local
computations and has the following features:
1. An agent can carry out elementary computations and it
knows its neighbour’s names and other neighbourhood
connectivity information.
2. There is a seeding (initial) agent which initiates the
solution process.
3. Each agent can be active or inactive.
4. Initially all agents are inactive except for a specified
seeding agent that initiates the computation.
5. An active agent can do local computation, send and
receive messages and can spontaneously become inactive.
6. An inactive agent becomes active, if and only if, it
receives a message.
7. Each agent may retain its current belief or revise its belief
as a result of receiving a new message by performing a local
computation. If it revises its belief, it communicates its
revised state of belief to other concerned agents; else it does
not revise its solution.
Thus:
1.Each agent offers only a partial solution to a problem and
holds only a partial information.
2. Control and Data are decentralized
4. Computation is not necessarily synchronous.
5. The computation terminates when the solution is reached
collectively and the multi-agent system is said to be self-
stabilizing.
 We now describe how several agents, Krishnamurthy and
Murthy [6] can cooperate to check global temporal
consistency of a temporal constraint problem. For this
purpose, we consider the problem of finding a least time path
between any two vertices in a directed graph whose edges
have a certain assigned positive or negative costs. The
vertices of this directed graph correspond to events
represented by agents. Here the agents communicate directly
through messages (Message passing method). Here we use
the terminology similar to the Agent language KQML
(Knowledge Query and Manipulation Language), designed
by Finn et al. [4], consisting of the following Six primitives:

201

INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP'09) MUSCAT, FEBRUARY 15-18, 2009

© SQU-2009 ISSN: 1813-419X

1. A Performative: A single word describing the purpose of
the message, e.g.,Tell, Reply
2. Identity of Sender
3. Identity of Receiver
4. Language used in Content
5 Ontology-Vocabulary: Context within which the message
content is to be interpreted
6. Message content

Example

Let E0,E1,E2,E3 and E4 denote sensory events constrained
by the following inequalities:
(1) 10 ≤ E1-E0 ≤ 20
(2) 30 ≤ E2-E1≤ 40 or (2’) 60 ≤ E2-E1≤ 70.
(3) 20 ≤ E4-E3 ≤ 30 or (3’) 40 ≤ E4-E3≤ 50.
(4) 10 ≤ E2-E3≤ 20
(5) 60 ≤ E4-E0≤ 70
 The above inequalities are mapped into the directed graphs
to describe the relationship among the events. Since there
are two possible inequalities (2) &(2’) and (3) & (3’) , we
need to consider four different possibilities. Thus the
temporal constraints among the events can be represented
by four different directed graphs.
Figures 3 and 4 represent the two out of four possible
constraints, where the former represents a consistent
situation, while the latter represents an inconsistent
situation.
We will now describe the use of cooperating agents to solve
this problem.

E0

E1
E2

E3

E4

-10
20

70 -40

--3020

40

-10

-60
50

 Figure 3

E0

E1
E2

E3

E4

-10
20

70 -40

-6020

70

-10

-60
50

 Figure 4

A. Detecting Temporal Consistency

To detect the temporal consistency , we assume that there are
N agents with names identical to the nodes in the graph and
each agent is connected to other agents in an isomorphic

manner to the given graph. Such an assumption on the
topology of the network simplifies the organizational
knowledge. Also each agent knows the identity of its
neighbours, the direction and cost of connection of the
outgoing edges. Note that the outdegree of each node is the
number of sending channels and the indegree is the number
of receiving channels.The production rules for multi-agent
computation are as follows:
a.Initialization and update of beliefs: Agent X (root) sends
to all its neighbours Y the tuple: (X, s= 0,Y, t=0) describing
the name X of the root, and the distance s= 0 from its source
neighbour, its distance t= 0 from root; all the neighbours of
the root handshake, receive, and store it. This corresponds
to the initialization of beliefs.
Each agent Y at a distance u from X then sends its neighbour
Z at a distance w from it, the tuple (Y, u, Z, u+t) describing
its name, its distance u from the source neighbour, its
distance u+t from the initial node. This is the initial set of
beliefs of the agents.
b. Halting: Finally, the initial node checks its cycle lengths;
if any one cycle is negative, it declares that the problem is
inconsistent.

Example
Consider the directed graph in Figure 3, in which the edge
costs are as shown; we denote the graph by the triplet , a
pair of nodes (X,Y) followed by the cost s of the edge ,thus:
(X,Y,c). The graph in Figure 3 is then given by, (To denote
nodes, we omit the letter E and use only the suffix i of Ei as
the labels):
(0, 1, 20); (1, 2, 40); (2, 3, -10); (3, 4, 50); (4, 0, -60) ; (0, 4,
70); (4, 3, -40);
(3, 2, 20); (2, 1, -30); (1, 0, -10).
We choose the vertex 0 as the root. The graph is encoded
and assigned to the agents as shown in Figure 5. Here we
indicate by arrows the direction of communication , and
names of the communicating agents and inside the box we
indicate by an ordered pair the distance of neighbour and
distance of root. We apply the rules systematically.
The collective agent communication protocol and
computational tree of Figure 5 is obtained from Figure 3 ,
using the rules described. At initiation, the node labelled E0
is the root and the seeding agent. In Figure 5, we indicate by
arrows the direction of communication
among the agents, and an ordered quadruplet indicates: node
name (the distance from neighbour , its distance to root)
credit retained. The root E0 contains the ordered pair :
(0,0).E1 contains the pair (20,20) indicating that its distance
from the neighbour is 20 and from the root is 20. Note that
the constraints in Figure 5 are consistent since the cycles are
nonnegative, the constraints in Figure 6 are inconsistent
since one of the cycles is negative.

