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ANALOG SOLUTIONS FOR DESIGN OF
MACHINE FOUNDATIONS

A. SripHarRaN®, D. K. Bampyal® and D. M. Rajulld

ABSTRACT

Design of foundations subjected to dynamic load can be carried out either by elastic half-space
theory or by mass-spring-dashpot analogy. Another simplified method, called analog method
has also been proposed. Using this method resonance frequency and resonant amplitude which
are the major criteria in design of machine foundations, can be expressed in terms of modified
mass ratio knowing appropriate damping factor. In this paper analog solutions in the form of
equations (non-dimensional frequency factor vs. modified mass ratio, non-dimensional magnifi-
cation factor vs. modified mass ratio) are presented for all modes of vibration, viz., vertical,
horizontal, rocking and torsional. Finally results obtained by this method are compared with
elastic half-space theory which shows good agreement between the two.
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Uniform and Parabolic and with three dis-
placement conditions, viz. Central, Average
and Weighted average. Using the elastic
half-space theory, Arnold, Bycroft and War-
burton (1955), Bycroft (1956) and Hall (1967)
carried out research on the rocking mode of
vibration taking into consideration only rigid
base pressure distribution and weighted aver-
age displacement condition. Sreekantaiah

INTRODUCTION

Machine foundation design can be carried
out either by elastic half space theory or
theory based on mass-spring dash pot model
or empirical methods (e. g., Richart et al,
1970, Sridharan and Nagendra, 1981). Out of
these, elastic half-space theory is widely used
and most popular. Using this theory many

investigators [Sung (1953), Bycroft (1956),
Hsieh (1962), Richart and Whitman (1967) ;
Sridharan and Nagendra (1981, 1982 and 1984),
to name a few] have carried out research on

(1978) studied the rocking mode of vibration
for other two pressure distributions, i. e. Uni-
form and Parabolic, considering weighted

“average displacement condition only. Reissner

vertical and horizontal modes of vibration
taking into consideration the three different
contact pressure distributions, viz. Rigid,

and Sagoci (1944) and Arnold, Bycroft and
Warburton (1955) obtained solutions for
torsional mode of vibration of a rigid circular
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54 SRIDHARAN ET AL.

footing resting on the elastic half space
assuming rigid base pressure distribution that
is linear variation of displacement from center
to circumference of the footing.

Based on the solution of elastic half space
theory, Lysmer and Richart (1966) presented
the analog solutions for the weighted average
disnlacement of a circular foundation with
rigid base contact pressure distribution for
vertical mode.

The mass of the equivalent lumped system
can, with an accuracy which is adequate for
engineering purposes, simply be taken as the
mass of the foundation block plus machinery.
The “effective mass” of the soil, which has
caused so much controversy and confusion in
the past, is so small as to be of little conse-
quence (Whitman and Richart, 1967).

In order to satisfy the static state, the

stiffness parameter was taken same as the static
stiffness coefficient. Whitman and Richart
(1967) discuss at great length about the choice
of spring constant using theoretical equation
and measured stress-strain relations. They
could be summarised as.

(a) use formulas for spring constants de-
rived from the theory of elasticity and evaluate
the elastic constants either from insitu shear
wave velocity measurements or from laboratory
tests.

(b) Determine spring consstants from
small scale plate bearing tests using static
repeated loadings.

(¢) Deduce spring constants from the re-
sults of small-scale vibrator tests.

(d) Use the concept of an elastic subgrade
modulus together with tables or charts corre-
lating subgrade modulus to soil type. None
of these methods is necessarily better than the
others because each involves approximations
and assumptions, and considerable engineering
judgement is required. Based on the theory
of elasticity formulas for stiffness coefficients
are listed in this paper elsewhere for different
modes of vibrations. They are merely functions
of shear modulus, G, Poisson’s ratio, ¢ and
equivalent radius, 7o of the foundation contact
area. For simplicity the above method is
suggested to obtain stiffness coefficients.
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Fig. 1. Modified mass ratio, B, vs. nontimen-
sional frequency factor a,, and @y, for
constant and rotating mass system re-
spectively, for vertical mode of vibration
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Fig. 2. Modified mass ratio, B, vs. nondimen-

sional magnification factor, M, and M,

for constant and rotating mass system

respectively, for vertical mode of vibration

The analog parameter for damping was
obtained by averaging the value of damping
coefficient in the range 0 < ao <0.8, where ao
is nondimensional frequency factor. Using
modified displacement functions Fi and F:
in the expression for damping coefficient,
C and average the value of C in the range
0.3<a;<0.8, they obtained the solutions.
Based on this, Nagendra and Sridharan (1984)
obtained the analog parameter for vertical and
horizontal vibrations considering three types
of pressure distributions and displacement
condition.

Hall (1967) using the displacement functions
of Bycroft (1956) obtained the analog solutions
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DESIGN METHOD OF MACHINE FOUNDATIONS 55

for the horizontal displacement of a rigid
circular footing. Hall (1967) developed analog
model for rocking mode of vibration for rigid
base pressure distribution and weighted aver-
age displacement condition. In this paper,
using analog coefficients for all modes of
vibrations, analog solutions i.e. relationship
between modified mass ratio vs. nondimen-
sional frequency factor and modified mass
ratio vs. magnification factor have been de-
veloped and presented in a tabular form.

Analog solutions have the distinct advantages
of their simplicity, yet their engineering ac-
curacy adds to the versatility of applying
them to machine foundation problems.

Finally, results obtained by the two methods
(i.e. elastic half space theory and analog
solutions) are presented in the form of figures.
By analysing the result, it can be concluded
that analog solutions can be used in the design
and avoid laborious calculations using elastic
half space theory. :

ANALYSIS

(a) Vertical Mode:

Nagendra and Sridharan (1982) based on
elastic half space theory obtained expressions
for stiffness coefficients for three different
pressure distributions and displacement con-
ditions and their results are summarised in
Table 1. In Table 1, the stiffness coefficients,
ks are given in terms of shear modulus, G:
Poisson’s ratio, # and equivalent radius, 7.

Defining damping factor for vertical mode as

_ G
De=-

Table 1. Stiffness coefficients, k, for vertical
mode (Nagendra and Sridharan, 1982)

Displacement Contact pressure distribution

where, C;=damping coefficients for vertical
mode, and ‘
Cie=critical damping coefficients for
vertical mode.
Lysmer and Richart (1966) obtained expres-
sions relating D, with the modified mass-ratio,
B, (Eq. (1 ))

0. 425
Dy=—222 1
z )\/ Bz ( )

for rigid base pressure distribution and
weighted average displacement condition,
where

—__m (-

B.= pro’ 4

m=mass of the foundation block
p=mass density of the media, and
ro=equivalent radius of the foundation con-
tact area.
For different modes expressions ror 7o are
given in App. II-under notations.
In general, it can be written that

Dkz
D,—=_2kz 1a
where, Dg:=constant depending on type of
pressure distribution and displacement condi-
tion.

B . bzG?‘o

2——72'—

k. =static stiffness coefficient mode as given

in table-1, and

bz=mass ratio=m/pry®.

Following similar approach as Lysmer and
Richart (1966), Nagendra (1982) obtained the
values of Dg; for various pressure distributions
and displacement conditions as given in Table
2 under vertical mode.

Frequency factor: It is well known [Richart
et al (1970)] that a mass spring dashpot

Table 2. Values of D,, for various pressure
distribution and displacement condition,
L’z=Dkz Bz-I/Z

condition Rigid  Uniform  Parabolic
4Gro zGry 3zGry
Central
A= A=p) 41—
4Gry 3722Gry 4572Grg
Average
A—p) 8- 128(1—p)
4Gro 372Gy 94572Gy
Weighted average
A-p 8—p) 3072(1—~p)

Displacement

Contact pressure distribution

condition Rigin Uniform Parabolic
Central 0. 402 0.320 0.241
Average 0.412 0.380 0. 355
Weighted average 0. 425 0.380 0.311

NII-Electronic Library Service



56 SRIDHARAN ET AL.

model subjected to constant dynamic force
which is independent of frequency, the re-
sonance frequency, fm is given by

frmgery| B yTm2DE (2)

Substituting for k. and D, from Tables (1)
and (2) for weighted average displacement
condition and rigid base pressure distribution

_ 1 [TdGr, [{_2(0.4%)"
In=gaNma=V =" B

fm= \/G/P x/Bz—036 (3)
27Ty B
Defining a@om=®m7o Vo[G=2xfnroVo|G
(4)
where @n=circular resonance frequency
aym=nondimensional frequency factor
at resonance
One can get,