B. UML ACTIVITY DIAGRAM

It is convenient to visualize the above interaction among the
agents using the Unified modelling language (UML)
diagram , Figure 7. UML 2.0 has 13 behavioural diagrams
meant specially for improved understanding Booch et al [2],
Holt [5] . Among these diagrams the “Activity Diagram”
permits a very low level modelling and is suitable for our
needs, since the agent actions are at a low-level. Also it
specifies the dynamic behaviour of the agents, their message

202

INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP'09) MUSCAT, FEBRUARY 15-18, 2009

© SQU-2009 ISSN: 1813-419X

and control flow and how they cooperate. Activity
diagrams are made up of three basic elements: (i) Activity
Node, (ii) Activity Edge, and (iii) Region.
(i) Activity Node: There are three types of activity nodes:
Activity invocation, Object and control node. The Activity
invocation permits us to establish traceability to the rest of
the model, via operations, activities and actions.
(ii) Activity edge: This can be of two types: control flow and
message or object flow.
(iii) Region: This has two main types: Interruptible activity
region ands Activity partition. The former allows us to put a
boundary on the diagram where activities can be
interrupted; while the latter mechanism allows us to group
together the different activity invocations.

VI. CONCLUSION

We described a cooperative agent-based algorithm to solve
the simple temporal consistency problem among a set of
events, using a directed graph representation. In this
representation of temporal constraints among agents, each
agent corresponds to an event. This algorithm for detecting
the global consistency is based on a simple yet powerful
theorem by Shostak [11]. Also we illustrated the agent-
based cooperative process using an example and the UML
activity diagram.

REFERENCES

[1]K.R.Apt, Principles of Constraint Programming,
Cambridge University Press, Cambridge, U.K, 2004.
[2]G.Booch, J.Rumbaugh and I.Jacobson, The unified
Modelling language User guide, Addison Wesley,
Massachusetts, 1999.
[3] R.Dechter, Constraint Processing, Morgan Kaufmann
Publishers, San Francisco, 2003
[4]T.Finn et al., KQML:An Agent communication
Language, in J.M.Bradshaw (Ed),Software Agents,
M.I.T.Press, Cambridge, Mass,1997, pp.291-316.
[5] J.Holt, UML for Systems Engineering, IEE, London
2004
[6]E.V.Krishnamurthy and V.K.Murthy, Distributed agent
paradigm for soft and hard computation, Journal of
Network and Computer Applications, 29, ,pp.124-146. 2006
[7]Z.Manna and R.Waldinger, The Deductive foundations
of Computer programming, Addison Wesley, Reading,
Mass, 1993
[8]V.K.Murthy , Contextual-knowledge management in
peer to peer computing, International Journal of
Knowledge-Based & Intelligent Engineering Systems, Vol.
9, 303-314, 2005.

[9]V.K.Murthy. and E.V.Krishnamurthy, Contextual
information Management using Contract-based workflow,
Proc.ACM Computing Frontiers, CF’05, Iscia, Italy, 2005
[10] S.Ribaric, Temporal knowledge representation and
reasoning model for temporally rich domains, Lecture notes
in Artificial Intelligence,Vol. 3682, Springer Verlag, New
York, pp.430-436,2005.
[11] R. Shostak, Deciding linear inequalities by computing
loop residues, Journal of the ACM,.8, 1981, pp.769-779.

E0 (-10,10) E0 (-60,40)

 E1 (-30,20) E4 (50,100)

 E2 (20,50) E3 (-10,50)

 E3 (-40,30) E2 (40,60)

 E4 (70,70) E1 (20,20)

 E0(0,0)

Figure 5. Agent Computation Tree

E0 (-10,-20) E0 (-60,70)

E1 (-60,-10) E4 (50,130)

E2 (20,50) E3 (-10,80)

 E3 (-40,30) E2 (70,90)

 E4 (70,70) E1 (20,20)

 E0(0,0)

 Figure.6 Agent Computation Tree

203

INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP'09) MUSCAT, FEBRUARY 15-18, 2009

© SQU-2009 ISSN: 1813-419X

Send Message to Y

(X,s = 0, Y, t=0)

X
Initial Node

Y

Send Message to Z

(Y,u , Z, u+t)

Send Message to W

(Z,u , W, v+u+t)
Z

u

Z

v
w

W

To other Agents

From other agents

Yes

Cycle Sum <0?

Yes

No

Consistent

Incon sistent

Figure 7. UML Activity Diagram

204