__vB,—0.36
= (5)

Similarly for rotating mass we have (Richart,
(1970))

_ 1 [ 1
for=57N"m V1I=2Dz? (6

aom

and Substituting for &z and D; from Tables 1
and 2 for weighted average displacement con-
dition and rigid base pressure distribution and
simplifying,

_ 1
aorm= —)\/m ( 7 )

Magnification factor:

For constant force system (Richart et al.
1970) amplitude is given by

1
Asm=-2 8
*"""ks 2D.V1-D: (8)

where, Qo=amplitude of dynamic load.

Substituting for 2. and D; from Tables 1
and 2 for weighted average displacement con
dition and rigid base pressure distribution.

One can obtain,

_ Qo(1—p) B,
Deﬁning, Azm=%;0i2 Mzm (10)

where, Mun is the nondimensional magnifi-

ca tion factor

B
Mm= z
70,85 4/B,—0.18 1n
Similarly for rotating mass system,

Azrm = Me€ 1
m 2Dz v1—Dz?
where, Qo=amplitude of dynamic load=7m1. e®?
me=eccentric rotating mass
e =eccentricity
o=circular frequency
Substituting for Dz from Table 2

» Me€ Bz
Az1m= ©

m 0.8 +B,—0.18

12)

. Mmee
Defining, Aerm="Mzrm
m
where, Mzrm=nondimensional maginification
factor at resonance,

B,
0.85+/B;—0.18 3

It can be thus seen from Egs. (11) and (13)
that the nondimensional parameter Mem and
Mrm are one and the same.

Mzrm=~‘

i. e., Maym=Mzrm=
1. €. am 2rm 0,85«/Bz——0,18

Egs. (5) and (7) relates the nondimensional
frequency factor for constant and rotating
mass system respectively with modified mass
ratio, Ba.

Eq. (14) relates the nondimensional ampli-
tude factor (Mrm and Mzrm) and the modified
mass ratio, B.

Now, expressing the relationships of Egs.
(5), (7) and (14) in generalised form:

dom= _!_fizB:;ﬁ‘i (15)
v — e (16)
v B:—a;
Mzm = Mzrm = ————*;——Bz = (17>
,Bz ‘\/Bz - az/z

where, a; and B: are constants depending on
contact pressure distribution and displacement
conditions. Adopting similar procedure for
other contact pressure distributions and dis-
placement conditions, constant @ and B: are
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DESIGN METHOD OF MACHINE FOUNDATIONS 57

Table 3. Constants @, and 8, for vertical mode
for use in Eqgs. 15, 16 and 17

Contact pressure distribution

Table 4. Stiffness coefficients, k, for horizontal
mode of vibration (vertical stress o,, due
to horizontal load is zero) (Nagendra and

Displacement Constant .
condition @z and §; Rigid Uniform Parabolic Sndharan’ 1984)
Central ay 0.324 0.205 0.116 Displacement Contact pressure distribution
Bz 0.805 0. 640 0.482 condition Rigid Uniform Parabolic
Average ay 0. 340 0. 289 0. 252
Bz 0.825 0.760 0.710 8Gro 2:Gro 32Gro
Weighted @y 0. 360 0. 289 0.192 Central 5 . o
Average Bz 0,850 0.760 0. 620 @-w @-m @-m
8Gro 272Gry 4512Grg
Average
@ 42w 64(2—p)
obtained by using appropriate %, and D, 8Gro 322Gro 31522Gry
1 f Tabl 1 d 2 Weighted average
values from lables 1 ana Z. @ 42~ 512(2— )

Table 3 gives the values of @; and B. for
three pressure distributions and displacement
conditions.

Using the Egs. (15) to (17) and Table 3
one can easily obtain the nondimensional
amplitude and frequency factors for different
modified mass ratios, B.

Results are presented in Figs. 1 and 2 for
rigid base pressure distribution and weighted
average displacement condition as example.
Comparing the elastic half-space theory (Ri-
chart et al, 1970) with the analog solutions
it can be seen that the agreement is very good.
Similar comparison for other pressure distribu-
tions and displacement conditions also showed
good agreement between the two procedures.

(b) Horizontal Mode of Vibration

Analysis has been carried out for horizontal
mode of vibrations on the similar terms of
the vertical mode. Nagendra et al (1982)
based on elastic half-space theory obtained
expressions for stiffness coefficients assuming
the vertical displacement of the footing due to
horizontal force as zero for three different
contact shear stress distributions and dis-
placement conditions.  Solutions are also
available (Nagendra and Sridharan, 1984) for
062:=0 at the interface. This condition is
more appropriate for purely horizontal mode
of vibration. Hence in this paper the analog
solutions are developed for the condition of
zero vertical stress due to horizontal force.
The stiffness coefficients %5 for vertical stress,
02 due to horizontal force is zero, obtained
by Nagendra and Sridharan (1984) are re-

Table 5. Analog coefficients, C,, for horizontal
mode of vibrations (¢,,=0)
-D.ar::I)IC:I:B:/U_Z/1

Contact pressure distribution

Displacement
condition . Rigid Uniform Parabolic
Central 0.249 0.194 0.144
Average 0.252 0.231 0.216
Weighted average 0.252 0.231 0.188
produced in Table 4.
Defining damping factor,
< C. D
Dy=—% = 2k (18)

Cze v By

Crz=damping coefficients in the hori-
zontal mode
Cze=critical damping coefficients
Drz=analog coefficients.
Bz=modiffied mass ratio for hori-
zontal mode=(b:Gro)/(kz)
kz=static stiffness coefficient in hori-
zontal mode as given in table 4;
and

bz=mass ratio=(m)/(pr?).

Table 5 gives the values of Dz for different
shear stress distributions and displcement
conditions.

Frequency factor:

Resonance frequency for
system is given as

e 1 [ ke e
fr=gf e yTeDn a9

8G7’0
2—p

where,

constant force

Knowing, kz=
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58 SRIDHARAN ET AL.

and Dg= 0.249 from Tables 4 and 5 respec-
v Bz

tively for rigid base contact shear stress

distribution and weighted average displacement

condition

and, am=27fnrov0/G
v Bz—0.124
Bk B 20
B, (20)
Resonance frequency for rotating mass system
is

One can obtain, a¢m=

Py 1
4 27 m '\/1—'2 sz
Substituting for ks, Dz and simplifying

1
Aorm \/Bx—o. 124 ( )

Magnification factor :

For constant force system (Richart et al.
1970) amplitude is given by

1
Ax = QO 22
" ks 2Dz V1-Di? (22)

Substituting for Dz from Teble 5 and defining

where, Mym=magnification factor for constant
force sysem

0. 498 vB,—0. 062

Similarly for rotating mass system,

Mee 1
Aa:rm = ¢

m 2Dz 1—Dg?

(23)

Substituting for Dz and defining,

nee
Azrm= o Mazrm
m

where, Mazrm=magnification factor for rotating
mass system
= Bx
0. 498 ¥/ Bz —0, 062

B
T = rm = z
hus, Mom=Morn=4—195"75—5063

Now, expressing Egs. (20), (21) and (25) in
the following form:

24

(25)

aom=i5xB—:‘"ﬁ (26)

Table 6. Constants, @, and B, for use in
equations (26, 27 and 28)

Displacement Contact shear stress distribution

PN az and Bz
condition Rigid  Uniform Parabolic
Central as 0.124 0.075 0.041
8o 0.498 0.388 0.288
Average az 0.127 0.107 0.093
B 0.504 0.462 0.432
Weighted - 0.127 0.107 0.071
average B 0. 504 0.462 0.376
1
Agrm = — e 27
\/ Bz—ay
18.1; \/ Bx— (245 / 2

where, az and Bz are constants which depends
on shear stress distributions and displacement
conditions. Table 6 gives the values of ag
and Bz for three different shear stress distribu-
tions and displacement conditions.

Using Egs. (26) to (28) and Table 6 one
can easily obtain the nondimensional frequency
factor and magnification factors for different
contact shear stress distributions and dis-
placement conditions for any value of modified
mass ratio, Baz.

Finally, results are presented in Figs. 3 and
4 for rigid base pressure distribution and

Elastic half space theory
—— — Analog solution
10

Rotating mass
system

L -

2 -

0 x FE 1 ) 1
03 06 10 30

Gom+ Sorm

Fig. 3. Modified mass ratio, B, vs. nondimen-
sional frequency factor, a,,, and a,,, for
constant and rotating mass system re-
spectively for horizontal mode of vibration
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10

Elastic half space theory
- =« Analog solution

B Constant force
X T system

Rotating mass
system

Constant and
rotating

0 ! - ! 1 | !
1 2 3 4 5 8 7

Myms Myerm

Fig. 4. Modified mass ratio, B, vs. nondimen-
sional magnification factor, M, and M,,,,
for constant and rotating mass system
respectively for horizontal mode of vibra-
tion

weighted average displacement condition for
both elastic half space theory (Nagendra and
Sridharan 1984) and analog model. It can be
seen that agreement between two is very good.

(¢) Rocking Mode of Vibrations:

Similar to what has been carried out for
vertical and horizontal mode, analog solutions
have been obtained for rocking mode for three
types of pressure distribution namely rigid,
uniform and parabolic and for weighted aver-
age displacement condition only. For other
displacement conditions stiffness coefficient %y,
damping factor, Dy are not available. Tables
7 and 8 presents the stiffness coefficient, Z4
and damping factor, D, respectively as ob-
tained from literature. ‘

Table 7. Stiffness coefficients, ky, for
rocking mode

Contact pressure

distribution Rigid Uniform Parabolic
8Gr3y 1572Gr3g  67.522G73,
Values of ky
3(L—p) 64(1—p)  1024(1—p)
(By Croft, (Sridharan, Baidya
1956) and Raju, 1989)

Table 8. Values of damping factor, D,

Contact pressure Rigid

distribution Parabolic

Uniform

0.11 0.094 0.073

(A+By)B0%4 (1+Byp)B04 (1+Bp)Bo.4
(Sridharan, Baidya and Raju, 1989)

Values of Dy

Substituting for %4 (table 7) and D, (table 8)
in Egs. (2), (6) and (8) one can obtain
the expression for frequency factor and magni-
fication factor for rocking mode as follows:

- V(A+By)?B, % —a, (
aom ‘(1+B¢) on.g (29)
_ (1+B,) 0
Gorm Byt v +B,)*B, % —a, (30)
— — (1 +B¢>ZB¢O‘8
Min=Mern =g AT By B a2
D)
where By=modified inertia ratio for rocking
mode = b,Gro®
ky

by=inertia ratio=1/p7r¢°
and I;=mass momet of inertia about the
axis of rotation.
whera @, and S, are the constants depends on
the contact pressure distribution and dis-
placement conditions and are tabulated in
Table 9.

Finally, results are presented in Figs. 5
and 6 for rigid base pressure distribution and
weighted average displacement condition for
both elastic half space theory (Richart et al.
1970) and analog model which shows good

Table 9. Values of a; and By

Contact, pressure Rigid Uniform  Parabolic
ag 0.024 0.0176 0.011
Bo 0.022 0.1880 0.146

Elastic half space theory
~ —— Analog solution

Constant and

4i— rotating
L Rotating mass
system
2 f—
Constant force
system

0 1 1 ! [ ===+ !
02 03 04 06 08 10 20 30

2om s qorm

Fig. 5. Modified inertia ratio, B, vs. nondimen-
sional frequency factor, a,, and a,,, for
constant and rotating mass system re-
spectively for rocking mode of vibration
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e Elastic half space theory
S~ — —— Anclog solution

Rotating mass
8 system

constant force
system

constant and
rotating

==

] f I L ;. (| 1 . !

1 | S
5 2 3 4 3 8 10 20 40 50 80 100

Fig. 6. Modified inertia ratio, By vs. nondimen-
sional magnification factor, My, and My,,,
for constant and rotating mass system re-
spectively for rocking mode of vidration

agreement between the two approaches.

(d) Torsional Mode of Vibrations:
Sufficient literature far torsional mode of
vibrations are not available like all other
mode of vibrations. From available literature
(Reissner and Sagoci, 1944) damping ratio,
D, and stiffness coefficient, ks for torsional
mode of vibration for rigid base pressure
distribution and weighted average displacement
condition, are:
0.5
T 1+2Bs’

Substituting it in Egs. (2), (6) and (8)
one can get analog equations for torsional
mode of vibrations for Bs vs. nondimensional
frequency factor and amplitude factor as
follows:

Do /%:L:f_ Gré  (32)

WS T VB (42 Bo) (3%
_ 4 (1+2 Byp)

aorm «/§Bo 4/(1-}-2 Bo)z——o, 5 (34)

Mom=Mypm——r Q2 B0)* (35)

v(1+2B,)%-0.25

where, By,=modified inertia ratio for torsional

mode =
© Ty

I;=mass moment of inertia about axis

of rotation.
Finally, results obtained by elastic half-
space theory (Richart et al.1970) and analog

~— Elastic half space theory
- — = Anglog solution

system

constant force
system

S

Aom s Borm
Fig. 7. Modified inertia ratio, By vs. nondimen-
sional frequency factor, a,, and a,,, for
constant and rotating mass system re-
spectively for torsional mode of vibrations

5 Rotating mass
system

—— Elastic halt space theory

Constant and
rotating

~— —=— Analog solutiocn

Constant force
system

Moms Merm
Fig. 8. Modified inertia ratio, By vs. nondimen-
sional magnification factor, My, and Mo n
for constant and rotating mass system re-
spectively for torsional mode of vibration

model are presented in Figs. 7 and 8 and are
compared. It can be seen that the agreement
between them is very good.

CONCLUSIONS

Solution are available for predicting the
resonance frequency and resonance amplitude
for foundations subjected to different modes
of vibrations based on elastic half-space theory.
However, they are not in simple form to be
used in practice. Analog solutions have been
proposed as a simple solutions. In this paper
coefficients are obtained using analog solutions
which can be readily used in the equations
relating nondimensional mass ratio vs. frequen-
cy factor; and nondimensional mass ratio vs.
magnification factor. - Results have been ob-
tained for vertical and horizontal mode of
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DESIGN METHOD OF MACHINE FOUNDATIONS 61

vibrations for three types of pressure distri-
butions (Rigid, Uniform, Parabolic) and three
displacement conditions (Central, Average,
Weighted average). For rocking mede, re-
sults are presented for weighted average dis-
placement condition and three types of pressure
distribution. For torsional mode analog equa-
tions have been presented only for rigid base
pressure distribution and weighted average dis-
placement condition.

The results obtained from analog solutions
have been compared with those obtained from
elastic half-space theory and their agreement
is found to be very good.

NOTATIONS

Aym, Agm=displacement amplitude for vertical and
horizontal mode respectively due to
vibrations

ag=nondimensional frequency factor

@om, @orm=nondimensional frequency factor at re-
sonance for constant and rotating mass
system respectvely

B,, B,=modified mass ratio for vertical, hori-
zontal mode respectively

By, By=modified inertia ratio for rocking and
torsional mode respectively

C,, Cy=damping coefficients for vertical and
horizontal mode respectively

Cie, Cre=critical damping coefficients for vertical

and horizontal mode respectively

D,, D;, Dy, Dy=damping factor for vertical, hori-
zontal rocking and torsional mode re-
spectively

Dy,, Dy, =analog parameter for vertical and hori-
zontal mode respectively

¢ =eccentricity of rotating mass

JSm, fmr=resonance frequency for constant and

rotating mass system respectively

G =shear modulus of the mediun

Iy=mass moment of inertia of machine and
foundation about axis of rotation, i.e.
about base

Iy=mass moment of inertia of machine and
foundation about axis of rotation, i.e.
about vertical axis

ks, ks, kg, ko=static stiffness coefficients for vertical,
horizontal rocking and torsional mode
respectively

m=mass of the vibrating foundations
M, Mym, Mym, Mon=nondimensional magnification

factor for constant force system for ver-
tical, horizontal, rocking and torsional
mode respectively
ro=equivalent radius of the foundation block
corresponding to each mode
For a rectangular footing having dimensions 2 ¢ by
2d, the equivalent radius, »¢ is given by:

1/2
ro:[ 4;d] for vertical and horizontal
3 174
7‘02[ 1267?? ] for rocking

7‘02[—16 Cd%%62+dz) :|1/4 for torsion
a,, @, and ag=constants in analog equations for
vertical, horizontal and rocking mode
respectively
B, Bz and By=constants in analog equations for
vertical, horizontal and rocking mode
respectively
p=poisson’s ratio
p=mass density of soil
o=circular frequency
®rm, @y =circular resonance frequency for rotating
mass system and constant force re-
spectively.
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